
DataLens: Making a Good First Impression

Bin Liu
Department of EECS
University of Michigan

Ann Arbor, USA
binliu@umich.edu

H.V. Jagadish
Department of EECS
University of Michigan

Ann Arbor, USA
jag@umich.edu

ABSTRACT
When a database query has a large number of results, the
user can only be shown one page of results at a time. One
popular approach is to rank results such that the “best” re-
sults appear first. This approach is well-suited for informa-
tion retrieval, and for some database queries, such as sim-
ilarity queries or under-specified (or keyword) queries with
known (or guessable) user preferences. However, standard
database query results comprise a set of tuples, with no as-
sociated ranking. It is typical to allow users the ability to
sort results on selected attributes, but no actual ranking is
defined.

An alternative approach is not to try to show the esti-
mated best results on the first page, but instead to help
users learn what is available in the whole result set and di-
rect them to finding what they need. We present DataLens,
a framework that: i) generates the most representative data
points to display on the first page without sorting or rank-
ing, ii) allows users to drill-down to more similar items in a
hierarchical fashion, and iii) dynamically adjusts the repre-
sentatives based on the user’s new query conditions. To the
best of our knowledge, DataLens is the first to allow hierar-
chical database result browsing and searching at the same
time.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces

General Terms
Human Factors, Design

Keywords
interface, representative, exploration

1. MOTIVATION
Database queries often return hundreds, even thousands,

of tuples in the query result. In interactive use, only a small

Supported in part by NSF grant numbers 0438909 and
0741620.

Copyright is held by the author/owner(s).
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
ACM 978-1-60558-551-2/09/06.

fraction of these will fit on one display screen. In this demon-
stration we show how best to present these results to the
user.

The “Many-Answers Problem” has been well documented
[4]: too many results are returned for a query that is not
very selective. This problem arises because: i) it is very
difficult for a user, without knowing the data, to specify a
query that returns enough but not excessive results; and
ii) often a user starts exploring a dataset without an exact
goal, which becomes increasingly clear as she learns what is
available. Consider Example 1 below, where a user searches
a used car database for a Honda Civic.

Example 1. Ann wants to buy a car, and visits a web site
for used cars. The web site is backed by a database that
we simplify for this example to have only one table “Cars”
with attributes ID, Model, Price, and Mileage. Ann specifies
her requirements through a form on the web site, resulting
in the following query to the database: Select * from Cars

where Model = ‘Civic’ and Price < 15,000 and Mileage

< 80,000. The query she formulates may have thousands
of results since it is on a popular model with unselective
conditions. How should the web site show these results to
Ann?

Most current work attempts to order results by what the
system believes is likely to be of greatest interest to the
user. Indeed, there is a stream of work (e.g., [7, 5]) trying
to develop ranking mechanisms such that the “best” results
appear first. Such techniques can be successful when the
system has a reasonable estimate of the user’s preference
function. However, determining this can be hard: in our
example the system has no way to tell what Ann’s tradeoff
is for price versus mileage, let alone other attributes not
even mentioned. The absence of user preference or query
history/workload also prevents approaches such as results
categorization [3, 6] and ranking-based navigation [12] from
being applicable in this scenario.

This “Many-Answer Problem” has also attracted much at-
tention from the information retrieval community. The im-
portance of the first page of results for a search interface has
been well documented [1]. It has been shown that over 85%
of the users look at only the first page of results returned by
a search engine. If there is no exact answer in the first page
to meet users’ information needs, the first page has to deliver
a strong message that there are interesting results in the re-
maining pages. Browsing results from a relational database
is similar from that of a search engine, and we must ensure
that the first page of results catch user’s full attention.

ID Model Price Mileage Zoom‐in
643 Civic 14,500 35,000 311 more Cars like this
876 Civic 13,500 42,000 217 more Cars like this
321 Civic 12,100 53,000 156 more Cars like this
452 Civic 11,200 63,000 87 more Cars like this
765 Civic 10,200 71,000 65 more Cars like this
235 Civic 9,000 78,000 43 more Cars like this

Figure 1: DataLens Example

ID Model Price Mileage Zoom‐in
643 Civic 14,500 35,000 71 more Cars like this
943 Civic 14,900 25,000 63 more Cars like this
987 Civic 14,700 28,000 55 more Cars like this
121 Civic 14,300 40,000 45 more Cars like this
993 Civic 14,100 43,000 40 more Cars like this
937 Civic 13,900 47,000 37 more Cars like this

Figure 2: After Zooming on First Tuple

2. THE DATALENS FRAMEWORK
In this demonstration, we solve the “Many-Answer Prob-

lem”starting from a user’s point of view. Psychological stud-
ies have long shown that human beings are very capable of
learning from examples and generalizing from the examples
to similar objects [11]. In a database querying context, the
first screen of data can be treated as examples of a large
dataset. Since users can expect more items similar to those
examples, we should make them as representative as possi-
ble.

To accomplish the above task, we propose a framework
called DataLens for database systems that: i) automati-
cally displays the best representative result tuples in the
first screen of results when the result set is large, ii) at user’s
request, displays more tuples similar to a particular repre-
sentative, and iii) consistently adapts to user’s subsequent
query operations (selections and zooming). A typical first
page is shown in Figure 1. Notice that each tuple represents
many cars with similar Price and Mileage. The representa-
tives naturally fragment the whole dataset into clusters such
that cars of various price and mileage ranges are shown.
The representatives themselves have a high probability of
being what the users want. If they are not, they can lead
to more similar items. On the right side of each represen-
tative tuple, the number of similar items is displayed. A
hyper-link is provided for the user to browse those items.
Suppose now the user chooses to see more cars like the first
one. Since they cannot fit in one screen, DataLens shows
representatives from the subset of cars (Figure 2). We call
this operation“zooming-in”, in analogy to zooming into finer
level of details when viewing an image. After seeing the first
screen of results, if the user now has more confidence to fur-
ther lower the price condition (since there are more than
100 cars with price around $10k), she can add a condition
price < 10,000. The next screen of results is generated
with the same spirit. By always showing the best represen-
tatives from the data, we enable users to quickly learn what
is available in the data without actually seeing all the tuples.

3. NOVEL ISSUES
In this section, we first outline the challenges in building

DataLens and then briefly explain our solutions.

3.1 Challenges
Two challenges must be addressed before one can con-

struct an effective interface such as the one shown in Figure
1. We discuss these below. Let the first page of results be
limited to k tuples. We call tuples on the first page repre-
sentatives of the whole result set. We choose k -medoids as
the representatives of a data set.

Representative Finding Challenge We need to effi-
ciently find representatives for the result set. That is, find
the k-medoids with the minimum average distance (or other
chosen metric). There are two related requirements here:
i) the first batch of representatives for a query should be
generated quickly, and ii) zooming operations should incur
minimal computation.

Query-Refinement Challenge In addition to zooming,
DataLens needs to adapt to user query refinement. Once the
user sees the first screen of representatives, she may dynam-
ically refine her query results based on the information she
gathered from seeing some data. For example, Ann may de-
cide to restrict her search to cars with less than 60,000 miles
(instead of the 80,000 originally specified). This may make
some current representatives invalid. In interactive query-
ing, we cannot afford to recompute the representatives from
scratch. Instead, we should seek to incrementally maintain
the set of representatives.

3.2 Generating Initial Representatives
We need to be able to generate k-medoids efficiently. For-

mally, for a set of data points O , k -medoids is a subset M
with cardinality k that minimizes the average distance from
each point in O to the closest point in M . In the literature
there are many k-medoid clustering methods such as PAM
[8], CLARA [8], BIRCH [13], and CLARANS [10]. They
mostly focus on high quality clustering, while we target high
efficiency and consistency under new query conditions. In
interactive querying, we expect that users can tolerate less
than perfect representatives but not obvious delays.

We propose a cover-tree [2] based algorithm that is uniquely
suited for DataLens. For each level i of the cover-tree, it sat-
isfies four properties: i) each node is also a data point, ii) a
node appears in level i + 1 if it appears in level i, iii) nodes
are separated by at least D(i), which is a monotonically de-
creasing function of i, and iv) nodes are within distance D(i)
to its children in level i + 1, and are within 2 ×D(i) to all
its descendants. These properties naturally cluster data in
the tree, where the root of a subtree is a good representative
of data in the subtree. We pre-compute a cover tree for the
data set and use tree-assisted heuristics to efficiently find
the k-medoids.

3.3 Query Adaptation
Users can add ad-hoc refinement conditions or zoom-in on

tuples in DataLens. If we were to re-compute the represen-
tatives from scratch, we would have to re-build the cover
tree index and re-run the algorithm outlined above, which
is too costly in interactive querying. We propose to re-use
the original index to generate new medoids.

Selection. Since the user queries a single table, we can
consider a selection condition as a line (in the 2D case) or
hyperplane (in 3D or higher dimensionality) in the data uni-
verse. For simplicity we now discuss only 2D case, but high
dimensional cases are easy to generalize to. For example, if
we use Price as x -axis and Mileage as y-axis in 2D space,

l fClient User Interface

Medoids Zooming
Operations

Medoids
Query
Operations

Medoids

D

k‐Medoid
Generator

Zooming
Operator

Query
Operator

Initial
Query

d

A
T
A
L
E
N

DBMS

Query results

Cover‐tree Index N
S

DBMS

Figure 3: DataLens System Architecture

adding the selection condition “price < 12000” removes all
data points that are to the right of line x = 12000. For a
node in the level i of the cover tree, all its descendants must
be within distance 2D(i). We can use this fact to estimate
the percentage of the subtree that remains valid after the se-
lection condition by considering the area in the valid region.
By considering this percentage value as the utility of each
cover tree node, we can modify our heuristics to generate
k-medoids when the tree is only partially valid.

Zooming-in. If the user chooses to click on a tuple, we
first fetch all nodes in the cover tree that are associated with
this tuple, namely, all cover tree nodes that contributed to
the generation of this representative. We then re-run our
algorithm on this smaller set of nodes (and their subtrees)
to generate k-medoids around the chosen tuple.

4. SYSTEM ARCHITECTURE
The architecture of DataLens is shown in Figure 3. When

a query is initially sent from the client user interface to the
DBMS, query results are fed to DataLens, which interacts
with the client in this query session. DataLens then builds a
cover-tree index on the query results. This step can be done
very efficiently through cover-tree’s construction algorithm.
One of the features of cover-tree is that it can be constructed
efficiently in an online-fashion. In our experiment, the index
for a dataset comprising 130k points in 2D space is built in
0.7 seconds on an Intel Pentium Dual Core 2.8GHz machine
with 4GB DDR2 memory.

Beside the indexer, the core of DataLens contains three
other parts: the k -medoid generator, which generates the
initial medoids after the user sends a new query to the
database; the zooming operator, which is responsible for
generating new representatives after user performs a zoom-
ing operation; and the query operator, which dynamically
adjusts the medoids according to user’s new query condi-
tions. DataLens can be implemented as a module in a DBMS
or a layer between the client and the DBMS.

5. DEMONSTRATION
In this demonstration, DataLens is implemented as a layer

between PostgreSQL server and the SheetMusiq spreadsheet

query interface [9], through which users can query a database
using mouse-clicks in a direct manipulation fashion. The in-
terfaces examples shown in Figures 1 and 2 are implemented
in SheetMusiq. When a new query is sent to the database
server through the client, representatives are immediately
shown. Users can click on a particular item in the spread-
sheet to zoom in to more similar items, or pose new filtering
conditions. Users will see how DataLens dynamically ad-
justs to the query operations and maintains a good set of
representatives.

We use two datasets: “Car” crawled from Yahoo! Autos
and “House” crawled from realtors.com. Car dataset con-
tains 4k cars with typical attributes such as mileage and
price. House dataset contains 3k houses listed, containing
information on price, living area size, total property size,
and number of bedrooms. We also offer users the opportu-
nity to plug in their own dataset (in a format compatible
with PostgreSQL).

6. REFERENCES
[1] E. Agichtein, E. Brill, S. T. Dumais, and R. Ragno.

Learning user interaction models for predicting web
search result preferences. In SIGIR, pages 3–10, 2006.

[2] A. Beygelzimer, S. Kakade, and J. Langford. Cover
trees for nearest neighbor. In ICML, pages 97–104,
2006.

[3] K. Chakrabarti, S. Chaudhuri, and S. won Hwang.
Automatic categorization of query results. In
SIGMOD Conference, pages 755–766, 2004.

[4] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum.
Probabilistic information retrieval approach for
ranking of database query results. ACM Trans.
Database Syst., 31(3):1134–1168, 2006.

[5] S. Chaudhuri and L. Gravano. Evaluating top-
selection queries. In VLDB, pages 397–410, 1999.

[6] Z. Chen and T. Li. Addressing diverse user preferences
in sql-query-result navigation. In SIGMOD
Conference, pages 641–652, 2007.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. In PODS,
2001.

[8] L. Kaufman and P. Rousseeuw. Finding groups in
data. an introduction to cluster analysis. Wiley Series
in Probability and Mathematical Statistics. Applied
Probability and Statistics, New York: Wiley, 1990.

[9] B. Liu and H. Jagadish. A spreadsheet algebra for a
direct data manipulation query interface. In ICDE,
2009.

[10] R. T. Ng and J. Han. Clarans: A method for clustering
objects for spatial data mining. IEEE Trans. on
Knowl. and Data Eng., 14(5):1003–1016, 2002.

[11] R. Nosofsky and S. Zaki. Exemplar and prototype
models revisited: Response strategies, selective
attention, and stimulus generalization. Learning,
Memory, 28(5):924–940, 2002.

[12] T. Wu, X. Li, D. Xin, J. Han, J. Lee, and R. Redder.
Datascope: Viewing database contents in google maps’
way. In VLDB, pages 1314–1317, 2007.

[13] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An
efficient data clustering method for very large
databases. In SIGMOD Conference, pages 103–114,
1996.

