
Why Not?

Adriane Chapman
The MITRE Corporation

McLean, VA 22102
achapman@mitre.org

H.V. Jagadish
University of Michigan
Ann Arbor, MI 48109
jag@umich.edu

ABSTRACT
As humans, we have expectations for the results of any action, e.g.
we expect at least one student to be returned when we query a uni-
versity database for student records. When these expectations are
not met, traditional database users often explore datasetsvia a se-
ries of slightly altered SQL queries. Yet most database access is via
limited interfaces that deprive end users of the ability to alter their
query in any way to garner better understanding of the dataset and
result set. Users are unable to question why a particular data item
is Not in the result set of a given query. In this work, we develop a
model for answers to WHY NOT? queries. We show through a user
study the usefulness of our answers, and describe two algorithms
for finding the manipulation that discarded the data item of interest.
Moreover, we work through two different methods for tracingthe
discarded data item that can be used with either algorithm. Using
our algorithms, it is feasible for users to find the manipulation that
excluded the data item of interest, and can eliminate the need for
exhausting debugging.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human information processing;
H.2.8 [Database Applications]: Scientific databases; E.0 [General]:
Data

General Terms
Algorithms, Human Factors, Verification

Keywords
Provenance, Lineage, User understanding, Result explanations

1. INTRODUCTION
Why did the chicken not cross the road? Why not Colbert for

President? Why did Travelocity not show me the Drake Hotel asa
lodging option in Chicago? Why did Frank Sinatra not have brown
eyes? Except for the unfathomable chicken, there is an explicit rea-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09,June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

son for each of these events not occurring1. Understanding why
events do not occur is a natural process we use to understand our
world. In the arena of databases and software systems, theseques-
tions often sound like: Why did this program not complete? Why
did this tuple not appear in the result set? etc. The typical response
to such questions is an epic debugging session in which the exact
series of events is painstakingly traced until the answer isfound.

Provenance, or the history of a piece of data, has been studied
in order to explain where data came from [5, 9, 10] and what hap-
pened to it along the way [1, 2, 12, 19]. This information can be
utilized to assist us in understanding why data items exist within a
result set [1, 17, 19]. Provenance in these works can help explain
surprises within a result set. However, what happens when the sur-
prise is not what is found within the result set, but what is missing
from the result set? Consider the following set of user problems:

• A scientist searches a biological database for: “sterol AND
organism=‘Homo sapiens”’. A known function ofABC1 is
“sterol transporter activity”, so why is it not in the resultset?

• A business traveler searches for flights on a popular flight
booking web site, he cannot understand why there is no direct
flight from DTW to LAX listed. He took that flight last week,
so why is it not in the result set?

• A fan wants to see all the scoop about “the king” inReturn
of the Kingand types “Vito Mortensen” in IMDB. No Vito
Mortensen is returned. Why not?

There is one running theme throughout the problems encoun-
tered above, despite the differences in domain: the user does not
have the ability to alter their query in any way to garner better un-
derstanding of the dataset and result set. For instance, in astandard
database system, if the user queries: SELECT name FROM em-
ployees WHERE salary >$100,000, and there are no results, the
natural inclination is to slightly alter the query. Thus, the user may
turn around and enter: SELECT name FROM employees WHERE
salary >$75,000. In other words, an experienced classic database
user has the means to explore the database and query space. A
traditional database user is comfortable using this methodology to
explore the characteristics of a dataset, and would have no need to
ask WHY NOT?. Unfortunately, many applications and users no
longer fit this paradigm. In the above examples, the users arenot
database users, they are application users who have no access to the
underlying dataset. They cannot sift through the dataset todeter-
mine WHY NOT? when they encounter an unexpectedly missing
result. Additionally, the applications themselves limit the type of
queries the users can submit. In the Business Traveler Example
1On November 1, 2007, the South Carolina Democratic Party ex-
ecutive council refused Colbert’s ballot application by a 13-3 vote.
Graduate students don’t make enough to stay at the Drake Hotel, as
noted in my cost preferences. According to Mendelian Inheritance,
Sinatra did not have the dominant gene required.

above, Travelocity only allows the user to choose dates and loca-
tion; it is impossible for the user to subtly alter the query to comb
through the dataset to find the flight he thinks he knows about.Fi-
nally, in a traditional database, a standard, well-understood set of
operators exist. In many applications this is not true, and the pres-
ence of complex, programmatic operations will obfuscate why data
is not in the result set. In the biology example, why isABC1 not
in the result set after the query? The user knows that there isa
database behind the application, but how does the keyword query
interface with it? How are the results retrieved and displayed? Is
there a bug? In actuality, the only reasonABC1 is not in the result
set after this query is because the biological database onlydisplays
the top 100 hits, andABC1 falls outside the range. This sort of
WHY NOT? question could never be addressed via the sift and
comb database search method.

This work was inspired by biological scientists attemptingto un-
derstand the results presented by bioinformatics tools. These users
knoweverything about their favorite biological entity (DNA, RNA,
protein, organism, etc). When an informatics tool presentsresults
contradictory to the expectations engendered by this knowledge,
there is no way for the scientists to pick apart the underlying data
or computations. Typically, this leads the scientists to throw up
their hands and walk away from the tool forever.

1.1 The Problem
For ease of explanation, we will leave the biological domain, and

present examples using books. After performing a set of relational
operators, application functions, or mixture of both, a result set is
formed. For instance, the data found inYe Olde Booke Shoppe, in
Table 1, is the result set of a manual curation of Library A anda
Natural Language Processing of Library B, with a merge and du-
plicate removal process applied to the two outputs. In otherwords,
a set of non-relational manipulations created the result set. When a
user queries theYe Olde Booke Shoppedatabase, a set of relational
operators, and perhaps user functions, is used.

Once a result set is formed, if a user is unable to find what she
wished, she must specify what she is seeking, using key or attribute
values. Using this information, we describe how to offer explana-
tions to the user about why the data is not in the result set.

EXAMPLE 1. Table 1 contains the contents of Ye Olde Booke
Shoppe. If a shopper knows that all “window display books” are
around $20, and wishes to make a cheap purchase, she may issue
the query: Show me all window-books. Suppose the result fromthis
query is: (Euripides, “Medea”). Why is (Hrotsvit, “Basilius”) not
in the result set? Is it not a book in the book store? Does it cost
more than $20? Is there a bug in the query-database interfacesuch
that her query was not correctly translated?

WHY NOT? is a series of statements about the potential reasons
the data of interest to the user is missing from the result set. We can
leverage provenance records [4, 6, 13], query specificationand the
user’s own question to help understand WHY NOT?. In the exam-
ple above, we can trace (Hrotsvit, “Basilius”)’s progress through
all the manipulations performed on (Euripides, “Medea”). Every
manipulation at which the two do not behave similarly is a possible
answer to “Why Not?”.

Throughout the rest of this work, for ease of reader comprehen-
sion, we utilize a classic book database, with standard relational
operators, and a few user defined, “server-side” functions.How-
ever, we would like to emphasize that the problem we are address-
ing exists outside of traditional databases, and our techniques can
be applied to applications as well.

Author Title Price Publisher
Epic of Gilgamesh $150 Hesperus

Euripides Medea $16 Free Press
Homer Iliad $18 Penguin
Homer Odyssey $49 Vintage
Hrotsvit Basilius $20 Harper
Longfellow Wreck of the Hesperus $89 Penguin
Shakespeare Coriolanus $70 Penguin
Sophocles Antigone $48 Free Press
Virgil Aeneid $92 Vintage

Table 1: The set of books inYe Olde Booke Shoppe.

In Section 2, we provide a model and definitions that allow us to
describe a piece of data not in the result set, and ask why it isnot
there. Moreover, we provide a model which allows us to answer
WHY NOT? questions. In Sections 3–4 we discuss how WHY

NOT? answers can be computed. The evaluation of our methods is
presented in Section 5. In Section 6, we discuss related work; we
conclude in Section 7.

2. FOUNDATIONS
Throughout this work, we call the basic logical data unit adata

item. Data items may be tuples in a relational table, elements in
XML, objects of arbitrary granularity in an OODB, etc. One data
item may completely include, overlap with, or be totally disjoint
from another data item. A data item contains a set ofattributes.
A data item that is a tuple contains standard relational attributes;
a data item that is an XML element contains attributes that are
child elements or attributes. Each attribute is associatedwith a data
value. Attributes can be single or multi-valued. Adatasetis com-
prised of a set of data items.

Datasets are often manipulated via workflows such as [3, 6, 18].
A M ANIPULATION is a basic unit of processing in a workflow or
query evaluation plan. Each MANIPULATION takes one or more
data sets as input and produces a dataset as output. We write
M(DI1 , DI2 , ...) = DO to indicate that MANIPULATION M takes
datasetsDI1 , DI2 , etc as input to generate data setDO as output.

For example, the MANIPULATION Select_Books_≤$20 ap-
plied to theYe Olde Booke Shoppe(shown in Figure 1(a)) dataset
produces an output set comprising (Euripides, “Medea”), (Homer,
“Iliad”), and (Hrotsvit, “Basilius”). An instance of a MANIPULA -
TION applied to a specific data item we call amanipulation. We
write m(dI1 , dI2 , ...) = dO, wheredI1 ∈ DI1 , dO ∈ DO , etc.m
is an instance ofM applied to specific data itemsdIx within dataset
DIx . For example, an instance ofApply_SeasonalCriteria, in
Figure 1(a), applied to the book (Hrotsvit, “Basilius”) might result
in ∅.

In short, a MANIPULATION is a discrete component of a work-
flow, and uses a set of specific attributes from the input dataset. In
our work, we are intentionally agnostic about the granularity of a
MANIPULATION . If the entire “workflow” comprises a single com-
plex database query, then each operator in the query tree maybe
treated as a MANIPULATION . When dealing with a more complex
workflow in which the database query is only one piece, an entire
relational query may be a single MANIPULATION . We could, in
an application-dependent manner choose to be at any intermedi-
ate point between these, and may even have MANIPULATIONs at
different granularities within the same application. SomeMANIP-
ULATIONs relevant to our running example are as follows:

Select_All_Books

Select_Books_<=$20

WindowBooks

Workflow Outputs

Ye Olde
Books

Workflow Inputs

Apply_SeasonalCriteria

(a)

Select_All_Books

getCharacters

TopBookCharType

Workflow Outputs

TallyCharacterTypes

Ye Olde

Books

Workflow Inputs

(b)

(c)

Books a Books b

b.price < a.price

title=“Odyssey” title LIKE A%

(d)
Books a Books b

b.name = a.name

price>$100 loc=“Europe”

(e)

Figure 1: A set of workflows and query evaluation plans. (a) Finds the Window Display for Ye Olde Booke Shoppe. (b) Determines the
top character genre inYe Olde Booke Shoppe. (c) Creates a result set with all Shakespeare books in LibA and all books >$100 in LibB,
determines the intersection of “Window Books” and “Freshman English Books” in this set and outputs any that were published after
1950. (Operators are numbered for ease of reference.) (d) QueriesYe Olde Booke Shoppefor all books priced less than The Odyssey.
(e) QueriesYe Olde Booke Shoppefor all books priced greater than $100 and written in Europe.

MANIPULATION 1. Selection

Selects a subset of data from an input dataset,D, based on a selec-
tion condition on a data item’s attribute.

EXAMPLE 2. words to be in color
SELECT * FROM books
WHERE price <$70

MANIPULATION 2. Apply_SeasonalCriteria

Returns all books that satisfy a set of seasonal criteria, which is
defined as a black box function.

EXAMPLE 3. words to be in color
Based on the date, Mother’s Day is the next commercial holiday.
The Seasonal Criteria black box,M , determines that Fillicide is
a good seasonal topic.dI1 is (Hrotsvit, “Basilius”, $20); dI2 is
(Euripides, “Medea”, $16);dI3 is (Homer, “Iliad”, $18). dO is
(Euripides, “Medea”), since “Medea” is the only book fits thesea-
sonal criteria.

2.1 WHY NOT? Identity
When attempting to answer WHY NOT?, we have three known

pieces from which to draw information: the query, the resultset
and the question. The query,Q, is the original query or workflow
posed against a datasetD, and can be broken down into a series of
MANIPULATIONs. The result set,R, is the result of that query on
the dataset. We assume that the datasetD comprises a set of data
items, not necessarily all of the same type. For example, ifD is a
set of relational tables, the data items may be individual tuples in
these tables. SimilarlyR comprises a set of result items. A result
item inR does not have to be inD – it could have been derived by
composition of multiple items and other manipulations. We further

assume that each item (in bothD and R) has an associated set
of attributes. If the item is a relational tuple, its attributes are the
individual fields of the tuple.

The user asks a WHY NOT? question of the form “Why does
R not contain any results satisfying predicateS.” The predicateS
is defined over (some subset of) the set of attributesA of D, us-
ing positive predicate logic over individual attributes. By this we
mean that each atomic predicate is evaluated over a single attribute,
and atomic predicates are combined using AND and OR, but with-
out negation. While more complex predicates could be allowed in
theory, our extensive analysis of user needs suggested thatpositive
predicate logic was sufficient. A predicate that includes negation
introduces a double negative into the statement of the WHY NOT?
question, which makes it awkward to state in English and difficult
to understand.

A data itemd is said tosatisfypredicateS, if the values of the
attributes ofd causeS to evaluate to TRUE. Note that this is possi-
ble even ifd does not have all the attributes inS. For example ifS
is a disjunction of atomic predicates, it suffices ifd defines one at-
tribute and causes the corresponding atomic predicate to beTRUE.
A weaker condition is that ofsatisfaction-compatibility. The pred-
icateS can be described as a tree, with an atomic predicate at each
leaf and an AND or an OR operator at each internal node. Given
the values of attributes ind, some atomic predicates (at the leaves)
will evaluate TRUE, others will evaluate FALSE, and yet others
will remain undefined. Based on these, we can evaluate the internal
nodes. If the root evaluates TRUE, the predicate is satisfiedeven
if many internal and leaf nodes remain undefined. At any AND in-
ternal node of the tree, if there is no child evaluating FALSEand
at least one child evaluating TRUE, then we can pretend that the
undefined children are all also TRUE to determine compatibility.

If, with this change, the root evaluates TRUE, then we say that the
data itemd is satisfaction-compatiblewith predicateS, even if it
does not in itself satisfy it.

To answer the user question, we must trace back from it, and un-
derstand the relationship between data items in the output to data
items in the input. For this purpose, there is a well-accepted no-
tion of lineage[5, 9, 10]. From [10], “Given a [manipulation] in-
stanceτ (I) = O and an output itemo ∈ O, we call the actual
set I∗ ⊆ I of input data items that contributed too’s derivation
the lineageof o, and we denote it asI∗ = τ∗(o, I)”. In other
words, thelineageof a data item is the set of input tuples that have
influenced the inclusion or appearance of that data item in the re-
sult set. Using our running example of the query evaluation plan
in Figure 1(d), and the result of (Sophocles, “Antigone”), lineage
will pinpoint the exact tuples in the input set that contributed to
(Sophocles, “Antigone”) being in the result set. In this case, the
lineage of (Sophocles, “Antigone”) is (Sophocles, “Antigone”) and
(Homer, “Odyssey”). We utilize the definitions found in [5, 9, 10]
for lineage with the following exception: the lineage of a MIN or
MAX output data item is the data item(s) containing the reported
value, not the entire input set. In this work, we denote this version

of a lineage relationship withI∗

m

∠o, wherem is a manipulation.
Using the concept of lineage, we can define the set of items rel-

evant to the users WHY NOT? question as follows:

DEFINITION 1. Unpicked:
A data itemd ∈ D is said to beunpicked, if
i. There exists an attributea ∈ A that is both associated withd
and appears in the user question predicate,S,
ii. d is satisfaction-compatible withS, and
iii. d is not in the lineage of any result item inR.

EXAMPLE 4. words to be in color
Consider the shopper in Example 3. She may ask, “Why is “Basil-
ius” not in the result set?”. The Unpicked data item, (Hrotsvit,
“Basilius”), is specified by its title attribute. Observe that the at-
tribute of interest is not explicitly named, and the question pred-
icate S not explicitly stated. We deduce the intended predicate
based on an attribute value match. If the user had instead asked
“Why are no ‘Hesperus’ books in the result set?”, we would have
found books with Publisher=Hesperus, “Epic of Gilgamesh”,and
Hesperus in the title field, “Wreck of the Hesperus.” Of course it
is also possible to specify a specific attribute-value pair,such as
title=“Coriolanus”.

If the user instead asks, “Why are there not (more) books by Homer
in the result?,” we would find all data items with an attributevalue
of “Homer”, but then only the Iliad is in the Unpicked, since the
Odyssey is in (the lineage of) the result set. Alternatively, given the
results (Sophocles, “Antigone”) after the execution of theevalua-
tion plan in Figure 1(d), the user may ask “Why not “Free Press”
and “Penguin” books?”. In this case, only “Penguin” will be used
to identify Unpicked data items from the input set, since “Free
Press” is in the lineage of the result data item.

Finally, note that every data item inD may be Unpicked if the
user question is “Why is the result∅” or “Why not anything”.

The concept oflineageis central to much provenance work, and
is the natural means to address WHY questions. We used this con-
cept in our definition of Unpicked. Unfortunately, lineage is a con-
cept that applies only to data items in the result set, tracing data
items through manipulations from the result set to the inputsets. In
fact, lineage can be used to answer any WHY NOT? query in which
the presumed Unpicked actually exists in the result set. However,

the data items we are interested in areNOT in the result set, and
therefore do not have lineage. Thus, we must define a new concept,
successor, that will permit us to trace forward from the input rather
than trace back from results.

DEFINITION 2. Successor:
Given a manipulationm that takes in datasetI and outputsO,

d′ ∈ O is a successor ofd ∈ I , iff d
m

∠d′.

Even though an Unpicked data item by definition does not exist
in the result set, or even after a manipulation, we can use this defini-
tion of successor to watch how Unpicked data items move through
workflows. Notice that a successor depends purely upon the no-
tion of lineage, not attribute values. After a query, if a user asks,
“Why not $61?”, it does not matter if a manipulation projectsout
the attribute $61. Using lineage, the tuple (Sophocles, “Antigone”)
is directly associated with the input tuple (Sophocles, “Antigone”,
$61). In other words, attribute preservation is not required.

3. WHY NOT? ANSWERS

DEFINITION 3. Picky Manipulation:
A manipulationm is “Picky” with respect to an Unpicked data item
u if:
i. u or a successor ofu is in the input set ofm, AND
ii. there is no successor ofu in the output set ofm.

For example, consider the evaluation plan in Figure 1(d), and the
Unpicked data item (Virgil, “Aeneid”). Looking only at the
σtitle=′′Odyssey′′ manipulation, the Unpicked data item is in the
manipulations input set, and its Successor is not in the output set.
Thusσtitle=′′Odyssey′′ is a Picky Manipulation for this data item.
In other words, a picky manipulation is one that causes an unpicked
data item to be excluded from the output set of a manipulation.

Given a set of Unpicked data items, we can identify one or more
picky manipulations for each. The union of all these manipula-
tions is the set of picky manipulations. We can present theseto the
user in response to the WHY NOT? question. However, this set
of manipulations may often be large. Users may be overwhelmed
with dozens of manipulations, each of which filtered something out.
While this is technically a correct and complete answer, in most
situations users are likely to want to know only about the highest
level (in the query tree) or latest (in workflow) picky manipulations.
These are closest to the final result and hence “most visible”to the
user. If desired, the user can dig deeper from here. With thisin
mind, we define:

DEFINITION 4. Frontier P icky Manipulation:
A manipulation is “Frontier Picky” with respect to an Unpicked
data item setU if:
i. the manipulation is Picky for at least someu ∈ U , and
ii there does not existu ∈ U for which a successor ofu occcurs
later in the workflow.

Continuing with the example of why (Virgil, “Aeneid”) is notin
the result set after the workflow in Figure 1(d), even though
σtitle=′′Odyssey′′ is a Picky Manipulation, it is not a Frontier Picky
Manipulation since an Unpicked Successor exists going into
1b.price<a.price. Thus,1b.price<a.price is not just a Picky Manip-
ulation, but since no Unpicked Successors exist later in thework-
flow, it is the Frontier Picky Manipulation.

Notice that whether a MANIPULATION is picky or not is depen-
dent upon the Unpicked data item of interest. In the above example,
if the user wonders why (Virgil, “Aeneid”) is not in the result set,
the Frontier Picky Manipulation is1b.price<a.price. However, if

the user wonders why (Hrotsvit, “Basilius”) is not in the result set,
the Frontier Picky Manipulation isσtitleLIKEA%.

The discussion and examples thus far have focused on a singu-
lar path of MANIPULATIONs. However, this does not need to be
the case. The execution of a workflow is a directed acyclic graph
(DAG), and can thus have many paths, as in Figure 1(c).

Let us walk through the series of operations in Figure 1(c), fol-
lowing the data item (Euripides, “Medea”). Operators2, 5 and7
are potentially Picky Manipulations. If (Euripides, “Medea”) were
fed into any of these operators, it would not be part of the output.
However, manipulation7 is not picky since the successors of (Eu-
ripides, “Medea”) never reach it. Operator5 is the Frontier Picky
Manipulation. Because the intermediate results further down the
DAG still contain (Euripides, “Medea”) despite2 not including it
as a successor in the intermediate result set;2 is Picky, but not
Frontier Picky2.

This leads to a formulation of what can be used to answer a user’s
WHY NOT? question.

DEFINITION 5. WHY NOT?Answer:
Given a user question regarding why not predicateS in a result set
R produced by workflowW , comprising manipulationsM , upon
an input data setD, the answer to the user question comprises the
set of frontier picky manipulations inM with respect to the items
in D identified as unpicked according toS andW .

In other words, a WHY NOT? answer will return the manipula-
tion(s)m ∈ M at which the last Unpicked successor was excluded
from the result set.

For instance, consider the query evaluation plan in Figure 1(e),
which finds all books whose authors are from Europe and are priced
greater than $100. Given the input dataset inYe Olde Booke Shoppe
and a result set of∅, a user may ask “why were no results returned”
(a.k.a. Why not anything?). If results are produced from both the
selection on the both the books and author table, the join will be
called the Frontier Picky Manipulation, even though both selections
may themselves also be Picky with respect to particular Unpicked
items. If the query instead were slightly altered, to seek books
priced greater than $1000, then the price selection would bethe
frontier picky manipulation, since there are no books costing more.
The join no longer has any input and so is no longer Picky. How-
ever, the other selection remains Picky for some items even in this
case. If we further modify the query to seek books whose authors
are from Antarctica and are priced greater than $1000, then both
selections are identified as Frontier Picky. Notice that theset of
Frontier Picky manipulations produce the answers one wouldintu-
itively expect. In the original query, the response is that there is no
book that satisfies both requirements simultaneously, though there
are bools that satisfy each individually. For the second query, the
response is that there are no books priced over $1000 (thoughthere
are books by European authors). For the third query, the response is
that no books are priced over $1000 and no books are by Antarctic
authors.

3.1 Determining WHY NOT?

The definitions above immediately lead to a simple Bottom Up
evaluation strategy described below. An alternative, Top Down,
stategy can also be developed, which can turn out to be significantly
more efficient depending on the position of the Frontier Picky Ma-
nipulation(s).

2In the event that operator1 also excluded (Euripides, “Medea”)
from the intermediate result set, then the set of Frontier Picky Ma-
nipulations would be1 and2.

3.1.1 Bottom Up
A generic bottom up algorithm to find the Frontier Picky Ma-

nipulation, and thus the answer to WHY NOT?, is presented in Al-
gorithm 1. It checks the output of every manipulation beginning
at the DAG sources and proceeding in topologically sorted order.
Whenever it finds no Unpicked successors at the output of a ma-
nipulation, it has found a Picky Manipulation. To find the Fron-
tier Picky Manipulation, we have to continue through the DAGand
make sure that Unpicked successors do not appear later in theDAG,
for example through an alternate, disjuntive, path.

Algorithm 1 : Answering WHY NOT? Bottom Up.
Input : DAG, M , of manipulations,m
Input : Global Input Dataset,D
Input : Queue,Q, initialized with Source
Input : Unpicked,U
Output : Frontier Picky Manipulation(s), picky
Run in Breadth First Search order from Source to Sink1
forall m manipulations∈ QueueQ do2

Om = output set ofm, computed by evaluatingm on its inputs;3
Um = Unpicked inputs ofm;4
if successorExists(Om, Um) then5

forall c manipulations∈ m.childrendo6
RecordOm as an input toc;7
c.numparent- -;8
if c.numparent==0then9

Q.add(c);10
end11

end12
end13
else14

flagPossPicky(m);15
end16

end17
forall m manipulations flaggedPossPickydo18

forall n manipulations flaggedPossPickydo19
if m is reachable fromn then20

Then removen from flaggedPossPicky21
end22

end23
end24

The functionEXISTSUCCESSORis outlined in Algorithm 3. The
cost of Algorithm 3 isO(OUs), whereO is the size of the output
set,U is the size of the Unpicked set, and the determination of the
successor relationship betweenu ando (line 5) takes timesO(s).

Finding the Frontier Picky Manipulation runs inO(n∗O∗U∗s+
e) time wheren is the number of manipulations in the DAG,e the
number of edges in it,O is the largest output set for any manipula-
tion in the workflow, andU ands are as above. The determination
of Unpicked successors involves generating the relevant output set
Om, and then running the function successorExists(Om, Um) to
determine ifOm includes any successor of the UnpickedU . (The
algorithm for finding Frontier Picky manipulation also has afinal
step to ensure that there are no unpicked successors downstream of
a possible Frontier Picky manipulation. Since the number ofcan-
didates is usually very small (and frequently is just one), we ignore
this cost in the above formulae).

3.1.2 Top Down
An alternative strategy is to work top down from the result, look-

ing for Unpicked successors. As soon as an Unpicked successor is
sighted, back up one step and output the identified Frontier Picky
manipulation. This top down strategy to find the Frontier Picky
Manipulation, and thus the answer to WHY NOT?, is presented in
Algorithm 2. It begins with the outputs of the penultimate manip-
ulation and checks the lineage for every data item. If successors to
the Unpicked are found, then the ultimate manipulation is the Fron-

tier Picky Manipulation. If no successors are found, the algorithm
iteratively checks manipulations in reverse toplogicallysorted or-
der. This algorithm also runs inO(n ∗ s + e) time wheren is the
number of manipulations in the DAG,e the number of edges in it,
ands is the time it takes to determine Unpicked successors.

Notice that this strategy requires all intermediate results to be
stored after the query has completed for WHY NOT? query evalua-
tion. While this is an unreasonable assumption in classic databases,
it is often the normal operating procedure in e-science, non-database
systems [6, 11, 21, 23].

Algorithm 2 : Answering WHY NOT? Top Down.
Input : DAG, M , of manipulations,m
Input : Output Dataset,Om , for each manipulationm
Input : Queue,Q, initialized with penultimate manipulations to Sink
Input : Unpicked,U
Output : Frontier Picky Manipulation(s), picky
Run in Breadth First Search order from Sink to Source1
forall m manipulations∈ QueueQ do2

Um = Unpicked inputs ofm;3
if successorExists(Om, Um) then4

forall c manipulations∈ m.parentsdo5
c.numchild- -;6
if c.numchild == 0then7

Q.add(c);8
end9

end10
end11
else12

flagPossPicky(m);13
end14

end15
forall m manipulations flaggedPossPickydo16

forall n manipulations flaggedPossPickydo17
if m is reachable fromn then18

Then removen from flaggedPossPicky19
end20

end21
end22

3.1.3 Top Down vs. Bottom Up and Intermediate
Datasets

The asymptotic worst case complexity of the two algorithms is
identical. Which should one choose? It depends on where in the
workflow the frontier is, and whether materialized intermediates
exist. Top Down will quickly find Frontier Picky Manipulations
close to the output, while Bottom Up will do better with earlier
Frontier Picky Manipulations. In Bottom Up, we are faced with a
distinct choice:

• Keep all intermediate result sets. Find the data items(s) in
input and intermediate datasets that could correspond to it.

• Start with initial data items, and re-run, flagging all interme-
diates that are potential Unpicked data item(s).

There is obviously a trade-off in space and time for these twoap-
proaches. This has been explored in [7] in the form of Strong and
Input-Only Identity, in which intermediate result sets arestored and
only the input datasets are saved respectively. If all intermediates
are stored, then we merely search through all input and intermedi-
ate data items for possible Unpicked matches using either Bottom
Up or Top Down. On the other hand, if only input data items are
kept, then we are required to utilize the Bottom Up approach,re-
running the set of MANIPULATIONs to obtain the requiredOm for
each. The Bottom Up algorithm presented above, assumes only
input data is kept – if intermediate data is available, line 3can be
changed to avoid computing eachOm.

Algorithm 3 : Code for successorExists function.
Input : O, the output set of some manipulationm

Input : Unpicked,Um

forall o data items∈ DatasetO do1
forall u data items∈ UnpickedUm do2

if u
m

∠o then3
return TRUE;4

end5
end6

end7
return FALSE;8

4. FINDING SUCCESSORS
The central function, repeatedly performed in the above algo-

rithms, is the task of successor determination. For each item in
the output set of each manipulation, in turn, we have to determine
if it is the successor of some Unpicked item. The basic method
of finding successor is to actually apply the manipulation with all
inputs and compute the result. Given the result of interest,there
is no easy way in general to go back and determine which source
data items contributed to it, unless lineage information was being
stored somewhere. Instead of laboriously checking lineageon ev-
ery data item output from every manipulation, are there properties
of manipulations that we can utilize to skip manipulations,or look
at only a subset of outputs? What we want is Successor Visibility.

Given an input dataset,I , and output dataset,O, and a ma-
nipulation,m, for every data item produced bym, we can write
o1 = m(i1, i2..., in) whereox ∈ O andix ∈ I .

DEFINITION 6. Successor V isibility:
A manipulation has Successor Visibility with respect toix if we can
determine (for all values ofix andoy) whether there existo1, o2,

etc. such thatix
m

∠oy ∀ix in O(1) time.

In other words, if we can determine the successor of a data item
after a manipulation, without performing the computation of the
manipulation, or exploring alternative values fori1, i2, etc, then
there is Successor Visibility. For relational operators like projec-
tion, the act of determining successor visibility will be with respect
to a specific attribute. However, the above definition will also work
for user defined functions (UDF). Consider a simple UDF that re-
turns 1 if a word begins with ‘a’, 2 for ‘b’, etc. In this case, provid-
ing a hashmap can find a successor in O(1) time without specifying
an attribute.

The definition of Successor Visibility merely states a desirable
property, but does not specify how that property could be achieved.
In a database query scenario, one common way to achieve this is
throughattribute preservation. For example, if our WHY NOT?
question is with regard to the author Homer, and the author field is
retained through the workflow from source dataset(s) to the result,
then we say the attribute of interest has beenpreserved; it becomes
trivial to identify Unpicked successors – they are exactly the inter-
mediate (and final) result items with a value of “Homer” for the
author attribute, no matter how may selections, projects, joins, etc.
may have been applied.

Attribute preservation is not the only way to achieve Successor
Visibility. In fact, many non-database workflows do not havethis
property. Consider a simple MANIPULATION found in myExperi-
ment [23]: getProteinSequence. The input is a protein_id and the
output is an amino acid sequence. In the above example, building
a lookup hashtable of used protein_ids and sequences can permit
successor determination inO(1) time, and hence give Successor
Visibility.

Manipulation Visible? Successor,ox, given i

Projection Yes All ox where the attribute-value set
intersects the attribute-value set ofi

Selection Yes All ox with exact
attribute-value matches toi

Rename No
Join Yes All ox with intersecting

attribute-value set
on the “left” or“right” to i

Division No
MIN or MAX Yes o if o contains the

attribute-value fromi

COUNT, SUM Yes o

AVERAGE

Table 2: The Visibility Rules for the Relational Operators.
Given an input data item, in some cases, we can find succes-
sors without using the Lineage Method.

Moreover, a sequence of manipulations can have Successor Visi-
bility if each manipulation in the sequence has Successor Visibility
with respect to the appropriate (chain-forming) input. Forinstance,
in the workflow in Figure 1(a), the module
Select_All_Books takes in a data item from the books table, and
produces an exact representation of it as a string. As such, it is pos-
sible to correlate the input and output data items without re-running
the manipulation. ThusSelect_All_Books has Successor Visibil-
ity. Indeed, the chain of manipulations fromSelect_All_Books
through Select_Books_≤$20 has Successor Visibility. Notice
that the manipulationApply_SeasonalCriteriadoes not have Suc-
cessor Visibility. In Table 2, we state conditions under which vis-
ibility can be used instead of lineage for standard relational opera-
tors.

Successor Visibility is not just a cute trick to make finding Suc-
cessors faster. In some cases, it is the only way to find Successors.
For user defined functions (UDF) in SQL, and any module in a
workflow system such as [6, 11, 21], it is impossible to use lin-
eage to trace data items through operators as we have in this work.
Consider two workflow modules found in [23].

• A manipulation takes in a protein identifier, searches
SwissProt and returns the protein record.

• A manipulation takes in the results from a NCBI query and
removes duplicates.

Lineage as defined in [5, 9, 10] cannot be applied to these manip-
ulations. However, both have Successor Visibility. Thus, by having
Successor Visibility, our methods can be extended out of thewhite-
box relational world into the black-box world of workflow systems.
Of course, the obvious question that arrises is whether the majority
of black-box manipulations in workflow systems have Successor
Visibility. Our findings are positive. We sampled 100 workflows
at random from myExperiments [23]. We found a total of 478 ma-
nipulations (called “modules” in their terminology) in these 100
workflows. Of the 478 modules, 273 easily satisfied Visibility in
that they could be mapped to a relational algebra expressionthat
has Successor Visibility. We believe that additional analysis can
show that several of the remaining 205 modules also have Succes-
sor Visibility, but we did not perform an exhaustive analysis. Our
point is simply that a majority of the modules were SuccessorVis-
ibile. Moreover, work such as [25] is attempting to make workflow
modules more visible by tracing and understanding the underlying
operating system calls. Thus, Successor Visibility can be used in
many cases to answer WHY NOT? questions in workflow systems.

Title Author Price Main Pub. Loc.
Char. Date

Anna Karenina ? ? Woman 1800s Rus.
? J.R.R Tolkien $30 Wizard 1940s UK
Hamlet Shakespeare ? King 1600s UK
Harry Potter 1-7 J.K Rowling ? Wizard 1990s UK
Antigone Sophocles ? Woman 400BC ?
Aeneid Virgil ? Warrior 100BC ?
Hitchhikers Guide ? $5.99 Aliens 1970s ?

to the Universe
Odyssey Homer $49 King 800BC ?
Basilius Hrotsvit $20 Woman 900s ?
Pride and Prejudice Jane Austin $14.99 Woman 1800s UK

Table 3: The Knowledge Table presented to the users. “?” in-
dicate values the user does not know.

40%

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
t

Users Satisfied by Non-Answers and

WhyNot? Answers

0%

10%

20%

30%

1 2 3 4 5

P
e

rc
e

n
t

QuestionNon-Answers

WhyNot?

Figure 2: The users who were satisfied with Non-answers and
WHY NOT? answers for each query in Table 4.

5. EVALUATION
Is it possible to provide useful WHY NOT? answers to users?

Can we compute these answers in reasonable time? Our findings
are positive.

In this section, we demonstrate the feasibility of WHY NOT?
answers. We begin with a user evaluation of WHY NOT? answers,
and show that users both find the style of answers presented inthis
work useful and informative. We then evaluate the efficiencyof
alternative techniques for finding WHY NOT? answers.

5.1 User Evaluation

5.1.1 Setup
This work proposes a methodology for answering user questions

about their world. As such we designed a user study to evaluate
the effectiveness of WHY NOT? answers. While we have anecdo-
tal support from scientists that this approach is useful, itwas im-
possible to build a controlled experiment separated from individual
scientist’s domains of interest. As such, we used the running book
example as a domain independent base for control reasons.

English Query Behind the Curtain Execution Eval. Plan
1 Select all "Window-Books" (you think window books are≤ $20) bookstore→ (select books≤ $20)→ (select books written after 1700) Fig. 1(a)

→ output results
2 Select the top count character-type bookstore→ (select book characters) Fig. 1(b)

→ (group kings/warriors/wizards as king)→ (for characters, tally count)
→ (select top count)→ output results

3 Select all books whose title starts with ’A’ and are priced less than the Odyssey bookstore→ [(select books title ’A’ = a), (select price of the Odyssey = b)] Fig. 1(d)
→ (retain b> a.price)→ output results

4 Select all books written in the UK and price< $25 bookstore→ [(select books< $25 as a), (select books from UK as b)] Fig. 1(e)
→ (join a,b)→ output results

5 Select the union of Shakespeare books and books that cost< $50, [bookstore→ (select books< $50 as a), Fig. 1(c)
that are both a window book and published before 1950. bookstore→ (select books author=’Shakespeare’ as b)]→ (union a,b)

→ (select pub before 1950)→ (select college-book)→ (select books≤ $20)
→ (select books written after 1700)→ output results

Table 4: The set of English language queries users were askedto perform, and the secret, behind the curtain execution that actually
occurred.

sawperson s

p.clothes = s.clothes
p.hair =s.hair

person p
a b

c
witness w
d

s.witness = w.namee

crime c

w.sector = c.sector

name, type

f

g

h

(a)

sawperson s

p.clothes = s.clothes
p.hair =s.hair

person p
a b

c
sawcar r
d

s.witness = r.namee

drives d

d.car = r.car

name, type

f

g

i

witness w

i

h

w.name =
s.witness

crime c

w.sector=c.sector

j

k

(b)

sawperson s

p.clothes = s.clothes
p.hair =s.hair

person p
a b

c
witness w
d

s.witness = w.namee

crime c

w.sector = c.sector

name, type

f

g

h

witness=Susan

name=Susan

(c)

d.car = r.car

crime c
a b

c

witness w
d

s.witness = w.name

e

sawcar r

w.sector = c.sector

person, type

f

g

h

drives d

(d)

Crime

type varchar(32)

sector int

Witness

name varchar(32)

sector int

Sawcar

witness varchar(32)

car varchar(32)

Person

name varchar(32)

clothes varchar(32)

hair varchar(32)

Drives

person varchar(32)

car varchar(32)

Sawperson

witness varchar(32)

clothes varchar(32)

hair varchar(32)

(e)

Figure 3: (a)-(d) The query evaluation plans for the Crime Queries used (Queries 1,3,4,2 respectively). (e) The Trio Crime Schema.

Finding Picky Manipulations BU vs TD

0

5000

10000

15000

20000

25000

U
P

1

U
P

2

U
P

3

U
P

4

U
P

5

U
P

1

U
P

2

U
P

3

U
P

4

U
P

5

U
P

1

U
P

2

U
P

3

U
P

4

U
P

5

U
P

1

U
P

2

U
P

3

U
P

4

U
P

5

Query 1 Query 2 Query 3 Query 4

Unpicked

tim
e

(m
s)

TD
BU

Figure 4: Finding the Frontier Picky Manipulation for an Un-
picked Set using the BU or TD algorithm using Lineage.

Lineage vs. Successor Visibility

0
200
400
600
800

1000
1200
1400
1600
1800

a b c d e f g h a b c d e f g h a b c d e f g h i j k l a b c d e f g

UP1 UP1 UP1 UP1

Query 1 Query 2 Query 3 Query 4
Unpicked

tim
e

(m
s)

Lineage
Visibility

Figure 5: Using Lineage vs. Successor Visibility to find the exis-
tence of the Unpicked in the manipulation’s output.

Lineage vs. Visibility SELECT

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 23 25 4 5 6 7 8 9 10 11 12 13 14 15 2 2 21 22 24 1 28 30 4 5 6 7 8 9 10 11 12 13 14 15 2 2 26 27 29

Query 1 Query 2 Query 3 Query 4

Unpicked

A
ve

ra
g

e
T

im
e

(m
s)

Lineage
Visibility

(a)
Lineage vs. Visibility JOIN

0
2000
4000
6000
8000

10000
12000
14000

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0 1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0 1
2

3
2

5 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5 2 2
2

1
2

2
2

4 1
2

8
3

0 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5 2 2
2

6
2

7
2

9

Query 1 Query 2 Query 3 Query 4

Unpicked

A
ve

ra
g

e
T

im
e

(m
s)

Lineage

Visibility

(b)

Lineage vs. Visibility PROJECT

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 23 25 4 5 6 7 8 9 10 11 12 13 14 15 2 2 21 22 24 1 28 30 4 5 6 7 8 9 10 11 12 13 14 15 2 2 26 27 29

Query 1 Query 2 Query 3 Query 4

Unpicked

A
ve

ra
g

e
T

im
e

(m
s)

Lineage
Visibility

(c)

Figure 6: Lineage and Visibility time for each operator within Query 1 for a single and multiple Unpicked set.

Because we are interested in user questions about what isNot in
the result set and this is dependant on expectations of queryresults,
the first hurdle was to force a disparate group of users to ask the
same set of WHY NOT? questions. Users were presented with
a Knowledge Table, as shown in Table 3, that represented their
knowledge of the Book Database. They were asked not to rely
upon personal knowledge of any of the books. The users were then
given a set of English language queries to find books in the Book
Database. Table 4 shows the queries the users were given. Users
were told that the English query expressed was what they wished
to find books for, but that behind the curtain, the executed query
could do extra machinations. The exact evaluation plan or work-
flow is described in Table 4 as well, and except for minor manipu-
lation differences3 these mimic the workflows and evaluation plans
in Figure 1.

To force the users to think about the query, they were then asked
to mark the checkbox of each tuple thatshouldbe in the result set
based on the English language query. In the worst case, 87% ofthe
users chose the expected result set that satisfied the query.In the
best case, 100% did. Thus, the bulk of the users expected the same
set of tuples in the result set. The users were then presentedwith the
actual result set of the query. These were designed to contain all but
one of the tuples from the expected result set, thus encouraging all
disparate users to ask WHY NOT? about a particular tuple. When
users asked WHY NOT? about this tuple, they were presented with
the answer given by our technique and by a comparison baseline
technique.

There is very little work addressing the WHY NOT? problem.
The only solid comparable work we are aware of is in [14]. In
that work, which was focused on explaining why information is not
present after querying extracted and integrated data from the web,
the authors look at non-answer tuples in the input sets that could
become answers (but do not). They define trusted and untrusted
sources, then find if there are any valid updates to the untrusted
sources that will include the sought after tuple in the result set. In
other words, looking at the non-answer (Virgil, “Aeneid”) after the
query plan in Figure 1(d), updating the price value to< $49 would
include (Virgil, “Aeneid”) in the result set. Thus, the “answer” pre-
sented in [14] would be the set of changes to the non-answer tuple
that would have resulted in its inclusion in the result set; we will
call this methodNon-answers. The second answer presented was
that of our technique, the Frontier Picky Manipulation; we refer to
this method as WHY NOT?. For each answer, the user was asked
whether the answer satisfied their question about the missing tuple.

Fourteen users partook in the user evaluation. All were experts
in Computer Science, most with graduate degrees, but none knew
the details of the problem we were addressing, or were aware which
technique was ours.

5.1.2 Satisfaction
Figure 2 shows the user satisfaction for each query. In total,

76% of users were satisfied on average with WHY NOT? answers.
While, this is not quite 100%, it is a large majority, and is probably
good enough for us to declare that our proposed technique is useful.
In comparison, 31% of users were satisfied with Non-answers as
explanation. Further analysis reveals other patterns.

Given the set of user Questions, and the actual execution plans
presented in Table 4, two classes of questions are evident. Queries

3Minor changes were made to the plans in Figure 1 for represen-
tation ease and to decrease the amount of reading required ofthe
users. For instance, Window Books are books <$20 and published
after 1700, instead of <$20 and fitting a seasonal criteria based on
a particular date.

3–4 have relatively straightforward English language Queries and
simple evaluation plans. On the other hand, Queries 1, 2 and 5are
more complex. In Queries 1–2, the English Query is straightfor-
ward, but the User Defined Functions actually executed do notalign
exactly with the English Query. Thus, the users are at a loss when
something so simplistic looking doesn’t behave as expected. Query
5 is complicated in a different way; the English Query matches the
evaluation plan exactly, but is very complex and hard to follow. In
Figure 2, there are two distinct behaviours visible. For Questions
1,2 and 5, WHY NOT? does significantly better than non-answers,
while for Questions 3–4, non-answers and WHY NOT? are on par.
In other words, while non-answers provides adequate answers for
straightforward selection-style queries, WHY NOT? is significantly
superior (with a p-value of2.3e − 7 according to a Fisher Exact
Test) when complications in either the query or the execution plan
are present.

5.2 Performance
As discussed in Sections 3–4, there are two methods for finding

Frontier Picky Manipulation(s), Top Down and Bottom Up, and
two methods for finding successors: lineage and visibility.To date,
there is only one system we are aware of that supports lineageas
a first class operator, Trio. Trio [1, 19] is built on top of Postgres,
and has the ability to trace the lineage of any tuple found in aview
back to the original input tuple(s). Since one of the methodspro-
posed for finding successors requires lineage, we used Trio as our
backend database. All algorithms were implemented in Java and
run on a Dell Windows XP workstation with Celeron(R) CPU at
3.06GHz with 1.96GB RAM and 122GB disk space. For compari-
son of Bottom Up vs. Top Down, materialized intermediates were
utilized.

We utilized the Crime queries that are so often used to showcase
Trio, since they had complex query evaluation plans that could pro-
vide a variety of answers for WHY NOT? questions. Additionally,
while we used the classic Crime dataset as a template, we expanded
the number of tuples so that it was less of a toy dataset. The to-
tal size of the crime database is 4MB. Queries 1–4 produce 7695,
65,319, 140,699 and 5 tuples respectively. The numbers presented
below rely heavily upon the specifics of the Trio system. How-
ever, Trio is the only system available for tracking lineagewithin a
database.

We ran four base queries, performed against the expanded Trio
crime dataset. The evaluation plans for all four queries were deter-
mined using “Explain”, and are shown in Figure 3. For each query,
we then asked a series of WHY NOT? questions by specifying an
attribute that existed in the input dataset but not in the final result
set. For instance, WHY NOT? “Mary”, where Mary could be a
potential value for a suspect or witness.

5.2.1 Bottom up vs. Top Down
Figure 4 shows the run times to find the Frontier Picky Manipula-

tion given an Unpicked set using either the Bottom Up (BU) or Top
Down (TD) approach, using lineage to find Unpicked Successors.

TD does significantly better than BU for all query evaluation
plans except Query 4. Given the nature of the query evaluation
plans, this is to be expected. Consider the query evaluationplan for
Query 1 in Figure 3(a), and the Unpicked data item UP1, “Antigone”.
There are only five tuples in the entire crime database that can be
mapped to an Unpicked with “Antigone”: a tuple from the Witness
table with Witness.name=“Antigone”, three tuples from theSaw-
car table with Sawcar.witness=“Antigone” and one tuple from the
Sawperson table with Sawperson.witness=“Antigone” (schema for
the crime database is in Figure 3(e)). UP1 does not ever existin

manipulationsa, or f in Figure 3(a). However, these are not Fron-
tier Picky Manipulations since it does exist in another set of paths,
b, c, d, e, andg. The true Frontier Picky Manipulation ish since
this is where the attribute “Antigone” finally disappears from the
result set. As such, the TD algorithm only tests one manipulation,
while the BU algorithm must work through all eight. Conversely,
Query 4 is highly selective very near the sources. As such, TD
must check all eight manipulations. BU does not save very much
though. Although the Frontier Picky manipulations are veryclose
to the sources, BU still must check four of the manipulations. Thus
using the TD algorithm is best when there is low selectivity early in
the query evaluation plan. However, while TD may be worse than
BU when there is high selectivity early in the evaluation plan, it is
not much worse since BU must do almost as much work. In other
words, due to the “fan” structure of most query plans, TD should
be preferred to BU, in situations where both can be used.

5.2.2 Lineage vs. Successor Visibility
The times presented thus far are using lineage to determine Un-

picked successors. If we have Successor Visibility, using attribute
preservation for the Crime queries, then we can find successors
much more efficiently, as discussed in Section 4. Figure 5 shows
these savings. The labels on the X-axis map to the manipulations
labeled for each Query in Figure 3. Overall, using SuccessorVis-
ibility causes a marked decrease in the amount of time neededto
detect Unpicked Successors, as expected. However, this turns out
not always to be a win – keeping track of Successor Visibilityre-
quires additional data structure support. For example, in Query 3,
manipulationl is lineage equal to Successor Visibility. This ma-
nipulation (andk before it) is dealing with 140,699 tuples, and the
data structures used to implement Successor Visibility addover-
head while providing only limited benefit.

In Figure 6 we show the average time for lineage and visibility
for all queries and Unpicked data items run in all experiments bro-
ken down by relational operator type. For all selection and join op-
erators, using Successor Visibility does much better than lineage.
However, for projections in Query 3, using lineage is better. Re-
member that Query 3 generates a huge result set, and the structures
used for Successor Visibility begin to thrash at that level of out-
put. Eventhough Successor Visibility is a fast operation, it is per-
formed outside the relational database, thus losing all performance
enhancements for large data manipulation that can be leveraged by
the lineage version. Successor Visibility in this case could perform
on par with lineage if more attention were paid to memory manage-
ment, disk io, etc. Otherwise, using Successor Visibility enables a
drastic reduction in time needed to find the Frontier Picky Manipu-
lation.

5.2.3 Size of the Unpicked Set
In Figures 4–5, each WHY NOT? question identified a small

set of tuples in the input data set as Unpicked, on average about 5
items. Figure 7 shows how the WHY NOT? algorithms fare with a
change in the number of Unpicked data items. For clarity we show
only the results from Query 4, and compare against WHY NOT?
questions that have only a few Unpicked Data items. Unpicked
UP1–5 have five Unpicked tuples returned, while Unpicked UP26–
30 specify the attributes most found in the database, returning up
to 50 Unpicked tuples. We find that the number of Unpicked tuples
does not affect the overall runtime of either TD or BU algorithms,
whether we use Lineage or Successor Visibility.

These experiments show that it is possible to answer WHY NOT?
queries in reasonable time on basic desktop machines and thecost
of our algorithms is generally small compared to the cost of the

Large Unpicked Set

0
2000
4000
6000
8000

10000
12000
14000
16000

U
P

1
U

P
2

U
P

3

U
P

4
U

P
5

U
P

26
U

P
27

U
P

28
U

P
29

U
P

30

Query 4
Unpicked

T
im

e
(m

s) Lineage (BU)
Lineage (TD)
Visibility (BU)
Visibility (TD)

Figure 7: Effect of a Large Unpicked set on finding the WHY

NOT? answer.

obtaining lineage. If we were to use a different system to manage
lineage, the performance would largely depend on this underlying
system, and not on our algorithms.

6. RELATED WORK
This work draws heavily upon the formalisms and concepts of

lineage set out by [8, 9, 10], and uses the implementation of them
in Trio [1, 19, 24]. Moreover, work such as [25], is attempting to
extend the ability of tracing lineage through non-relational oper-
ators by recording system-level calls and recording what happens
for each input despite not being able to see in the workflow-module
black box.

Several groups are also beginning to think about why items are
not in the result set. For instance, [14] defines the concept of the
provenance of non-answers. A non-answer, is very similar toour
concept of an Unpicked Data item. However, instead of attempting
to find the manipulation that excluded it from the result set,[14]
look for theattributewithin the Unpicked that caused it to be ex-
cluded from the result set. By substituting an “always true”value
for each attribute in the tuple until it is included in the result set,
they can pinpoint the attribute(s) responsible.

This work attempts to answer user queries about results thatare
created via processes and datasets that are opaque to the user. [16,
20] attempt to do this for programmatic interference. For example,
“Why did MSWord capitalize this word?”. While the details ofhow
they accomplish this task are completely different from ours, the
underlying problem remains the same: users are confronted daily
with processes and data that they do not understand. Additionally,
[22] looks at data publishing security, and allows users to verify that
their query results are complete as well as authentic. Whiletheir
motivation and methods are security focused, they too are attempt-
ing to give users more control and ability to probe the underlying
data.

7. CONCLUSIONS
In this work, we outline a new problem facing users whose ac-

cess to the underlying data is restricted. When users are unable to
sift through the data themselves, it is impossible to discover why
a data item is not in the result set. Is it not in the input datasets?
Is some manipulation between the input and the user discarding
it? Etc. In particular, we found that when biological research sci-
entists were presented with information from bioinformatics tools
that clashed with their beliefs, especially absent data, they were
unable to determine what happened. We provide a framework that

allows users to ask WHY NOT? questions about data items not in
the result set (Unpicked). Additionally, we create a model that al-
lows us to pinpoint where the Unpicked data item was discarded
from the final result set.

We implement the model using two different algorithms for find-
ing the manipulation of interest, and two different methodsfor find-
ing a data items’s successor. We show how these methods compare
using a well-known set of queries. Additionally, utilizinga user
study, we show that the techniques presented herein satisfactorally
answer a user’s WHY NOT? questions.

Our goal in this work was to create a practically useable user
understanding system for databases of moderate size. Explanations
are expensive, and scaling this approach to large databasesis a chal-
lenge, and will probably involve special consideration of particular
operators instead of generic manipulations as done in this work. In
this work, we have found a sweet spot in which we can give mean-
ingful explanations, at acceptable time and computationalcost.

8. ACKNOWLEDGMENTS
This work was supported in part by NSF grant number IIS 0741620

and by NIH grant number U54 DA021519.

9. REFERENCES
[1] Omar Benjelloun, Anish Das Sarma, Alon Halevy, and

Jennifer Widom. ULDBs: Databases with uncertainty and
lineage. InVLDB Seoul, Korea, pages 953–964, 2006.

[2] Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, and
Gaurav Vijayvargiya. An annotation management system for
relational databases. InVLDB, pages 900–911, 2004.

[3] Shawn Bowers, Timothy McPhillips, Martin Wu, and
Bertram LudÃd’scher. Project histories: Managing data
provenance across collection-oriented scientific workflow
runs. InDILS, pages 27–29, 2007.

[4] Peter Buneman, Sanjeev Khanna, Keishi Tajima, and
Wang-Chiew Tan. Archiving scientific data. InSIGMOD,
pages 1–12, June 2002.

[5] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan.
Why and Where: A characterization of data provenance. In
ICDT, pages 316–330, 2001.

[6] Steven P. Callahan, Juliana Freire, Emanuele Santos,
Carlos E. Scheidegger, and Cláudio T. Silvaand Huy T. Vo.
VisTrails: Visualization meets data management. In
SIGMOD, pages 745–747, 2006.

[7] Adriane Chapman and H.V. Jagadish.Provenance and the
Price of Identity, pages 162–170. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, Provenance and
Annotation of Data edition, 2008.

[8] Y. Cui, J. Widom, and J.L. Wiener. Tracing the lineage of
view data in a data warehousing environment. InACM
Transaction on Database Systems (TODS), 2000.

[9] Yingwei Cui and Jennifer Widom. Practical lineage tracing
in data warehouses. InICDE, pages 367–378, 2000.

[10] Yingwei Cui and Jennifer Widom. Lineage tracing for
general data warehouse transformations. InVLDB, pages
41–58, 2001.

[11] Susan Davidson, Sarah Cohen-Boulakia, Anat Eyal, Bertram
Ludascher, Timothy McPhillips, Shawn Bowers, and Juliana
Freire. Provenance in scientific workflow systems.IEEE
Data Engineering Bulletin, 32(4):44–50, 2007.

[12] Ian Foster, Jens Vockler, Michael Eilde, and Yong Zhao.
Chimera: A virtual data system for representing, querying,
and automating data derivation. InSSDBM, pages 37–46,
July 2002.

[13] Paul Groth, Simon Miles, Weijan Fang, Sylvia C. Wong,
Klaus-Peter Zauner, and Luc Moreau. Recording and using
provenance in a protein compressibility experiment. In
HPDC, 2005.

[14] J. Huang, T. Chen, A. Doan, and J. Naughton. On
provenance of non-answers to queries over extracted data. In
VLDB, 2008.

[15] Magesh Jayapandian, Adriane Chapman, et al. Michigan
Molecular Interactions (MiMI): Putting the jigsaw puzzle
together.Nucleic Acids Research, pages D566–D571, Jan
2007.

[16] Andrew J. Ko and Brad A. Myers. Designing the whyline: a
debugging interface for asking questions about program
behavior. InSIGCHI, pages 151–158, 2004.

[17] Simon Miles, Sylvia C. Wong, Weijian Fang, Paul Groth,
Klaus-Peter Zauner, and Luc Moreau. Provenance-based
validation of e-science experiments.Web Semantics:
Science, Services and Agents on the World Wide Web,
5(1):28–38, 2007.

[18] Luc Moreau, Bertram Ludäscher, et al. The First Provenance
Challenge.Concurrency and Computation: Practice and
Experience, 2007.
http://twiki.ipaw.info/bin/view/Challenge/SecondProvenanceChallenge.

[19] Michi Mutsuzaki, Martin Theobald, et al. Trio-One:
Layering uncertainty and lineage on a conventional DBMS.
In CIDR, pages 269–274, 2007.

[20] Brad A. Myers, David A. Weitzman, Andrew J. Ko, and
Duen H. Chau. Answering why and why not questions in
user interfaces. InSIGCHI, pages 397–406, 2006.

[21] Tom Oinn, Mark Greenwood, Matthew Addis, M. Nedim
Alpdemir, Justin Ferris, Kevin Glover, Carole Goble, et al.
Taverna: lessons in creating a workflow environment for the
life sciences: Research articles.Concurr. Comput. : Pract.
Exper., 18(10):1067–1100, 2006.

[22] H. Pang, A. Jain, K. Ramamritham, and K. Tan. Verifying
completeness of relational query results in data publishing.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2005.

[23] D. De Roure and C. Goble. myExperiment - a web 2.0
virtual research environment. InInternational Workshop on
Virtual Research Environments and Collaborative Work
Environments, 2007.

[24] Jennifer Widom. Trio: A system for integrated management
of data, accuracy, and lineage. InCIDR, 2005.

[25] Mingwu Zhang, Xiangyu Zhang, Xiang Zhang, and Sunil
Prabhakar. Tracing lineage beyond relational operators. In
VLDB, pages 1116–1127, 2007.

