NaLIX: an Interactive Natural Language Interface for
Querying XML

Yunyao LI
University of Michigan
1309 Beal Ave.
Ann Arbor, M| 48109

yunyaol@eecs.umich.edu

ABSTRACT

Database query languages can be intimidating to the non-
expert, leading to the immense recent popularity for key-
word based search in spite of its significant limitations. The
holy grail has been the development of a natural language
query interface. We present NaLLIX, a generic interactive
natural language query interface to an XML database. Our
system can accept an arbitrary English language sentence
as query input, which can include aggregation, nesting, and
value joins, among other things. This query is translated,
potentially after reformulation, into an XQuery expression
that can be evaluated against an XML database. The trans-
lation is done through mapping grammatical proximity of
natural language parsed tokens to proximity of correspond-
ing elements in the result XML. In this demonstration, we
show that NaLIX, while far from being able to pass the
Turing test, is perfectly usable in practice, and able to han-
dle even quite complex queries in a variety of application
domains. In addition, we also demonstrate how carefully
designed features in NaLIX facilitate the interactive query
process and improve the usability of the interface.

1. INTRODUCTION

In the real world we usually obtain information by ask-
ing questions in a natural language, such as English. It
follows that supporting arbitrary natural language queries
is regarded by many as the ultimate goal for a database
query interface. Not surprisingly, there have been numer-
ous attempts to provide a natural language interface to a
database [4]. However, two major obstacles lie in the way
of reaching the ultimate goal of support for arbitrary nat-
ural language queries. First, automatically understanding
natural language (both syntactically and semantically) is it-
self still an open research problem. Second, even if we had
a perfect parser that could fully understand any arbitrary
natural language query, translating the parsed natural lan-
guage query into a correct formal query still remains an issue
since this translation requires mapping the understanding
of intent into a specific database schema. For example, for

*Supported in part by NSF under grants 11S-0219513 and
11S-0438909, and by NIH under grant LM-0810601.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
SIGMOD 2005June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/%5.00.

Huahai Yang
University at Albany, SUNY
135 Western Avenue
Albany, NY 12222

hyang@albany.edu

H. V. Jagadish*
University of Michigan
1309 Beal Ave.
Ann Arbor, MI 48109

jag@eecs.umich.edu

the query “who is the director of “Gone with the Wind””,
we do not know if “Gone with the Wind” is a movie or a
book. Moreover, even if we know “Gone with the Wind” is
a movie, we still need information on actual structural rela-
tionship between director and mowvie in the XML document
in order to formulate a correct XQuery.

We describe NaLIX (Natural Language Interface to XML),
a generic interactive natural language interface to XML data-
base systems. Our focus is on the second challenge: given
a parsed natural language query, how to translate it into a
correctly structured query against the database. In NaLIX,
an arbitrary English language sentence, which can be quite
complex and include aggregation, nesting, and value joins,
among other things, is translated, potentially after refor-
mulation, into an XQuery expression that can be evaluated
against an XML database. For example, it is possible for the
user to write “find the title of publications with more than
5 authors” without having to worry about the actual struc-
tural relationships among the elements/attributes or the ac-
tual element/attribute names used in the XML documents
for title, publication, or author. In addition, automatic se-
mantic grouping based on the user query will be performed
to determine query nesting and grouping.

Of course, the first challenge of understanding arbitrary
natural language remains. In NaLIX, instead of attempting
to address this widely regarded “AI Complete” problem, we
use an off-the-shelf natural language parser, and interac-
tively guide the user to pose queries that our system can
understand by providing meaningful feedback and helpful
rephrasing suggestions. In most cases one or two iterations
appear to suffice for the user to submit a natural language
query that the system can parse. A correctly parsed query
in turn almost always is translated into a structured query
that correctly retrieves the desired answer.

To the best of our knowledge, NaLIX is the first generic
interactive natural language interface to XML databases.
NaLIX, while far from being able to pass the Turing test, is
perfectly usable in practice, and able to handle even quite
complex queries, e.g. involving nesting and aggregation, in
a variety of application domains.

The rest of the paper is organized as follows. Section 2
describes the architecture of NaLIX. Section 3 is a list of
features of NaLIX included in the demonstration.

2. SYSTEM ARCHITECTURE

Figure 1 depicts the architecture of NaLLIX. The entire
NaLIX system consists of two parts: one part is responsi-
ble for query translation from natural langauge queries to
XQuery, including parse tree classifier, validator and trans-
lator; the other provides supports for interactive query for-
mulation, including query repository and message generator.
A typical user interaction process in NaLIX involves both
query translation and interactive query formulation.

Query results; o Query results
o_Feedback o Feedback messages Message Warnings
messages generator

A

Errors &
Warnings

Command
————» GUI Command _ |
History&template History&template|

User

NLQ NLQ Parse tree

translator

Parse tree | Classified
classifier

NLQ Parse tree
.

Dependency
parser

Figure 1: Architecture of NaLIX

2.1 Query Translation

Three main steps are involved in the translation of natural
language queries into corresponding XQuery expressions.

Parse Tree Classification: The parse tree classifier
identifies the word/phrase in the parse tree of the original
sentence that can be mapped into corresponding compo-
nents of XQuery, and classifies it into a token (if it matches a
XQuery component) or a marker (if it does not). Due to the
vocabulary restriction of the system, some words/phrases
may be unknown to the system, and cannot be properly
classified. They will be reported later during parse tree val-
idation, when their relationship with other tokens/markers
can be better identified.

Parse Tree Validation: The parse tree validator checks
the classified parse tree and see whether the parse tree ob-
tained is one that we know how to map into XQuery. It
also checks whether the element/attribute names or values
contained in the user query can be found the database, if a
database is available. If a parse tree is found to be invalid,
information about the errors will be sent to the message
generator to generate appropriate error messages.

Parse Tree Translation The challenge of translating a
valid parse tree into XQuery is to utilize the structure of the
natural language constructions, as reflected in the parse tree
to generate appropriate structure in the XQuery expression.
We address this issue through the introduction of the notion
token attachment and token relationship. We also propose
the concept of core token as an effective mechanism to per-
form semantic grouping, and hence determine both query
nesting and structural relationships between result elements
when mapping tokens into queries.’ Our system as it stands
supports comparison predicates, simple negation, quantifi-
cation, nesting, aggregation, value joins, and sorting.

2.2 Schema Free XQuery

Generating correct XQuery expressions involves knowl-
edge of the database schema, and bringing this knowledge
to bear on the patterns of token attachment and token re-
lationship can be quite challenging. We solve this problems
through the use of Schema-Free XQuery [7]. The central idea
in Schema-Free XQuery is that of a meaningful lowest com-
mon ancestor structure (MLCAS) of a set of nodes. Given a
collection of keywords, each of which identifies a candidate
XML element to relate to, the MLCAS of these elements, if
one exists, automatically finds relationships between these
elements, if any, including additional related elements as ap-
propriate. Schema-Free XQuery greatly eases our burden in

'Due to space limitation, details of these notions are pre-
sented elsewhere [6].

A0l

File Settings Help

‘-Emer Querny: 1
]
|Retum all the books published by the same author as "Adv il inthe Unix Envi “\ - Enter
! =
Feethack Tree View | XML View | Grid View |
|Retum 2l the hooks published by the same author B8l D results:
Advanced Programminc in the Unix Environment
he system does notunderstand what the same as|
"as ' means. Similar phrases that the
systermn does Understand are listed in
he sidebar, P
Return movies whose litle is the same as the
Please revise your query and try again title of ook "Gone with the wind
~Ouery History
[] Return all the books with more than 3 authors
[] ihe are the suthors published backs st Addison-Wesley
[_] Show me the totsl rumber of suthors for each book
| Sellect Al ‘ ‘ Clear 21l | ‘ Save Selected to Teraplate ‘
[Ready [perver: localhost Template: oinaliclyy.at
File Settings Help
i-EnIer Queny: 1
I -1
|ium all the books whose author is the same as that of inthe Unix Envi 4 ” Enter ‘
Feedhack | Treeview | XML View | iew |
Return all the books whase author is the same as that [results bl
of Advanced Prodrarirming in the Unix Ervironiment 9 Cresult
" o ¢ [book: (key=hooksiawiStevensd2 mdate=2002-0 -
SRR NS [autnor: v, Richard Stevens
D title: Advanced Programming in the UNBCEmin |
D publisher. Addison-YWesley
D year 1882
[ishr: 0-201-56317-7
s e, 1| 9 [rsUIt
Query History ¢ [hook: (key=hooksfawiStevensad mdate=2002-0
[] Return all the baoks whase author is the same as that of "ad]+ [author: w, Richard stevens
[Return il the boaks with more than 3 authors D title: TCPIIR lllustrated, Volurme 1: The Protocol
[] o e the suthors published books st Addisan-tiierley [nusiisher: aguisanwestey
[] Show me the total number of authors for each book I~ Diyear. 1234
« i T D [isbn: 0-201-63346-9
result =
‘ Sellect All ‘ ‘ Clear all ‘ | Save Selected to Template | 73 Fo
4] i I D]
[Ready [Ferver: localhost Template: ciinaliyy qtf

Figure 2: An example iteration.

translating natural language queries - it is no longer nec-
essary to map the query to the precise underlying schema.
For example, for our previously mentioned query “who is
the director of “Gone with the Wind””, there may be both
the title of a movie or the title of a book with the value
“Gone with the Wind” in the database. However, we do not
need advanced semantic reasoning capability to know that
only movies can have a director and hence “Gone with the
Wind” should be the title of a movie. Rather, the computa-
tion of mlcas(director, title) will automatically choose only
the title of movie, as it is the only title structurally mean-
ingfully related to director. Furthermore, it does not matter
whether the schema has director under mowvie or vice versa
(for example, movies could have been organized according
to their directors). In either case, the correct structural re-
lationships will be found, with the correct director elements
be returned.

2.3 Interactive Query Formulation

The mapping process from natural language to XQuery
requires our system to be able to map words to query com-
ponents based on token classification. Due to the limited
vocabulary understood by the system, certain terms cannot
be properly classified. Clever natural language understand-
ing systems attempt to apply reasoning to interpret these
terms, with limited success. Our approach is complemen-
tary — get the user to rephrase the query into terms that we
can understand.

Feedback Messages If the parse tree validation fails,
message generator will issue error messages and suggestions
based on the information provided by parse tree validator.

Each error message is dynamically generated, tailored to
the actual query producing the errors. Inside each message,
possible ways to revise the query are also suggested. Figure 2
shows an example of such iteration in NaLIX. By providing
such meaningful feedbacks tailored to each particular query
instance, we eliminate the need to require users to study
and remember tedious instructions on the system’s linguistic
coverage. In addition, by suggesting users using the given
terms whenever possible, we effectively restrict the linguistic
scope of the user query, and thus improve the chances that
the user query will be successfully served.

Our system also issues warnings in a few situations, along
with the query results to let the user be aware of issues that
may have negative impact on the query translation. For ex-
ample, whenever there exists a pronoun in a user query,
warnings will be issued to remind the user of a possible
occurrence of the “anaphora” resolution problem that may
lead to the loss of search quality. For another example, if
there exist multiple matches in database while checking the
existence of an element/attribute name or value, we give the
user an opportunity to choose one or more matches of inter-
est; if the user decides to proceed, we process the query and
the user has now better anticipation of retrieved results.

Query Repository The query repository automatically
stores natural language queries that have been successfully
validated during a search session. The user can access and
manage query history at any time from the GUI. The user
can also choose to save the whole query history, or selected
part of it into a template file. The template file can be
later imported into NaLIX, with each query in it becoming
a query template. The user can choose a query template,
and change part of it to compose a new query. Facilities
that allow the user to organize and edit existing templates
are also provided. The query history is similar to the history
of search words used in the famous SuperBook project [10].
The idea behind it is that searches often are not one-shot;
the user needs to look at prior queries and their results to
modify search accordingly. Keeping search history and pro-
viding query template preserves the user’s prior search ef-
forts, and provides the user a quick starting point when
he/she needs to create new queries. More importantly, in
our system, query history and template help the user to re-
inforce his/her knowledge on the linguistic coverage of the
system without extra burden, since only validated queries
may be kept in the history, and be used as templates.

Query Results Queries generated by the parse tree trans-
lator are sent to a database system supporting Schema-Free
XQuery. The XML output is returned to the user via the
GUI. NaLIX supports displaying search results in differ-
ent views to serve different user needs: text view is good
for small and simple results; tree view allows the user to
navigate and analyze large and complex results, while grid
view imposes structure on the query results and provides
spreadsheet-like interface, and makes it easier to understand
the search results. The XML output can also be saved as a
file at a location given by the user.

Ontology-Based Term Expansions Typically the user
is unfamiliar with the specific element/attribute names in
the database. For example, in query “find the title of all
publications”, if the document being queried upon contains
book instead of publication, the direct translation of the user
query will not be able to generate the correct results, since
no publication can be found. Term expansion has been stud-
ied extensively in the information retrieval literature [2, 5,
9] as a means to address such name-mismatch problems. We
borrow techniques from these works, and use them in our
system: term expansion based on WordNet [2] is used by de-
fault; ontology-based term expansion is performed whenever
the ontology for a given XML document is available.

3. DEMONSTRATION OVERVIEW

We have implemented NaLIX as a stand-alone Java ap-
plication to work with any XML database that supports
Schema-Free XQuery and term expansion. In this demon-
stration, we use Timber [1] as the XML database, and MINI-
PAR [8] as our natural language parser. We will demon-
strate the following features of NaLIX:

Interactive Query Formulation In NaLIX, users can
specify natural language queries in two ways. First, users
can load query template files, and choose from a variety
of preloaded sample natural language queries, including the
“XMP” queries in the W3C XQuery Use Cases [3]. Each
template query can be altered to create a new query. Sec-
ond, they can write their own natural language queries. Due
to the limited vocabulary “understandable” by the system,
certain terms cannot be properly classified. The user will
be asked to rephrase the query into terms that we can un-
derstand. Error messages will be dynamically generated,
tailored to the actual query causing the error and sent back
to the user. Inside each message, possible ways to revise the
query are also suggested, whenever possible. Figure 2 shows
a snapshot of such an iteration in NaLIX.

Query History and Template Users can access and
manipulate query history at any time from the GUI. Users
can also choose to save the whole query history, or selected
queries in it into a new template file. Users can also im-
port existing template files, with each query in it becoming
a query template. Users can also organize and edit the tem-
plate files using NaLIX.

Visualizing the Translation While a query is being
evaluated by Timber, users can see the visualized validated
classified parse tree used in the translation process, as well
as the Schema-Free XQuery expression generated from the
original natural language query. Users can also turn on/off
term expansion from the GUI to see how the translation
process and the results of their queries are affected.

Visualizing the Results Users may select any of three
result display views for returned results: text view, tree
view, and grid view. The size of display window can be eas-
ily adjusted to better display the results, whenever needed.
Warning messages, if any, will be displayed along with the
results.

4. REFERENCES

[1] Timber: http://www.eecs.umich.edu/db/timber/.

[2] WordNet: http://www.cogsci.princeton.edu/~wn/.

[3] XML Query Use Cases:
http://www.w3.org/TR/xquery-use-cases/.

[4] I. Androutsopoulos, G. Ritchie, and P. Thanisch. Natural
language interfaces to databases - an introduction. Journal
of Language Engineering, 1(1):29-81, 1995.

(5] A. Burton-Jones, V. Storey, V. Sugumaran, and S. Purao.
A heuristic-based methodology for semantic augmentation
of user queries on the Web. In ER2003, 2003.

[6] Y. Li, H. Yang, and H. Jagadish. Constructing a Generic
Natural Language Interface for an XML Database.
Submitted.

[7] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free XQuery. In
VLDB, 2004.

[8] D. Lin. Dependency-based evaluation of MINIPAR. In
Workshop on the Evaluation of Parsing Systems, 1998.

[9] P. V. R. Navigli. An analysis of ontology-based query
expansion strategies. In IJCAI, 2003.

[10] J. R. Remde, L. M. Gomez, and T. K. Landauer.
Superbook: an automatic tool for information exploration -
hypertext? In Hypertext, 1987.

