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Abstract The widespread adoption of XML holds the
promise that document structure can be exploited to spec-
ify precise database queries. However, users may have only
a limited knowledge of the XML structure, and may be un-
able to produce a correct XQuery expression, especially in
the context of a heterogeneous information collection. The
default is to use keyword-based search and we are all too
familiar with how difficult it is to obtain precise answers by
these means. We seek to address these problems by introduc-
ing the notion of Meaningful Query Focus (MQF) for find-
ing related nodes within an XML document. MQF enables
users to take full advantage of the preciseness and efficiency
of XQuery without requiring (perfect) knowledge of the doc-
ument structure. Such a Schema-Free XQuery is potentially
of value not just to casual users with partial knowledge of
schema, but also to experts working in data integration or
data evolution. In such a context, a schema-free query, once
written, can be applied universally to multiple data sources
that supply similar content under different schemas, and ap-
plied “forever” as these schemas evolve. Our experimental
evaluation found that it is possible to express a wide variety
of queries in a schema-free manner and efficiently retrieve
correct results over a broad diversity of schemas. Further-
more, the evaluation of a schema-free query is not expen-
sive: using a novel stack-based algorithm we developed for
computing MQF, the overhead is from 1 to 4 times the exe-
cution time of an equivalent schema-aware query. The eval-
uation cost of schema-free queries can be further reduced
by as much as 68% using a selectivity-based algorithm we
develop to enable the integration of MQF operation into the
query pipeline.
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1 Introduction

XML is gradually becoming the standard in exchanging and
representing data. Not surprisingly, effective and efficient
querying of XML data has become an increasingly impor-
tant issue. Traditionally, research work in this area has been
following one of two paths: a structured query approach or
a keyword-based approach. XQuery [14] is the generally ac-
knowledged standard of the former, while the latter class has
several recent suggestions, including XKeyword [25] and
XSEarch [17]. Both approaches have their advantages and
disadvantages. Fully structured query (e.g., XQuery), work-
ing with the database schema, can convey complex semantic
meaning in the query, and therefore can precisely retrieve
desired results. However, if the user does not know the (full)
database structure, it is difficult to write a correct query.
Even if the user does know the schema, when data is to be
amalgamated from multiple sources with different schemas,
it typically will not be possible to write a single query appli-
cable to all sources; rather, multiple queries will have to be
written (or at least generated through translation), a process
that is complex and error-prone. Keyword-based query can
overcome the problems with unknown schema or multiple
schemas, because knowledge of structure is not required for
the query. However, this absence of structure leads to two
serious drawbacks. First, it is often difficult and sometimes
impossible to convey semantic knowledge in pure keyword
queries. Second, the user cannot specify exactly how much
of the database should be included in the result.

Consider the example in Fig. 1 showing the same bib-
liography data arranged in two different schemas: A orga-
nizes publications based on the publication year, while B
organizes publications according to their type (book or ar-
ticle). Let’s first look at Query 1, which is a simple query
asking for some information (title and year) on a publica-
tion given a certain condition (author is “Mary”). To con-
struct an XQuery to represent this simple query, the user
faces two challenges: first, she has to know that “publica-
tion” in the schema is actually presented as book and ar-
ticle in both schemas; second, she has to know that fitle
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Query 1: Find title and year of the publications, of which
Mary is an author. T

Query 2: Find additional author of the publications, of
which Mary is an author.

Query 3: Find year and author of the publications with
similar titles to a publication of which Mary is an author.

Fig. 1 Querying XML data with multiple schemas

and author are the child elements of “publication”, while
year could be either a child or a sibling. Depending on the
schema, the resulting XQuery expression is non-trivial even
for this simple query in this very small example. The key-
word based approach, on the other hand, often returns results
that include too many irrelevant answers. Query 1 (with the
underlined keywords) on data A may return the bib node 2,
which contains not just the desired article node 7, but also
the unwanted book node 4. Queries 2 and 3 pose even greater
challenges for the keyword-based approach. Keywords can-
not distinguish the two different authors in Query 2 and will
simply return node 10 whose content is “Mary”. Query 3 in-
volves two logical structures linked together through a value
join—it even shares the same set of keywords with Query 1!
Therefore, it is hard to imagine how the limited semantic ca-
pacity of a keyword search specification could capture the
desired user intention. Of course, it is straightforward to ex-
press each of these three example queries using XQuery —
but doing so requires knowledge of the database schema,
which the user may not possess.

In this paper, we develop a framework that enables users
to query XML data, exploiting whatever partial knowledge
of the schema they have. If they knows the full schema, they
can write regular XQuery statements. If they do not know
the schema at all, they can just specify keywords. Most im-
portantly, they can be somewhere in between, in which case
the system will respect whatever specifications are given.

The notion of Lowest Common Ancestor (LCA) (of
individual term/tag matches) has been suggested (e.g.

Meet [34]) as an effective mechanism to identify segments
of the database of interest to a pure keyword query. While
this intuition is reasonable, we show in Sect. 2 that LCA can
frequently be too inclusive. We refine LCA and define the
concept of a Meaningful Query Focus (MQF), which is an
XML fragment that meaningfully relates nodes correspond-
ing to relevant variables in the XQuery expression. We also
illustrate through examples how this structure, and its root
node, can be referenced and manipulated in an XQuery ex-
pression with embedded mqf functions.

In Sect. 3, we propose Schema-Free XQuery as a suit-
able query language for flexible querying of heteroge-
neous information. It incorporates MQF into XQuery with
a straightforward query logic and enables users with lim-
ited schema knowledge to write simplistic XQuery expres-
sions. In fact, users can write a query specifying keywords,
tag names, and/or structural restrictions, ranging all the way
from an open-ended IR-style keyword specification to a
completely specified full-fledged XQuery expression.

MQF computation is the core part of Schema-Free
XQuery evaluation. In Sect. 4, we show how to accom-
plish this using standard XQuery evaluation operators. We
then introduce a novel stack-based algorithm to compute
MQF more efficiently, in a manner reminiscent of contain-
ment join. In Sect. 5, we present the experimental evaluation
of our proposal, in terms of both the quality of the results
produced and the time taken to produce them. Over both
XMark, a standard XML Benchmark, and a wide variety of
autonomously created schemas in a well-circumscribed do-
main (publication lists) we found that Schema-Free XQuery
almost always produced exactly the desired results. More-
over, the time taken to do so was only somewhat greater than
what an equivalent schema-aware query would require.

Schema-Free XQuery, as described up to this point, is
a stand-alone operator. In Sect. 6, we investigate the pos-
sibility of integrating MQF computation into a query eval-
uation pipeline. We present a modified notion of MQF to
fit into this context. In addition, we propose an Ancestor—
Descendant Summarization (A-D) Index to allow efficient
access to base data information. In Sect. 7, we develop two
different algorithms, both extensions to the original stack-
based algorithm (Sect. 4), to provide further acceleration
for the evaluation of MQF. Our comparison study in Sect. 8
shows that the integration of MQF into a query pipeline sup-
ported by our new algorithms can significantly reduce the
evaluation cost of Schema-Free XQuery for a wide arrange
of queries, especially for queries with selective selection
conditions.

Finally, we discuss related work in Sect. 9 and conclude
in Sect. 10.

2 Meaningful query focus

In this section, we describe the concept of MQF and show
the use of the mqgf function in an XQuery expression. We
begin with a few preliminaries.
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We model an XML document as a rooted, ordered, and
labelled tree. Nodes in this rooted tree correspond to ele-
ments in the XML document.

Definition 1 (Descendant-Or-Self) A tree node n, is said
to have a descendant-or-self relationship with another tree
node ng, if it is a descendant of n, or is equal to n,, denoted
asng X ng.

Definition 2 (CA) Let the set of nodes in an XML docu-
ment be N. For dy,d>» € N, a € N is a Common Ancestor
(CA) of dy and d», denoted as CA(d;, d»), if and only if
dy <a,and dp <X a.

Definition 3 (LCA) Let the set of nodes in an XML doc-
ument be N. For dy,d, € N, a € N is the Least Common
Ancestor (LCA) of d; and d», denoted as LCA(d;, d»), if
and only if:

_ 4 =CA(d,. dy), and
-~ Vda €N (d #a),ifa =CA(d, d), thena < d'.

2.1 Motivation for MQF

An XML query typically involves one or more sets of struc-
turally related XML elements that are the processing con-
text used by the query (either to evaluate conditions or to
return results). If a user knows the document structure, she
can write a meaningful query in XQuery specifying exactly
how the nodes involved in the query are structurally related
with each other. Without knowledge of the structural rela-
tionships, as long as the user knows the element tag names,
she can still write an XQuery specifying only the tag names
of elements involved in the query. Figure 2 shows one such
expansion for Query 1 in Fig. 1. A literal evaluation of this
expansion will retrieve many meaningless results because
the default context is too general (i.e., all of bib.xml).

Given the structured nature of XML, it is natural to find
the LCA of the set of nodes specified, and treat the subtree
rooted at this node as the context for query evaluation.
In fact, this idea has been employed in several previously
proposed systems [17, 25] and works well in certain cases.
For example, consider nodes 8 (title) and 10 (author) in
Fig. 1. The LCA of these two nodes is node 7 (article) and
the subtree rooted at node 7 does make a good context:
the title, author, and article nodes form a logical entity
together. However, blindly computing the LCA can bring
together unrelated nodes. For example, consider a different
pair of nodes in Fig. 1: nodes 5 (title) and 10 (author). Their

for $a in doc(“bib.xml”)//author,
$t in doc(“bib.xml”)//title,
$y in doc(“bib.xml”)//year
where $a/text() = “Mary”
return <result> { $t, $y } </result>

Fig. 2 Query 1 in XQuery with no structural knowledge

LCA is node 2 (bib), whose subtree contains many books
and articles and is clearly not an appropriate context for the
query evaluation. We address this problem by introducing
the notion of MQF, and using it as the refined context for
query evaluation.

2.2 MLCA

A node in an XML document, along with its entire subtree,
typically represents a real-world entity. The tag name iden-
tifies the type of the entity, which is called entity type to
distinguish it from the data type used by XML Schema [37].
In the presence of domain ontology, nodes with different tag
names may still be regarded as of the same entity type. For
example, book and article nodes may be deemed as of the
same super-type publication. Such ontology-based tag name
matching is presented in detail in Sect. 3.2 and is not con-
sidered here to allow for a clear presentation of the MQF
concept.

We now describe the intuitive notion of two nodes being
meaningfully related to each other. Consider the diagrams in
Fig. 3, let n| and n; be two nodes in the XML document with
different entity types. There are two possible structural rela-
tionships between them. First, n| is an ancestor node of 7,
(Fig. 3a), or vice versa. We believe, in this case, that n| and
ny are meaningfully related to each other. Second, n| and 1,
have no hierarchical relationship with each other. Suppose
the LCA of n; and nj is node n (Fig. 3b), we can regard
both entities represented by 7] and nj, respectively, belong
to the entity represented by n. Therefore, nodes n1 and no,
regardless of their types, are related to each other by belong-
ing to the same entity represented by n, which is regarded
as the Meaningful Lowest Common Ancestor(MLCA) of n
and n;. However, there is an exception to this second case.
As demonstrated by Fig. 3c, let there be a node n, of the
same type as node 17, and the LCA of ny and ), be n'. If
n is an ancestor node of n’, we should then conclude that
nodes n; and n, are not meaningfully related to each other
because node n/z, which is of the same type as n, is more
related to n; under the node 7’'.

Consider the previously mentioned example of nodes 5§
and 10 in Fig. 1, with node 2 being their LCA. However,
node 2 is not their MLCA, because it is an ancestor of node
7, which is an MLCA of nodes 8 and 10, and node 8 is of
the same type as node 5 (both are titles). In fact, the entities
title and article are related to each other by belonging to the
same “publication” (book or article). Nodes 5 and 10 are not
related (i.e., not in the same MQF) because they belong to
different publications.

Y AN

(b) (C)

Fig. 3 Structural relationships among nodes
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We now formalize this idea. First of all, given two sets
of nodes, where nodes within each set are of the same type,
we define how to find pairs of nodes that are meaningfully
related to each other from these two sets.

Definition 4 (MLCA of two nodes) Let the set of nodes
in an XML document be N. Given A,B € N, where A is
comprised of nodes of type A, and B is comprised of nodes
of type B, the Meaningful Lowest Common Ancestors Set
C C N of A and B satisfies the following conditions:

- Ve eC,3a; € A, bj € B, such that ¢, = LCA(a;,b));
¢k is denoted as MLCA(a;, b;).
- Va,- € A, bj (S] B, fOI’d,’j = LCA(CI,‘, bj), ifd,‘j §é C,then

¢ € C, e < d;j, and vice versa.
The set C is denoted as MLCASET(A, B).

A pair of nodes (a, b), where a is of type A in set A and
b is of type B in set B, are regarded as meaningfully related
to each other if and only if ¢, the LCA of @ and b, belongs
to C, where C is MLCASET(A, B). This restriction ensures
that only the most specific results are returned. If an ele-
ment’s subelement is returned, then the element would not
be returned, because its subelement relates the entities rep-
resented by nodes in A and B more closely. Given multiple
sets of nodes, where nodes within each set are of the same
type, we can easily extend Definition 4 to define the MLCA
of multiple nodes:

Definition 5 (MLCA of multiple nodes) Let the set of
nodes in an XML document be N. Given Ay, Ay, ..., Ay
C N, where A; is comprised of nodes of type A; (i €
[1, ..., m]), a Meaningful Lowest Common Ancestor ¢ =
MLCA(ay, ..., ay) (a; € A;, i € [1, ..., m]) satisfies the
following conditions:

- Vi,jell,...,m] (G # j),3m = MLCA(q;, a;), where
m#null andm < c.
—3di,jell,...,m]( # j),c =MLCA(a;, a;).

Consider the simple XML document in Fig. 4a. Suppose
we want to find MLCAs for all nodes of type title, author,
review. The only MLCA found is node 1, MLCA(2,3.4). It
satisfies both conditions in Definition 5, as MLCA(2,3) =
MLCA@3.,4) = MLCA(1,4) = 1. If we remove the first au-
thor node (3) from the XML document (for the ease of com-
parison, ids of the rest nodes remain the same), we can ob-
tain a new document as shown in Fig. 4b. However, in this
new document, we can no longer find any MLCAs for nodes

bib) bib)
book (1) article(s) book (1) article(s)
mew(4) /WOHS) it ez/ \4 author )
author & title) author) @ revieww, title author(n
U XML Review v \L Mary l/ s Mary

XML g wtmL Joe XML XMLReview ppy  J9¢

(a) (b)

Fig. 4 Example XML data: compute MLCA of multiple nodes

of type title, author, review. Node 0 is the only node with de-
scendants of all the three types. Yet it is not an MLCA that
we are looking for, as it does not satisfying Definition 5 for
any combination of nodes of the three types. For example,
0 is not MLCA(2,7.4), because MLCA(2,7) does not exist,
violating the first condition of Definition 5 (node 0 is not
MLCA(2,7), as MLCA(6,7) = 5 < 0). Similarly, it is not
MLCA(2,8.4), MLCA(6,7,4) or MLCA(6,8.4).

2.3 MQF

Finding MLCA for multiple nodes, however, is not enough
since the same node could be the meaningful lowest com-
mon ancestor to many different sets of nodes. For instance,
given a book with two authors, the same book node can be
the MLCA for the title node and each of the author nodes,
separately. Consider the query in Fig. 2 against the data in
schema A in Fig. 1. Simply computing the MLCA of nodes
(author title,year) involved in the query will regard the sub-
trees rooted at nodes 2 and 11 as the context for query eval-
uation. Although they do contain the desired result, they of-
ten include too much irrelevant information. A user must
read the results returned and manually discover the desired
answer. This could require a significant amount of work in
a large database. Even worse, the system may return ad-
ditional (incorrect) answers. In this particular example, the
user requests the nodes year and title, so answers (3,5) and
(3,8) will be returned. The former is a wrong answer be-
cause only the latter fitle is the desired result. We resolve
this ambiguity by identifying not just the MLCA itself, but
rather the entire structure, MQF, for each such established
relationship.

Definition 6 (MQF) Let the set of nodes in an XML docu-
ment be N. Given Ay, A2, ..., Ay, € N, where A; is com-
prised of nodes of type A; (j € [1, ..., m]), the Meaningful
Query Focus Set S = {(r, ay,...,an) |r € N,a; € A; (i €
[1,...,m]),r = MLCA(ai, ..., ay) }. Each element of this
set is denoted as MQF(ay, ..., a,,), with r as its root.

Each MQF is used as a refined context for query evalu-
ation, since it contains only the nodes that are meaningfully
related to one another. An MQF is the tightest structure con-
taining one node from each input set. If an MQF satisfies
the search conditions, it is unlikely to contain a wrong an-
swer. For example, for Query 1 in Fig. 1, expressed as shown
in Fig. 2, we obtain several MQFs, including (2,10,8,3) and
(11,15,14,12). The only MQF satisfying the original search
condition $a/text() = “Mary” is (2,10,8,3). Hence,the result
is (title = “XML”, year = “1999”), which is exactly the de-
sired result.

Finally, we would like to point out the differences
between the concept of MQF and the concept of inter-
connected nodes employed by the XSEarch system [17].
Both concepts are designed to capture the meaningful
substructure of the XML document based on both the tag
names and the keywords provided in a query. Interconnected
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Query 1:
for $a in doc(“bib.xml”)//author,
$t in doc(“bib.xml”)//title,
$y in doc(“bib.xml”)//year

where $a/text() = “Mary” and mqf($a,$t,3y)
return <result> {$t, $y} </result>
Query 2:

for $a in doc(“bib.xml”)//author,
$b in doc(“bib.xml”)//author
where $a/text() = “Mary” and $a != $b
and mqf($a,$b)
return  $b

Query 3:
for $y in doc(“bib.xml”)//year,
$al in doc(“bib.xml”)//author,
$t1 in doc(“bib.xml”)//title,
$t2in {
for $a in doc(“bib.xml”)//author,
$t in doc(“doc.xml”)//title
where $a/text() = “Mary” and mqf($a,$t)
return $t }
let $m := mqf($y,$al,$t1)
where $t1 ~ $t2 and exists $m
return <result> {3y, $al} </result>

Fig. 5 Example queries with mgf function

nodes are a set of connected nodes with a root node, where
no two internal nodes are of the same type (i.e., having
the same tag name) and the root node is the LCA of leaf
nodes. This concept works well for simple XML data
where logically equivalent entities always have the same tag
name. However, it does not recognize meaningful structure
when those entities (e.g., book and article in the previous
example) have different tag names.

2.4 Adding mqf function to XQuery

In this section, we introduce a new function, mqf, to the stan-
dard XQuery language:

Definition 7 (mqgf function) mgf(aq, ..., a,) is a function
that returns (i) the root node of MQF(ay, ..., a,), if it exists,
(i1) null otherwise.

Figure 5 shows how each of the three running queries
presented in Fig. 1 can be expressed in the XQuery enriched
with the mqgf function. Each query will retrieve precisely the
desired result, when executed against either example schema
in the figure.

Query 1 is the most straightforward. Given the tag names
of individual nodes, the condition mqf($a, $¢, $y) defines
the context for evaluation to be the MQF of those nodes and
filters out any node that cannot be part of any MQF. The
query is flexible since it does not require the user to know
the exact relationships between nodes of the three types.

Query 2 shows another aspect of the flexibility in the
mgf function: the individual nodes do not have to be of dif-
ferent types. By combining the conditions $a ! = $b and
mqf($a, $b), the only MQFs retained are publications with
at least two different authors.

Query 3 shows a more complex example. It contains two
contexts for evaluation: one in the outer query, which con-
tains year, author, and title; the other in the inner query,
which contains author and title. The two contexts are linked
together through the similarity join! $71  $¢2. This query
is difficult to express in any keyword based approach simply
because the keyword to be used to match the content of title
is only known in the runtime. Although the binding of the
result of mqgf function to a variable $m is not necessary, it
is shown here to illustrate that the root of the MQF can be
manipulated just like any other regular elements in the XML
document. If we evaluate this query against data in schema
A of Fig. 1, the only MQF satisfying the conditions in the in-
ner query will be (7,10,8), and the only title to be returned is
“XML”. The outer query, without considering the similarity
join, will have several MQFs, including (2,3,6.5), (2,3,9,8),
(2,3,10,8), (11,12,15,14), and (11,12,18,17). Only the sec-
ond and third MQF have title similar to “HTML” and are the
final MQFs when we consider the similarity join. The final
results to be returned are therefore (year = “1999”, author =
“Joe”), and (year = “1999”, author = “Mary”).

3 Schema-Free XQuery

While the use of mgf function inside XQuery allows the user
to issue a query without knowing the exact structure of the
document, understanding the semantics of the function and
effectively using it can become quite a burden on the user. In
Sect. 3.1, we propose a simpler query logic and the use of a
related keyword to reduce the complexities involved in writ-
ing such an mgf-embedded XQuery. Another issue in prac-
tice is term ambiguity, where the exact tag name of a par-
ticular element is unknown (although the user should have a
rough idea what the tag name is in general) and we briefly
address this issue in Sect. 3.2. The final result is a Schema-
Free XQuery that a user can write easily and without know-
ing the exact schema.

3.1 MQF transformation

The use of mqgf function in XQuery allows the user to group
semantically related entities without knowing how they are
related in the document. However, the semantics of such a
function may be difficult for naive users, our primary target,
to understand and use correctly. We observe that in most
queries, a single query block (i.e., a FLWOR block, exclud-
ing any other query blocks nested in it) typically contains
one meaningful query focus. We call these simple focus

! The similarity join is assumed to be a user provided boolean func-
tion that decides whether two strings are similar or not.
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queries.” For such queries, we propose to further reduce the
complexity of mgf-embedded XQuery by replacing the mqf
function with a simple related keyword. Instead of writing
out the mgf function explicitly, users simply identify the set
of related entities in a single query block using the keyword
related. Our system will then automatically transform the
simplistic XQuery with related keyword into one with
embedded mqgf function. The following query illustrates a
simple XQuery with related keyword representing Query 1
in Fig. 1:

for $a in related doc(“bib.xml”)//author,
$tin related doc(“bib.xml”)//title,
$y in related doc(“bib.xml”)//year

where $a/text() = “Mary”

return <result> { $t, $y } </result>

This query can be automatically transformed into Query
1 in Fig. 5 by creating an mqgf function in the where clause
of the query, with all the related marked variables being its
arguments. Another example shows how MQFs in nested
queries can be identified:

for $y in related doc(*“bib.xml”)//year,
$al in related doc(”bib.xml”’//author,
$t1 in related doc(’bib.xml”)//title,
$t2in {
for $a in related doc(*bib.xml”)//author,
$t in related doc(“*bib.xml”)//title
where $a/text() = “Mary”
return $t
}
where $tl ~ $t2
return <result>{$y, $al}</result>

As previously mentioned, MQF is designed to have a scope
that is local to a single query block. Hence, the MQF
formed from the related marked variables in the inner query
is different from the MQF formed from the related marked
variables in the parent query. The two MQFs are linked
together by the similarity join and our system will transform
this query into Query 3 in Fig. 5. Furthermore, the related
marked variables do not necessarily represent descendant
elements with respect to the document root. If the user has
a better understanding of the document structure, she can
explicitly specify the part that she knows and leaves the part
that she doesn’t know to the system. Consider the query:

for $r in doc(“bib.xml”)//bib[1],

$a in related $r//author,

$b in related $r//author
where $a/text() = “Mary” and $a != $b
return $b

The user here explicitly wants the two authors to be within
the first bib element, she does so by associating the first
bib element with the variable $r, and putting the two related
marked authors under $r. The following transformed query
will be produced:

2 All example queries in Fig. 5 fall into this category.

for $rin doc(“bib.xml”)//bib[1],
$a in $r//author,
$b in $r//author
where S$a/text() = “Mary” and $a != $b
and maf($a,$b)
return $b

When evaluating the transformed query, the system will
take all authors that are descendants of the first bib element
and automatically compute MQFs from those nodes only.

Remarks XQuery extended with the related keyword is de-
signed to serve a naive user who has little knowledge of the
database or database query language. With this keyword, one
only needs to think of one concept group at a time and use
the keyword to flag the groups out. On the other hand, the
mgf-embedded XQuery is more flexible and allows multi-
ple concept groups on the same level at the cost of exposing
greater complexity to the user.

XQuery Extension: We propose the following extension
to the standard XQuery language [38], which adds the
related keyword into the expression of ForClause.

ForClause ::= “for” “$” VarName TypeDeclaration?
Positional Var? “in” ( (“related” PathExpr) |
(ExprSingle (“,” “$” varName TypeDeclaration?
Positional Var? “in” ExprSingle)x*) )

This extension allows the related keyword to be placed be-
fore any PathExpr in the for clause of a (sub-)XQuery to in-
dicate that the preceding variable will bind to a data node
that must be considered part of the meaningful query focus.

Transformation Algorithm: The transformation algo-
rithm works in a straightforward way. It identifies all vari-
ables marked with related keyword within a single query
block, and creates an mqgf function in the where clause of that
block with those variables as the arguments. Each nested
query block with at least one related marked variable will
have its own mqf function.

3.2 Expanding terms

While the flexibility of MQF helps to address the issue of
structure ambiguity, users still have to rely on the correct-
ness of tag names (called ferms) used in a query to produce
desired results. For example, if the document being queried
uses au instead of author to denote the concept of author,
none of the running example queries will generate the cor-
rect results. In an ad hoc information retrieval task, a casual
user is as unlikely to have perfect knowledge of tag names as
to have perfect knowledge of structure relationships. We call
this issue term ambiguity: the discrepancy between a query
term and its actual tag name counterpart in the document.
There are two main reasons for this discrepancy: first, the
common use of interchangeable synonyms to describe the
same concept; second, the domain specific usage of hyper-
nyms (terms that are more generic than the given term) and
hyponyms (terms that are more specific than the given term)
that are different in scope with the terms in the database.
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To address this term ambiguity issue, we expand user
provided tag names using two strategies. The first is
synonym-based expansion. Given a thesaurus of synonyms,
we group all synonyms together and choose one as the stan-
dard term. Each element tag name is indexed both as itself
and as the standard term. At query time, terms in the query
can then be normalized into the standard term and matched
with itself or any synonym it might have. The second is
ontology-based expansion. Given a domain ontology, the hy-
ponyms and hypernyms (if not already element tag names
themselves) of each element tag name are also indexed for
matching at the query time. With the adoption of expanded
index, instead of being turned into multiple queries in order
to handle synonyms, hyponyms, and hypernyms, each user
query is simply converted into its standard form and evalu-
ating the standard query alone will be sufficient.

In practice, one naive approach to term expansion is to
expand all the terms encountered in the user’s query. Such
an approach, we believe, is in violation of the principle of
Schema-Free XQuery, which is to help the user construct
meaningful queries when the knowledge of schema (in terms
of both structural and term ambiguity) is missing, while giv-
ing the user the power to express the exact meaning when the
knowledge of schema is present. Unnecessary expansion of
user terms (i.e., expanding terms when the users specify the
exact term they want) can potentially overwhelm the users
with many irrelevant results. As a result, we propose the ad-
dition of a simple function: expand. The expand function,
when applied to an element tag name specification, indicates
that the term is to be expanded during the query evaluation
process. Consider the following query:

for $b in doc(“bib.xml”)//expand(publication),
$y in doc(“bib.xml”)//year

where $y = “1999” and mqf($b, $y)

return $b

The tag name publication in the query is indicated by the
expand function as being not exact, and can be matched to
its synonyms in the thesaurus or hyponyms and hypernyms
in the ontology. The tag name year, however, is not marked
(the user is sure of the exact spelling) and will not be ex-
panded. Evaluating this query over the XML data in Fig. 1A,
we will get results 4 and 7. Notice that the term publication
is automatically expanded to match its hyponyms book and
article.

3.3 Summary

Marking structurally ambiguous elements with the related
keyword and ambiguous tag names with the expand func-
tion enables a user to query XML documents without per-
fect knowledge of either the structural relationships among
the nodes or the names of these nodes. XQuery equipped
with these features has effectively become schema-free: the
user only needs minimal knowledge of the schema to issue a
query that is far more meaningful than a keyword query and
far more flexible than the standard XQuery.

4 Computing MQF

MQF computation is central to Schema-Free XQuery evalu-
ation. In Sect. 4.1, we show how MQF can be evaluated as
a composition of standard access methods likely to be avail-
able in most XQuery engines. In Sect. 4.2, we present a more
efficient stack-based algorithm for computing MQF directly.

In the ensuing discussion, for a Schema-Free XQuery
with an embedded function mqf(ey, ez, ..., e;;), where ¢; are
the elements involved in the MQEF, we use IList[i] = {a;1,
apz, ...} € N to represent a list of nodes matching ¢; (1 <
i < m) in the XML database. The list of MLCASs output by
the function is denoted as QutList.

4.1 Basic implementation

MQFs can easily be computed using the existing standard
query operators. The basic idea is to first find MQFs for
each pair of ILists. Such MQFs are generated by joining
nodes with common ancestors into a set of trees such as the
“leaf level” of each tree contains exactly one node from each
IList; then within each set of the trees generated, we elimi-
nate those whose root node is an ancestor (in the database
tree) of the root node of another tree in the set. Next, the
MQFs obtained from the previous step are joined with each
other based on whether they contain an identical node from
IList[i], if they contain leaf nodes from [List[i]. The “leaf
level” of each tree resulting contains exactly one node from
each IList. In addition, any pair of leaf nodes in the tree
has a non-empty MLCA. These trees are returned as the
MQFs.

Theorem 1 The time complexity of the basic implementa-
tion is O(mNT, 1g(N1,) + hMT,), where h is the height

of the XML data tree, N7, = []/L, |IList[i]| (m > 1), and
Mg, =370, le_:ll \[List[i]] - [IList[f]].

Proof The proof is by induction on the value of m. For the
base case, let m = 2, and &; denote the set of nodes in IList[i]
(i = 1,2). MQFs of nodes from IList[1] and IList[2] can be
computed as y(0(vy(£1)) p<u—q &2) (denoted as w7 o for
simplicity), where y is the duplicate elimination operator,
which eliminates a tree based on whether its root is an an-
cestor (in the database tree) of the root of another tree in
the input, o is the sorting operator, v, is the ancestor fetch-
ing operator, and ><,_ 1s the ancestor—descendant structural
join operator.

The maximum number of ancestors each node in the
document tree could have is # — 1, for a tree of height
h. Therefore, the number of nodes output by v,(£1) is
h|IList[1]], given by |IList[1]| plus the total number of ances-
tors of the nodes in IList[1]. Using any typical sorting algo-
rithm such as quick-sort, the time complexity for o(v,(&1))
is O(h|IList[1]]1g(h|IList[1]])).

Assuming a stack-based algorithm for the ancestor—
descendant structural join, we use nodes from IList[1], and
their ancestors, as the ancestor node input list AList, while
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nodes from IList[2] as the descendant node input list DList.
According to [7], The maximum number of iterations it
takes for such a join process of two nodes is O(|AList| +
|DList| 4 |TList\2|) = O(h|IList[1]| + [IList[2]| + |TList12]),
where TList|; denotes the output list. In the worst case,
nodes from the two ILists are all siblings, and thus the num-
ber of tree generated is |TListi2| = |AList| x |DList| =
h ]_[1»2:1 (IList[i]|) = hMr,. Therefore, the time complex-
ity of the structural join between IList[1] and its ancestors
with [List[2] is O(hMT,).

In stack-based structural join, trees can be output in the
order of their respective root nodes without extra cost. Dur-
ing the subsequent duplicate elimination process, each tree
will only be visited once and be eliminated at most once.
The total time it takes to eliminated unqualified trees from
the trees generated by previous step is thus linear to the input
size, which is O(hMr,).

Putting all the these together, for m = 2, the time com-
plexity is O(hMr,) < O(hMr,+N, 1g(NT1,)) where M,
= N, = |IList[1]| - |IList[2]].

Induction Hypothesis: Let the claim hold true for all in-
put with m < k.

Induction Step: Let m = k, and Cr_; denote the set of
MQFs of input nodes from IList[1] to IList[k — 1]. Accord-
ing to the Definition of MQF, to compute the MQF with the
kth input IList[k], we need to first compute the MQFs of
nodes from [List[k] with each existing input IList[i] using
wik (i = 1,...,k —1). Each list of trees resulting is then
joined with Cy_1 based on the start Pos of their leaf nodes.
Such value joins are used to eliminate unqualified trees
from the MQFs candidates list: any pair of leaf nodes of
an MQF, a; (from [List[i]) and a; (from [List[j]), share
a non-empty MLCA, and thus can be found in the result
of corresponding w; ;. The final MQF candidates are the
MQFs needed. Therefore, the MQF with the kth input
included is computed as:

Cr—1 ><=1 W1k P}_=2k W2k - - - P=k—1,k Dk—1,k

Note that C;_; contains no node from the kth input,
IList[k], therefore, the first value join m<—; is only based
on the start Pos of nodes from IList[1]. Each of the MQF
candidates resulting contains one nodes from each of the
k inputs at the leave level; thus the other value joins b<—; &
(i =2,...,k)are joins on the start Pos of nodes from both
IList[i] and [IList[k]. The worst-case time for computing
Crm1isT(k—1) = c1(k— DN7_, 1gN7,_ ) +c2h M7, .
The time for first value join t<—; may be up to
\[List[11| - |IListlk]l] + N7, 1gN7,_)) + Ng, as the
output size of @ ; may be up to |IList[1] - |[List[k]|, the size
of Cy—1 may be up to N'z;_,, and the output size of the join
may be up to Ci—1 - |List[k]| = N7;. The time for computing
wix (( = 1,...,k —1)is h|lList[i]| - |[List[k]|. The time
for each remaining value join ><—; x (i =2, ...,k — 1) may
be up to |[List[i]| - |[List[k]| + N7, 1g(N7) + N7;, as the
size of the MQF candidates after the first value join may
be N7,.

Therefore, the worst-case time for computing Cy, is
T (k) = ci(k — DN7,_ 1gN7,_ )+ cohM7,_,
+ WY NN iseli]] - |IList[k]|
+ [[List[1]] - |I List[k]|N7,_, 1gWN7 ) + N7p

+Z{-€;21(|1List[i]| . |1List[k]|+/\/'71 lg(Nﬂ)+N'Tk
=ci(k — DN 1gN7_ ) + cohM_,

+(h+ DY Liselin] - it k]|
+ N7, 1gWN7,_ ) + (k —2)N7; 1g(N7))
+(k— DN
< c1kNg_ 1gWN7, ) + c1kN7 1g(N7)
+ (k — DN, + coh M

= O(kN7 1g(N7) + hM71)

Thus the induction step holds. O

4.2 Efficiently computing MQF

Computing MQF using the standard operators, as described
above, is simple, but expensive. To efficiently compute
MQFs, we developed a new operator specifically for this
purpose, and an evaluation method tailored for it. Our al-
gorithm is inspired by the stack-based family of algorithms
for structural join [7, 8, 11, 15], and is limited to XQuery
implementations that can support stack-based structural
joins.

Let the position of a node in the XML tree be repre-
sented as (DocID, StartPos, EndPos, Level) ,3
and let each IList be sorted by (DocID, StartPos). The
basic idea is to perform one single merge pass over the nodes
in ILists, in the order of their (start) position in the database
tree, and conceptually merge them into rooted trees contain-
ing MQFs. Within each such tree, the root is an MLCA of the
inputs, and the leaf level contains all the nodes from multi-
ple MQFs sharing the same root. Identification numbers are
then used to distinguish nodes from different MQFs. Each
node may have many ancestors: they are not looked up until
required. Furthermore, a node is retrieved only once even if
it is an ancestor of multiple nodes in the ILists.

The main data structure of the algorithm is a stack, with
the head of each stack node being a descendant of the head
of the stack node below it. Details of the data structure of the
stack node are shown in Fig. 6. Each stack node is also as-
sociated with lists of elements (E/ists); each element from
Elist[i] comes from the corresponding input list //ist[i]
(1 <i < m), and has descendant-or-self relationship with
the head. Intuitively, one may view a stack node as a tree,
with the head being the root, and the elements in the Elists
being the leaf nodes. For example, the bottom stack node

3 DocID: the identifier of the document; StartPos/EndPos:
generated by counting word numbers from the beginning of the docu-
ment until the start of the element and the end of the element, respec-
tively; Level: the nesting depth of the element. Notice that a node can
be identified by the pair (DocID, StartPos).
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StackNode {
int maxID;
NodeType head;
ListNode E1i [m];
bitset relBits[l];
}
ListNode {
int min;
NodeType node;
}

/*maximum min among all nodes in Elists*/
/*a XML tree node*/

/*m: total number of input lists*/

/*1: number of groups of Related Elists*/

/*identification number*/
/*a XML tree node*/

Fig. 6 Data structure of a stack node

in Fig. 8d represents the left branch rooted at node 2 in the
document tree A of Fig. 1, with nodes 3, 5, and 6 being the
leaves.

Some Elists of a stack node may be marked as Related
with each other, indicating that the LCA(s) of nodes from
these lists are descendants of the head. For example,
Elist[1] and Elist[2] of the bottom stack node (2) in Fig. 8d
are said to be Related, because node 4, the LCA of the el-
ements in the Elists (5, in Elist[1], and 6, in Elist[2]),
is a descendant of the head node 2. Meanwhile, E/ist[0] is
not Related to the other two Elists, as the LCA of node 3 (in
Elist[0]) and any node in the other ELists is 2 itself. A bitset
array rel Bits, with each element being a vector of bits with
a length of m, where each bit corresponds to a Elist, is used
to keep such information. The size of the array depends on
the number of Related Elist groups, where Elists within
each group are Related to each other, while Elists from
different groups are not. Each Related Elist group involves
at least two Elists, therefore |relBits| < [%1. In our ex-
ample, stack node 2 in Fig. 8d has only one Related Elist
group, Elist[1] (with node 6) and Elist[2] (with node 5).
Its rel/Bits thus has only one element rel/Bits[1] = 110.
Elist[1] and Elist[2] are referred to as the Elists corre-
sponding to rel Bits[1], as the value of the bits representing
the two Elistsis 1.

4.2.1 Determination of unqualified nodes

We first explain here how to efficiently determine nodes
that are unqualified to be part of any MQF. According to
Definition 6, if a node a; € A; belongs to an MQF, then the
root of the MQF is MLCA(ay, ..., a;, ..., an), where a; €
Ag (k=1,...,m). Therefore given a node a; € A;, if we can
quickly determine that we cannot find any a; € Ay (k = 1,
...,i—1,i+1,...,m)suchthat MLCA(ay, ..., ai,...,an)
exists, we can then conclude that g; is not qualified to be part
of any MQF. Based on Defintion 5, we know that the exis-
tence of MLCA(ay, ..., 4, ..., a) depends the existence
of MLCA(aj,ar) (k=1,...,i—1,i+1,..., m). Therefore,
we need only to determine that there exists no MLCA for a;
and any node of another type to conclude that no MLCA(ay,
s Qiy ..., ap) exists. We use the following proposition for
this purpose.

Proposition 1 (Determine unqualified nodes) Let the set
of nodes in an XML document be N. Given Ay, ..., Ay, C
N, where A; is comprised of nodes of type A; (i € [1, ...,
m]), aj € Aj is said to be unqualified as part of any MOF,

if 31, wherel € [1, ..., m], | # j, such that the following
conditions hold true:
- 3dceN,c>aj,and
- Va €A, a #c and
— 3d e N, d is a sibling of c in the XML tree, and d =
CA(d}, a))(a; € Aj,d; # aj, a) € Ap).

In addition, Yay, € Ay (k € [1, ..., m], k # ), where
MLCA(aj, ar) < c, ay is also said to be unqualified as part
of any MQF, if the above conditions hold true.

Proof We prove the first part of the proposition by contra-
diction. Suppose that there existsa, € A, (h=1, ..., j—1,
j+1,..., m)such that MLCA(ay, .. L ay) =e (e
€ N, e # null). Then according to Definition 5, there ex-
ists f = MLCA(a;, a;) (f € N, f # null). Condition 2 in
the above proposition indicates that ¢ does not have any de-
scendant from A;, and thus ¢ < f. Node d is a sibling of c;
therefore, d < f. Since d = CA(a’/., ay), there exists g < d
< f,and g = LCA(a;, ay), contradicting f = MLCA(a;,
a) (Definition 4). Therefore, a; is unqualified to be part of
any MQF.

The proof of the second part of Proposition 1 is sim-
ilar. Given an a; € Ay (k € [1, ..., m], k # j), where
MLCA(a;, ar) < c, suppose that there exists a, € A, (h
=1,...,k—1,k+1, ..., m) such that MLCA(ay, ..., a,
...,apm) = e (e € N, e # null). Then according to Defini-
tion 5, there exists f = MLCA(a}, ar) (a} €Aj, a; #aj).
From Definition 4, we can conclude that f = MLCA(a}, ax)
= MLCA(a;, ar) < c, and thus a;. < ¢. Then a;. satisfies all
the conditions in Proposition 1, and thus is not qualified to
be part of any MQF, contradicting MLCA(ay, ..., a, -..,
am) = e (e € N, e # null). Therefore, a; is not qualified to
be part of any MQF. O

.,aj,.

For examples of unqualified nodes, consider the docu-
ment in Fig. 4b. Suppose that we want to find MQFs for
nodes of type title, author, and review. We can easily de-
termine that node 2 is not qualified based on Proposition 1:
node 1, the parent of node 2, does not have descendants of
type author, but its sibling 5 is MLCA(6,7), where node 6
is of type title (same as 2), and node 7 is of type author.
Therefore, no MLCA of node 2 and an author node exists;
consequently, node 2 can not be part of any MQF involving
both title and author. Similarly, we can determine that node
4, a sibling of node 2, is also unqualified.

Now, we show how the concept of Related can be used
to take advantage of Proposition 1 and eliminate unqualified
nodes in the Elists. Given two stack nodes sy, s2, where
s1.head is the parent of s5.head, and the Elists of 51 con-
tains all the descendants of sy.head before sy.head in the
XML tree, while Elists of s contains all the descendants
of s2.head in the XML tree, we can easily determine which
Elists of the two nodes contains unqualified nodes. For i, j
(i # j),ifs1.Elist[i]and s|.Elist[j] are not Related, then
for any a;; from s1.E/ist[i], we can find an ancestor node c{
for a; |, where c is a child of s1.head, and c¢; has no descen-
dant of type A;. If 5. Elist[i] and so.Elist[j] are Related,
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then for any a; from s,.Elist[i], and a;, from s;.Elist[ ],
sp.head = C A(ajs, aj,). Since sp.head is a sibling of ¢y,
we can now apply Proposition 1 and determine that nodes
from s1.Elist[i] and other Related Elists are unqualified
as part of an MQF and thus can then be deleted. The bitset
array relBits can be used to efficiently determine whether
Proposition 1 can be applied by simple logical operations.
For example, given sy.relBits[1] = 0111, sy.relbits[1] =
0110, since

sy.relBits[1]&sy.relbits[1] = 0110 = sp.relbits[1],
and
sy.relBits[1]|sy.relbits[1] = 0111 = sy.relBits[1],

we can quickly determine that Elist[2] are Related to
Elist[4] in sy, but not in s;; therefore nodes in the Elists
(Elist[2] and Elist[3]) corresponding to sy.relBits[1] are
not qualified as part of an MQF.

4.2.2 Full algorithm

The full algorithm is shown in Fig. 7. The algorithm pro-
ceeds as follows: First, if the stack is empty, or the head of
the current stack top is an ancestor of the current input node
t, t is directly pushed onto the stack (MQF line 7, PopStack
line 12). Otherwise, we first check if the current stack top
already contains MQFs: if it does, we output current stack
top, empty the stack (PopStack lines 3—4), and push ¢ onto
the stack (MQF line 7); else, we repeatedly either replace the
head of the current stack top with its parent (PopStack
lines 7-8), or insert the Elists of stack top into the node
under it (PopStack lines 9—11), until we find ¢ is a de-
scendant of the new stack top. In addition, before we insert
Elists of one stack node into another, unqualified nodes in
both stack nodes involved can be found and discarded based
on Proposition 1 (DeleteUnqualifiedNodes lines 1-
9). Then, we push ¢ onto the stack. The above process reit-
erates until we have already processed all the input nodes of
at least one /List, and the stack is empty.

We now walk through the algorithm using an example.
Consider the XML document in Fig. 1A and Query 1 in
Fig. 5. For the function mqf($a, $¢, $y), the input lists are
IList[1] = {6,9,10, 15,18}, IList[2] = {5, 8, 14,17}, IList[3]
= {3, 12}, matching elements author, title, and year, respec-
tively (we ignore term expansion here for the simplicity of
illustration). Inputs (nodes) are fetched in ascending order of
their StartPos and the first input being read is element 3
(a year), which is simply pushed onto the empty stack (MQF
line 7) (see Fig. 8a for illustration). In the following discus-
sion, for the seek of simplicity, we use the id of the head of
a stack node to distinguish different stack node (e.g., stack
node 3 refers to the stack node whose head is 3), as no two
nodes on the stack will have the same head node at any time.

The algorithm then reads in the next element with the
smallest StartPos, 5 (a title), which is not a descendant
of the head of the stack top. Since the Elists of stack node
3 are all empty, and no unprocessed descendant node of 3
remains, it is guaranteed that no MQF rooted at 3 can be

MQF (1, Ioy «ovy Iny):
1 let the set of input nodes from Iy, Is, ..., I,, be I

2 while Vi, I; is not empty; or stack is not empty

3 do let tpmin(from Ix) be the node with smallest StartPos
4. among unprocessed nodes in [

5 result < Popstack(tmin)

6 if result # null, then output result

7 PushNewStackNode({min, k)

Popstack(t):

1 while stack is not empty and t is not a descendant of stack top
2 do popped — stack.Pop(), top «— stack.Top()
3 if popped and its FElists contain MQFs

4 then empty stack, return popped

5 else mark all the non-empty Elists of popped as Related
6 in popped.rel Bits[1]

7 if popped.head is a child of top.head

8 MergeElists(popped, top)

9 else pt «— popped.head.GetParent()

10 popped.head — pt

11 stack.Push(popped)

12 return null

MergeElists(s, t):
1 if DelUnqualifiedNodes(s,t)

/* append s.FEList and update t.relBits accordingly */
2 then t.AppendLists(s.GetLists())

t.maxlD «— sminlD

DeleteUnqualifiedNodes(s, () :

1fori« 1to [Z]

2 do if t.relBitli].count() > 0

3 then if t.relBits[i] = s.relBits[1] then return true

else if t.relBits[i]&s.rel Bits[1].count() > 0

then relBitsOR « (t.relBits[i])|(s.relBits[1])
if t.relBits[i] = relBitsOR then return false
else delete t.Flists corresponding to rel BitsOR
if s.relBits[i] = relBitsOR then return true

else return false

'y

© g O«

10 else return true

PushNewStackNode (¢, k):
1 if stack is empty
2 then stack.Push(t)

3 top «— stack.Top()
4 top.minl D — 0, top.mazlD — 0
5 else oldtop «— stack.Top()
6 stack.Push(t)
7 top «— stack.Top()
/* assign min to differentiate nodes of MQFs */
8 if oldtop.Elist[k] = null
9 then top.minlD «— oldtop.minl D
10 else if oldtop.FElist[k] is not Related to other oldtop.Elists
11 then top.minID « oldtop.minlD
12 else top.minlD « oldtop.mazxlID + 1

/* create a new ListNode with min of top.min */
13 node < NewListNode(t, top.min)
14 top.Elist[k].AppendNode(node)

Fig. 7 Algorithm MQF: it finds all MQFs for the input nodes, and
returns the root node for each MQF. Each input list /; (1 < k < m) is
a set of nodes of the same entity type, sorted by StartPos
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Fig. 8 States of stack during the evaluation of mqgf($a, $¢, $y). Each
square bracket contains the min value used to distinguish nodes from
different MQFs

found. The head of the current stack top 3 is therefore re-
placed with its parent 2 (PopStack lines 9—11). Element 5
is a descendant of node 2, and is thus pushed onto the stack
(Fig. 8b). Similarly, when 6 is read in, we replace the head
of stack node 5 with its parent 4, and then push 6 onto the
stack (Fig. 8c). Note that this is a subtle, yet important, opti-
mization to the algorithm: we access an ancestor node only
when it is needed to compute MQFs.

Element 8 is read in next and it is again not a descen-
dant of the stack top 6. However, node 6 is found to be a
child (not just descendant) of node 4, the head of the stack
node below it (PopStack line 7). Therefore the stack top
and its Elists are recursively appended to the stack node
below it (MergeElists lines 1-2).* Note that a node is
retrieved only once even if it is an ancestor of multiple
nodes. Such optimization reduces unnecessary index access
and contributes to computational saving. With 2 now being
the stack top, 8 is pushed onto the stack (Fig. 8d). Note
that the min value assigned to 8 is different from that of
5 (PushNewStackNode lines 10-12). The meaning and
usage of min will be discussed soon.

The process of adding 9 and 10 is similar to that of
adding 5 and 6 (Fig. 8e and f). When 12 is read in, as what
happens when element 8 is read in (Fig. 8d), the stack top
and the associated Elists are recursively appended to the
node below it. Finally, stack top 2 is found to contain no
empty Elists (indicating that it contains MQFs), and popped
as output. It is guaranteed that all the MQFs sharing 2 as the
root have been found (in the Elists), since all the descen-
dants of 2 in the input have been processed. We then push
12 onto the empty stack (Fig. 8g). The algorithm continues
until one of the /Lists is empty and the stack is empty.

Identification numbers [min, max] are used to distin-
guish different MQFs. min is assigned for each input ele-
ment when it is added to the stack (PushNewStackNode),
while max equals min(nextMin — 1, 00), where nextMin
refers to the min value of the next element in the
same list. Elements from Related Elists with compatible
identification numbers, i.e., the intersection of their identifi-

4 First insert the Elists of 6 into 4; then insert the Elists of 4 into
2.

cation numbers is non-empty, belong to the same MQF(s),
while element from not Related Elists may belong to
the same MQEF(s), regardless of their identification num-
bers. When a node is popped from the stack with associated
ELists, such numbers are used to identify nodes (in E/ists)
belonging to the same MQF and construct MQFs.

Theorem 2 The time complexity of the stack-based MQF
algorithm is O(hY ;" |[List[i]| + |OutputList|), where
OutputList refers to the MQF's generated.

Proof We start by showing that it takes O(hY 7 |IList[i]])
time to compute structures containing MQFs with the same
root. During the computation, each input node will be
pushed onto the stack once. Ancestor nodes of each input
node may also be pushed onto the stack, until the node is
determined to be unqualified to be a part of any MQF, or
MQFs containing the node have already been found. In the
worse case, the only common ancestor node of all the in-
put nodes is the root of the document. In such a case, all
the ancestor nodes of each input node will be pushed onto
the stack, even though the same ancestor node of multiple
input nodes will be pushed onto the stack only once. Each
stack node may have up to 2 — 1 ancestor nodes, but the
root node will be pushed onto the stack only once; there-
fore, the total number of nodes pushed onto the stack is
(h —2) Y7L (List[i]]) + 1 = O(h Y_i- IList[i]]). Each
node pushed onto the stack may be popped from the stack,
appended to, or deleted from an EList associated with an-
other node at most once (the ELists are implemented as
linked lists, with start and end pointers; thus appending and
deletion of a single node in the ELists can be performed in
unit time). Since each of the stack operations requires con-
stant time, the time complexity of computing the structures
containing MQFs with the same root is O(h Z,’»’Ll [IList[i]]),
which proves the claim.

To complete the proof of the theorem, let / be the number
of structures generated from previous step, and |QutputList|
be the number of MQFs generated. The process to gener-
ate MQFs from the structures generated from previous step
is essentially a sort merge join, where MQFs are gener-
ated from the join of compatible nodes from different ELists
within each structure based on their (minID, maxID). Since
nodes in each EList are already sorted by (minlD, maxID),
the time required for this merge process is linear to the sum
of input and output size, which is Y7, 3, |EList;[i]] +
|OutputList|. Since each input node may only appear in at
most one EList, we can obtain ZIJ: | [EListj[i]| < [IList[i]];

thus, > 'L, le=1 |EList;[i]] < Y_i", [[List[i]]. Putting this
observation together with the observations above, the time
complexity of the stack-based MQF algorithm is O(h ) /-,

UList[i1)) + O/, Y-y |EList;[i1] + |OutputList]) =
O(h Y ity [IList[i]|+ |OutputList]). -
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5 Experimental evaluation

We implemented Schema-Free XQuery using Timber [2,
27], a native XML database, and evaluated the system on
two aspects: (1) search quality, and (2) search performance.
Search quality is evaluated using both a standard XML
benchmark (Sect. 5.1) and a heterogeneous data collection
(Sect. 5.2). For search performance, we measure the over-
head caused by evaluating schema-free query versus the
schema-aware query (Sect. 5.3).

Throughout this section, the quality of a search tech-
nique was measured in terms of accuracy and completeness
using standard precision and recall metrics, where the cor-
rect results are the answers returned by the corresponding
schema-aware XQuery.> Precision measures accuracy, indi-
cating the fraction of results in the approximate answer that
are correct, while recall measures completeness, indicating
the fraction of all correct results actually captured in the ap-
proximate answer.

We note here that information retrieval systems can usu-
ally trade off precision against recall by choosing a different
threshold value for a scoring function used to evaluate can-
didate results. A high threshold will return results only with
a high score, giving good precision at the expense of recall.
A low threshold will have the opposite effect. Evaluation of
IR systems usually includes a precision—recall curve repre-
senting this tradeoff. Schema-Free XQuery is still a database
query language, and does not use any scoring functions in
its evaluation. As such, it is not reasonable to establish a
precision—recall curve for our search quality evaluation.

5.1 Search quality: XMark

XMark: XMark is a popular benchmark and its queries pose
a wide range of challenges: from stressing the textual con-
tent of the document to ad hoc data analysis [4]. We gener-
ated the XMark data set using a factor of 0.45, which had
1.45 millions of nodes and occupied 179 MB when loaded
into our database. Indices with a total size of 106 MB were
also built.

To evaluate the relative strength of Schema-Free
XQuery, we compared it with two techniques that support
search over XML documents without knowledge of XML
schema: Meet [34] and XSEarch [17]. Meet proposes to find
the LCA for the set of keywords given in the query and re-
turns the subtree rooted at the LCA as the answer to the
query. XSEarch is considered superior to a pure keyword
based approach as it distinguishes tag names from textual
content and has a better way of determining meaningful re-
lationships among nodes based on the document structure

5 Query answers are not discrete documents, as in standard IR, but
rather fragments of XML. So answers that return the required infor-
mation, but an unnecessarily large fragment, are still correct, though
they may not be specific. See extensive discussions of this issue in
INEX[1]. For our experiments, we only considered correctness and not
specificity — see the last paragraph of Sect. 5.1 for a discussion of the
consequences of our choice.
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Fig. 9 Precision and recall of different search strategies on XMark.
Missing bars indicate a value of zero

(for our comparison, we adopted the all-pairs strategy of
XSEarch, which is more competitive in search quality).

We expanded each original natural language query into
a keyword search query, an XSEarch query, and a Schema-
Free XQuery. We also wrote a schema-aware XQuery for
each query and each XML document (different documents
have different schema and a schema-aware XQuery has to
be constructed for each of them). We obtained the correct
answers by running the schema-aware XQuery and addition-
ally verified correctness manually.

Result Figure 9 presents the precision and recall of the three
techniques for XMark. The query numbers shown along the
X-axis are the numbers used to identify queries in XMark.
Schema-Free XQuery (MQF) achieved perfect precision and
recall for all the queries (i.e., all the results returned by mqf-
embedded XQuery were correct and all the possible correct
results were returned). In contrast, Meet and XSEarch per-
formed poorly on many of the queries, especially those with
dynamic search conditions, or requiring complex manipula-
tions such as ordering or grouping (Queries 5, 6, etc.). In
particular, the root of the structure returned by Meet is on
average 3 levels higher than the root of the correct struc-
ture: this observation indicates that a simple subtree rooted
at LCA of the keywords, although usually covers the correct
segments of interest, too often includes much irrelevant in-
formation, and cannot be easily manipulated to generate cor-
rect answers. Even for queries with simple constant search
conditions and requiring no further manipulation (Queries
1, 4, etc.), Meet and XSEarch often produce results that are
correct but too inclusive (we have counted those as correct
answers in Fig. 9): unrelated elements are returned along
with the meaningful ones.



Enabling Schema-Free XQuery with meaningful query focus

5.2 Search quality: publication collection

In working with XMark, we certainly knew its schema. We
tried not to let this influence our specification of Schema-
Free XQuery, and believe that we were successful in this.
Nevertheless, a skeptic may have reason to be suspicious of
our results. One way to address this concern is to work with
heterogenous schema. But now we face the problem that
there is no standard heterogeneous XML benchmark, so we
decided to focus on a set of meaningful queries and search
for a collection of heterogeneous data to accommodate them.
Queries from XMark were considered first, but unfortu-
nately, real-world auction data required by XMark were not
publicly available. We noticed, however, that “XMP,” a com-
prehensive set of queries from XQuery use case [36], were
largely based on bibliography documents, which were rel-
atively easy to collect from the web. We therefore decided
to use the 11 queries® from “XMP,” plus an example query
(also based on bibliography data) from XSEarch [17] for
this part of evaluation. (This 12th query is one chosen by
the XSearch authors to highlight their system, and hence is
likely to be one that most strongly tests any system being
compared against theirs).

Publication collection We manually collected personal pub-
lication lists from 300 faculty personal home pages in a
large research university’ to serve as the data set for the
“XMP” queries. The publication lists, while obtained from
the real world, are semantically close enough to the bibli-
ography data that our “XMP” query set can be applied with
only minor changes (e.g., tag name year is used to replace
price, which is not in the data set but has similar character-
istics). These publication lists, despite the similarity in their
semantics, vary greatly in terms of structure and normaliza-
tion rules. In fact, if we rewrite them into XML documents,
a total of 72 distinct schemas are found. However, many of
these schemas either have equivalent structures or only differ
from each other in minor details (e.g., a few include abstracts
while most do not). If we group the lists based on their struc-
tural similarity, the union of the schemas of the lists within
each group can then be used to represent all the lists in the
same group. We refer to each group as a schema family.
Schemas within a schema family are similar and therefore
tend to have similar effects on the search quality for differ-
ent search techniques. We identified six schema families for
the 300 personal publication lists collected, and present re-
sults for one representative document from each.

Result Figure 10 shows the average® precision and recall of
the three techniques over the set of “XMP” queries against
the publication collection. For all the queries, Schema-Free
XQuery achieved perfect precision and recall, while Meet

6 Q12 of XMP is not included since set comparison is not yet sup-
ported in Timber. Instead, we used the example proposed in XSearch.

7 This includes all the personal home pages from four departments
(123 in all), and a few randomly chosen personal home pages from 21
other departments (177 in all).

8 Over the six representative documents.
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Fig. 10 Average precision/recall of different search strategies for pub-
lication collection with term expansion. Missing bars indicate a value
of zero

and XSEarch had poor precision and recall for many queries.
This result demonstrates the robustness of Schema-Free
XQuery against changes in document schema, considering
that for each original natural language query, we ran exactly
the same Schema-Free XQuery on all the publication lists.

Although Schema-Free XQuery achieved 100% preci-
sion and recall for all of our queries, it does not imply that
Schema-Free XQuery guarantees such perfect search qual-
ity for any data set and/or any query. For instance, if we
change the XML document shown in Fig. 1A such that au-
thor node 6 and title node 8 are removed, for Query 1 in
Fig. 1, Schema-Free XQuery will return (5,3) as the result,
while the correct answer should be (empty,3). Our exten-
sive experimental evaluation suggests that such instances are
uncommon.

Term expansion was employed for all the three strategies
investigated in this comparison. The absence of term expan-
sion reduced the average precision and recall of about half
of the queries for all three strategies (Fig. 11). It is not a sur-
prise to see that a mismatch on even one single tag name
could reduce the search quality significantly.

5.3 Search performance: mgf-embedded XQuery

We measure the performance of Schema-Free XQuery in
terms of simplicity and efficiency. To evaluate simplicity, we
compare the number of operators in the evaluation plan gen-
erated for the mgf-embedded XQuery and the corresponding
XQuery, with mgf computation being considered a single
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Fig. 11 Average precision/recall of different search techniques for
publication collection without term expansion

operator. To evaluate efficiency, we compare the time cost
of evaluating an mgf-embedded XQuery, with both the basic
and stack-based implementations, with that of evaluating
a schema-aware, fully specified XQuery. For these exper-
iments, the XMark data set worked fine, but the heteroge-
neous publication collection was too small to be interesting.
Instead, we used the DBLP data set [28], which was of suffi-
cient size to show non-trivial running time while still within
the bibliography domain such that the queries evaluated in
the experiments above could apply. This data set comprised
nearly 86 millions nodes, and occupied 957 MB for the data
and 437 MB for the indices when loaded into our database.
The experiments were carried out on a Pentium IIT PC
machine (800 MHz CPU, 512 MB RAM, 120 GB hard disk)
running Windows 2000 Professional. The Timber buffer size
was set to 64 KB. We excluded the time for query parsing
and evaluation plan generation in all the cases. Each query
was run five times for each XML document with a cold
operating system cache. The average running time was used
in the performance evaluation. Note that for COMPOSE
(the basic implementation for computing MQF previously
discussed in Sect. 4.1), the execution time for some queries
is marked as DNF (did not finish), which means that the
execution was killed when it did not finish within 7 h.

Results Figure 12 shows that evaluation plans generated by
mgf-embedded XQuery for the “XMP” queries on DBLP
data are usually simpler than those of XQuery, with two
fewer operators on average, an approximately 25% savings
in plan generation. Furthermore, unlike the schema-aware
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Fig. 12 Average number of operators in evaluation plans generated by
schema-aware XQuery (XQuery) and mgf-embedded XQuery (MQF)
for “XMP” queries on DBLP

XQuery, the same evaluation plan can be generated once and
used over multiple documents with different schemas.

Table 1 reports the actual execution time of mgf-
embedded XQuery, both the stack-based algorithm (MQF)
and the basic algorithm (COMPOSE), and schema-aware
XQuery (XQuery) for the “XMP” queries on DBLP data.
Our stack-based MQF algorithm expedites the processing
of mgf-embedded XQuery by approximately 16 times, of-
ten reducing the execution time from more than 7 h to less
than 30 min. The capability of Schema-Free XQuery does
not incur expensive performance cost. The overhead of mqf-
embedded XQuery using MQF algorithm is between 100
and 300%, with the exception of Q8 and Q9. There is no
overhead for these two because they involve only one tag
name, and thus no computation of MQFs is needed. The ex-
istence of such overhead is expected. mgf-embedded XQuery
usually has to process more data than its schema-aware
counterpart: the filtering of results according to the search
conditions is done after the computation of MQFs, while in
schema-aware XQuery, most such filtering is done at data
fetching time. In Sects. 6 and 7, we will exploit optimiza-
tion techniques to reduce such overhead.

Results for XMark are similar: over 20 different query
types, the geometric mean of the running time of mgf-
embedded XQuery is 26.2 s, while that of schema-aware
XQuery is 12.3 s. We cannot compute the geometric mean
of the running time for COMPOSE, as 11 out of 20 queries
failed to finish within 7 h. The overhead for mgf-embedded
XQuery, compared to schema-aware XQuery varied from 0
to 250%.

6 Integrating MQF computation into a query
evaluation pipeline

In this section, we first introduce a motivating example on
the integration of MQF computation into a query evaluation
pipeline. The concept of MLCA is then slightly modified to
fit into this context (Sect. 6.1). In Sect. 6.2, an Ancestor—
Descendant Summarization (A-D) Index is proposed to fa-
cilitate the MQF computation within a query evaluation
pipeline.
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Table 1 Performance (seconds) of XQuery, MQF, and COMPOSE for
the “XMP” queries on DBLP

Query XQuery MQF COMPOSE
1 530 1533 25621
2 290 1173  DNF
3 527 1421  DNF
4 479 1665 26591
5 1132 2518 DNF
6 371 1116  DNF
7 552 1469 24590
8 240 243 241

9 237 240 240
10 367 1456 24536
11 511 1321 DNF
12 473 1088  DNF

6.1 Motivation

As we have previously discussed, the evaluation overhead
of a schema-free query is mainly because MQF operators
are at the leaf of query evaluation plans, and thus results fil-
tering according to search conditions is always done after
the computation of MQFs. An intuitive heuristic to improve
the query evaluation plan of mgf-embedded XQuery is to re-
duce the size of the inputs of MQF operators by applying
selection early. However, simply pushing selection operators
ahead of MQF operators may result in semantically incorrect
MQFs.

Consider Query 4 in Fig. 13, posed against data in
Fig. 1A. If we apply the straightforward evaluation plan in
Fig. 13a, there will be no MQF satisfying the selection con-
ditions. If we apply selection before the MQF operator as
shown in the alternative evaluation plan in Fig. 13b, the
input size of the MQF operator is reduced from 11 nodes
to 4 nodes, with only title{S}, author{10}, and year{3,12},
rather than all the title, author, and year nodes. However, the
MQF generated by algorithm MQF, {2,5,10,3}, and the re-
sult returned, year = “1999”, are incorrect: title {S} and au-
thor{10} belong to different publications and are not mean-
ingfully related to each other.

Hyear Hyear
| |

Ghive - xu L*, author = "Mary' E

| VAN

P>
/ —‘ \ GmleZ“XML' GamhurZ“Mary" Year
title  author Yyear title author
a b

Query 4: Find year of the publications with title XML, of
which Mary is an author.

Fig. 13 Example Evaluation Plans. > denotes MQF operation

As we can see from the above example, to provide the
strict semantic guarantee, we cannot simply push selections
before an MQF operator and completely ignore those input
nodes eliminated by early selections: such nodes may help
to determine the correct MQFs. When we integrate MQF
into a query pipeline, and allow operations such as selec-
tions be done before MQF operation, we need to depend not
only on the current input nodes of the MQF operator, but
also on the nodes in the original database that are not part
of the inputs but are of the same types as the input nodes.
For example, during the MQF computation using evaluation
plan b in Fig. 13, if we check the base data in Fig. 1, we can
find that node 4, the LCA of node 5 and another author node
6, is lower than node 2. According to Definition 6, we can
immediately determine that {2,5,10,3} is not an MQF.

We capture the above intuition by extend the MLCA def-
inition of two nodes as following. The definitions for MLCA
of multiple nodes and MQF remain unchanged.

Definition 8 (ML CA of two nodes) Let the set of nodes
in an XML document be N. Given A’, B’ € N, where A’
comprises all the nodes of type A in N, and B’ comprise all
the nodes of type B in N, the Meaningful Lowest Common
Ancestors Set C C N of Aand B (A C A’, B C B’) satisfies
the following conditions:

—VYceC,3daeA,be B,such that ¢, = LCA(a,b). ¢ is
denoted as MLCA(a, b).

—~VaeA beB,ifd=LCA(a,b)andd ¢ C, then3d’
€ A',b € B,suchthatd’ = LCA(a’,b")and d’ < d.

The set C is denoted as MLCASET(A, B).

Note that in the second condition of the above definition,
if d = LCA(a, b) is an ancestor of d’ = LCA(a’, b’), then
both @’ < d and b’ < d hold true. Since any CA(d’, b’) >
LCA(d’, b'), we can obtain the following proposition, with
A, B, N remaining the same as previously defined:

Proposition 2 (Determination of MLCA of two nodes)
Given any d = LCA(a,b), where a € A, b € B, d is
MLCA(a,b)unless3d” € N,d" <d,andd” = CA(a",b"),
wherea” € A”, A" is comprised of all the type A descendant
nodes of d, and b € B”, B is comprised of all the type B
descendant nodes of d.

6.2 Ancestor—Descendant summarization index

According to Proposition 2, to determine whether a node
d = LCA(a, b) is a MLCA, we only need to know the
existence of d” = CA(a”,b"); we do not need to know
exactly which node a” or b” is. Therefore, given a node
d = LCA(a, b), if we can quickly determine the existence
of d’ = CA(®d",b"), where d” < d, we can immediately
conclude that d is not MLCA(a, b). To take advantage of
this property to facilitate MQF computation, we propose the
following Ancestor-Descendant Summarization (A-D) in-
dex structure to enable fast detection of the existence of d”’s.
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A data entry of an A-D index consists of a pair
(StartPos, descendant map), where StartPos
identifies a node in the XML document, and the
descendant map is a fixed number of bits representing
the types of its descendant nodes. Each bit of the map repre-
sents a particular type: the value of a bit being “1” indicates
that the node has a descendant node of that type. Informa-
tion on node types and the corresponding positions for each
node type in a descendant map is stored as a separate index
called Type—Position index, with each data entry consisting
of a pair (type, map position).

For example, in the A-D index of document Fig. 1A,
the entry for node 1 is (0,0111111), indicating that the
StartPos of node 1 is 0, and its descendants contain all
types of nodes, except the bibliography type (position 0).
The entry in Type—Position index for the type of bibliogra-
phy is (bibliography, 0), i.e., the bit at position O in the
descendant map of a node indicates whether that node has
descendants of type bibliography.

By employing A-D index, given any document node, we
can quickly determine whether this node is a common ances-
tor of nodes of two different types via a single index access.”
A node e € N is denoted as CA(A,B), if it is a common an-
cestor of nodes of type A and 5. Clearly, no ancestor node
of ¢ could be an MLCA of nodes of type A and B. Based
on this notion, we propose the following proposition to effi-
ciently determine the MLCA of two nodes by applying the
A-D index.

Proposition 3 (Index-based Determination of ML.CA of
Two Nodes) Vd € N,d = LCA(a, b), where a is of type A,
and b is of type B, d is MLCA(a, b), unless 3 e € N,e < d,
and e = CA(A,B).

The size complexity of A—D index is O(|N|-T'), where
|N| is the size of the XML document tree and 7 is the total
number of node types in the document. We expect that typi-
cally T is a small number compared to |N |, and thus the size
of such A-D index is O(|N|), approximately proportional to
the document size.

The time complexity of an A-D index construction is
O(|N]) since we only need to traverse the entire XML docu-
ments once (in depth-first order) to build the index. The time
complexity of the construction of the Type—Position index is
O(T), which may be regarded as a constant with respect to
the size of the document.

Note that by using the above A-D index to summarize
the types of descendants of a node, we assume that nodes of
the same tag name correspond to the same type of real-world
entities. Sometimes nodes of the same tag names may repre-
sent different types of real-world entities within the same
schema depending on context. In such cases, A-D index
will not be able to distinguish them, unless we know ex-
actly which node corresponds to which type of real-world
entity and build the A-D index accordingly. For example, in
Fig. 14, node 2 and 4 represent different types of real-world

9 Type—Position index only needs to be accessed once initially.

store(l)
idf) manager)
FA
id4 namee)
v \’
M1 John

Fig. 14 Same tag name represents different types

entities, even though they are of the same tag name “id”.
However, they are indistinguishable in the A—D index entry
for node 1 (0, 0111), as they both correspond to the same
bit in the descendant map O111. In general, such cases are
very difficult, if not impossible, to be optimized by apply-
ing selection early, since we need to depend on the base data
to distinguish the nodes of the same tag name but different
semantic types.

7 Efficiently computing MQF within a query pipeline

We present two different algorithms to utilize A—D index
for efficient MQF computation within a query pipeline:
MQF Plus A-D Index (MQF+), and Selectivity-based MQF
(SQF). Both MQF+ and SQF rely on A-D index to check
base data during computation. In addition, SQF uses a se-
lectivity estimator to decide the processing order of inputs.
We assume that the map position of each type is known by
accessing the Type—Position index initially.

7.1 MQF+

The primary difference between the algorithm MQF+ and
MQF is that to determine whether a node may be qualified
to be a part of an MQF, the algorithm MQF+ also needs
to consider base data not included in the inputs by access-
ing A-D index. Specifically, given a stack node as described
in Sect. 4, if the current input is not a descendant of cur-
rent stack top, we need to check the base data to determine
whether the nodes in the Elists of the current stack top does
not qualify to be a part of MQF based on Proposition 3, be-
fore we proceed to update the stack. If the A-D index in-
dicates that the head of the stack node ¢ has descendants
of type A; in the base data, but the E/ists of the stack node
contains no node of type A4;, it is guaranteed that no nodes in
the current stack top is part of an MQF, and the stack node
thus can be discarded. The only function being affected in
MQF is Popstack(), whose updated version is shown in
Fig. 15, with new lines 7-10; all the other functions remain
the same.

We now walk through the MQF+ algorithm using an ex-
ample. Consider the XML document Fig. 1A and Query 1 in
Fig. 5. For the function mqf($a, $¢, $y), if we push the selec-
tion $a = “Mary” before the MQF operator, the input lists
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Popstack(t):

1 while stack is not empty and ¢ is not a descendant of stack top
2 do popped «— stack.Pop(), top «— stack.Top()

3 if popped and its Flists contain MQFs

4 then empty stack return popped
5 else

6 fori — 1tom

7 do if Checkl[i] = true
8 if popped.Elist[i] = null and popped.desc[i] = true
9 then popped — null

10 break

11 if popped # null

12 then mark all the non-empty Elists of popped as Related
13 in popped.rel Bits[1]

14 if popped.head is a child of top.head

15 then MergeElists(popped, top)

16 else pt — popped.head.GetParent()

17 popped.head — pt

18 stack.Push(popped)

19 return null

Fig. 15 New Popstack function for algorithm MQF+. Check is an
array storing flag indicating whether early selections have been applied
to reduce the input size of IList[i]; popped.desc (line 8) is the descen-
dant map of popped.head, obtained by checking A-D index

are [List[1] = {10}, IList[2] = {5, 8, 14, 17}, and [List[3] =
{3, 12}, matching elements author, title, and year, respec-
tively. Inputs (nodes) are fetched in ascending order of their
StartPos and the first input being read is element 3 (a
year), which is simply pushed onto the empty stack (MQF
lines 3-7) (see Fig. 16a for illustration).

The algorithm then reads in the next element with the
smallest StartPos, 5 (a title), which is not a descendant
of stack top 3. The head of the current stack top, element 3,
is then replaced with its parent 2 (PopStack lines 16-18).
Now 5 is a descendant of new stack top 2, and is thus pushed
onto the stack (Fig. 16b).

Similarly, when 8 is read in, we replace 5 with its par-
ent 4. Node 8 is not a descendant of 4 either, but be-
fore any further manipulation of stack node 4, we find that
node 4 has descendant(s) of type author by checking the
A-D index, also we find no nodes of type author in its
Elists(PopStack lines 6-10). As we have discussed ear-
lier, no nodes in such stack node is qualified for MQF, and
thus node 4 is discarded. Element 8 is now a descendant of
new stack top 2, and is pushed onto the stack (Fig. 16c¢).

Element 10 is read in next, and it is again not a descen-
dant of the stack top 8. Similarly, we replace 8 with its parent
7. Element 10 is now a descendant of new stack top 7, and
is pushed onto the stack (Fig. 16d).

When 12 is read in, the current stack top 10 is not an an-
cestor of 12, but it is a child of 7, the stack node right below
it. Therefore the Elists of 10 are merged into 7 (PopStack
lines 14—15) (Fig. 16e). Similarly, the Elists of 7 are merged
into 2, the stack node below it. The new stack top, 2, is not
an ancestor of 12 either, but it is found to contain no empty
Elists (indicating that it contains MQFs), and thus popped
as output. It is guaranteed that all the MQFs sharing 2 as the
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Fig. 16 States of stack during the evaluation of mqf($a, $z, $y) using
algorithm MQF+-. Each square bracket contains the min value used to
distinguish nodes from different MQFs

root have been found (in the Elists). The algorithm stops
here, as both the input list of author and the stack are empty.

Theorem 3 The time complexity of the stack-based MQF+
algorithm is O(mh Z,’-’;l [IList[i]| 4+ |OutputList|), where m
denotes the number of input lists, and h denotes the height
of the XML data tree.

In MQF, the time complexity of stack operation is
O Zlm=1 |[IList[i]]). The new Popstack function in
MQF+ adds up to a factor of m extra cost for each stack
operation. Therefore, the time complexity of stack operation
in MQF+ is O(mh ;L |IList[i]]). The time required for
merging MQFs from the output trees is still linear in the sum
of the input and output size. Thus, we obtain a time com-
plexity of O(mh YL, |IList[i]| + |OutputList|) for MQF+.
Although the time complexity of MQF+ is worse than that
of MQF, because the number of inputs m is usually small,
we expect that the actual performance of algorithm MQF-+
will be better than algorithm MQF, when the input size of
MQF operator is greatly reduced via its integration into the
query evaluation pipeline.

7.2 SQF

Both algorithms MQF and MQF+- scan all the input nodes in
the order of their StartPos. When there exist significant
differences among the selectivity of the input lists, nodes
from inputs with low selectivity are more likely to determine
the MQFs in the result. For example, for query “Find years
for all the articles published by author Mary”, the number
of MQFs generated is bound by the number of author nodes
with the value of “Mary.” Intuitively by starting the compu-
tation of MQFs from input nodes with the lowest selectivity,
we reduce the computational cost resulted from input nodes
that do not belong to any MQF. Based on this intuition, we
propose the algorithm SQF.

The pseudo code for SQF is given in Fig. 17. The
algorithm SQF is essentially the same as algorithm MQF+-,
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SQF (1, I2y ooy Iy):

1 let the set of input nodes from Iy, Ia, ..., I,, be I
2 while Vi, I; is not empty; or stack is not empty

3 do k «— FindInput()

4 if £ #-1

5 then t «— Ij.next()

6 result < Popstack(t)

7 if result # null, then output result
8 PushNewStackNode(t, k)

9 else t «— doc.root

1

1

0 result < Popstack(t)
1 if result # null, then output result

FindInput():

1 if stack is empty

2 if I's(1) = null then return -1
3 else return S[1]

4 top « stack.Top()

5 for i «— 1tom

6 do if top.desc[i] = true

7 then t « Igp;).next()

8 while t.StartPos < top.StartPos

9 do t «— Igp;.next()

10 if t.StartPos > top.EndPos or t = null
11 then if top.FElist[i] = false

12 then stack.Pop()

13 return FindInput()

14 else return S[i]

15 if top and its Elists contain MQFs

16 then return -1

17 popped «— stack.Pop(), top «— stack.Top()
18 mark all the non-empty Elists of popped as Related
19 in popped.rel Bits[1]

20 if popped.head is a child of top.head

21 then MergeElists(popped, top)

22 else pt < popped.head.GetParent()

23 popped.head — pt

24 stack.Push(popped)

25 return FindInput()

Fig. 17 Algorithm  SQF.  Function PopStack and
PushNewStackNode are the same as the ones used in algo-
rithm MQEF. Array S stores the index of the input lists in the ascending
order of their selectivity; top.desc (FindInput line 6) is the
descendant map of top.head, obtained from A-D index.

except it uses the FindInput function to decide which
input to read in. The read-in order of an input not only de-
pends on its StartPos, but also depends on its selectivity.
The information on the selectivity of each input is provided
by a selectivity estimator prior to query evaluation and
stored in an array S. In addition, base data are also checked
to discard unqualified stack nodes within the FindInput
function (we thus use PopStack function of MQF, rather
than that of MQF+).

The FindInput function proceeds as follows. First, if
the stack is empty, the input with the lowest selectivity is
chosen (line 1-3). Otherwise, the inputs that are the descen-
dant of the head of the current stack top are read in the order
of their selectivity (lines 5—14). If such input can be found,
and the Elists of the stack top does not contain any nodes
from the input lists, it is guaranteed that the stack top does
not qualify to be a part of MQF and is thus discarded (lines
10-13) before we continue searching for the next input. If
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Fig. 18 States of stack during the evaluation of mqf($a, $z, $y) using
algorithm SQF. Each square bracket contains the min value used to
distinguish nodes from different MQFs

no input can be found for current stack top, we try to output
all the MQF on the stack (lines 15-16). Otherwise, we try to
either replace the head of the current stack top with its par-
ent, or insert the E/ists of stack top into the node under it,
similar to what we do in PopStack (lines 20-24).

The states of the stack are illustrated in Fig. 18 for the
same example as the one used for MQF+ in Fig. 16. There
are two major differences between SQF and MQF+ affect
the states of stack. First, in SQF, the input read in order is
10, 5, 8, 3, depending on both selectivity and StartPos
(Fig. 18), while for MQF+- in Fig. 16, the read in order is 3,
5, 8, 10, solely determined by StartPos. Second, in SQF,
unqualified inputs may be ignored without stack operations.
For example, in Fig. 18b, element 8 is directly pushed onto
the stack, while element 5 is skipped without stack operation
(FindInput lines 8-9).

Theorem 4 The time complexity of the SQF algorithm is
O(mh Z,’»":l [IList[i]| 4+ |OutputList|), where m denotes the
number of input lists, and h denotes the height of the XML
data tree.

The time complexity of SQF is the same as MQF+, as
it also adds up to extra m unit operation cost for each node
pushed onto the stack. Again, the time complexity of SQF
is worse than that of MQF. Because the number of inputs
m is usually small, and unqualified nodes can be discarded
without stack operations, we still expect that when the input
size of MQF operation is reduced via integration into the
query evaluation pipeline, SQF will generally perform better
than MQF; we also expect that when there are significant
differences among the input sizes, SQF will perform better
than MQF+-, since fewer stack operations may be needed.

8 Experimental evaluation of MQF+ and SQF

To evaluate the benefit of algorithm MQF+ and SQF over
the original stack-based MQF algorithm, we compared the
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time cost of evaluating mgf-embedded XQuery using the dif-
ferent implementations of MQF operator. The results are re-
ported in Sect. 8.1. We then further examined the impact of
selection conditions and input size on the performance of the
different implementations of MQF operator in Sect. 8.2.

All the experiments were carried out on the same ma-
chine used for previous experiments described in Sect. 5.3,
with the same experimental settings. Each query was also
run five times for each XML document with a cold operat-
ing system cache. The time for query parsing and evaluation
plan generation is excluded in all cases. The average running
time was used in the performance evaluation.

8.1 Comparison study

We first compare the performance of MQF+ and SQF with
the previous experimental results for MQF and XQuery re-
ported in Sect. 5.3. The data sets we use are the same as those
in our previous experiments: XMark (with a factor of 0.45)
and DBLP. The time for building A-D index for XMark is
84 s, with a total size of 184 MB; the time for building A-D
index for DBLP is 297 s, with a total size of 500 MB.

DBLP: Table 2 shows the actual execution time
of schema-aware XQuery (XQuery) and mgf-embedded
XQuery implemented using algorithm MQF, MQF+-, and
SQF, respectively, for the “XMP” queries on DBLP data.
As can be seen, for all queries with selection conditions,
both MQF+ and SQF outperform the basic stack-based al-
gorithm MQF. The saving of computation cost can be mainly
attributed to the reduced input size of the mqgf operator by ap-
plying selection early. In particular, our A—D index-based al-
gorithm MQF+- speeds up the processing of mqgf-embedded
XQuery from 22% (Q7) to as much as 33% (Q12), while
the selectivity-based algorithm SQF speeds up query evalu-
ation from 33% (Q12) to as much as 54% (Q7). In addition,
the performance of SQF is consistently better than that of
MQF+, because in SQF some input nodes can be pruned
early without stack operations, while in MQF+ every input
is involved in stack operations.

For queries without selection conditions (e.g., Q4), MQF
and MQF+- are essentially the same and thus have the same

Table 2 Performance (seconds) of XQuery, MQF, MQF+, and SQF
for the “XMP” queries on DBLP

Category Query XQuery MQF MQF+ SQF
With selection 1 530 1533 1121 712
7 552 1469 1140 672
12 473 1088 732 730
Without selection 2 290 1173 1167 1233
3 527 1421 1432 1546
4 479 1665 1682 1884
5 1132 2518 2496 2968
6 371 1116 1120 1333
10 367 1456 1478 1715
11 511 1321 1316 1633
Without mqf function 8 240 243 238 241
9 237 240 241 243

performance. In such cases, we use the input size to decide
the input order in SQF: for example, an input with a smaller
size is considered to be more “selective” than that with a
larger size. We expect that for queries with similar input size,
the performance of SQF is no better than that of MQF or
MQF+, as for such queries, almost all the inputs will appear
in the final results, and thus the extra computation cost of
checking A-D index surpasses any saving obtained from re-
ducing inputs pushed onto the stack. But we expect that for
queries with significant input size differences, where many
inputs may be unqualified to be included the final results,
SQF may still outperform both MQF and MQF+ by the
early elimination of unqualified nodes without the need for
stack operations. The results shown in Table 2 confirm our
expectation: the mqgf functions in those “XMP” queries with-
out selections all have similar input size (e.g., Q3), and the
performance of SQF is worse than that of MQF or MQF+,
with an overhead of up to 18% (Q5).

Finally, for queries without MQF functions (Q8 and Q9),
the performance is the same for XQuery and mqf-embedded
XQuery, regardless of the implementations, as no computa-
tion of MQFs is needed.

XMark: Results for XMark are shown in Table 3. MQF+
accelerates the query evaluation for only one mgf-embedded
query by a small fraction. For most XMark queries with se-
lection conditions (e.g., Q1), the performance of MQF+- is
actually worse than that of MQF. Given the performance im-
provement for “XMP”” queries on DBLP by MQF+, this re-
sult may look surprising, but it is expected: MQF+ reduces
computation cost by pushing selections before MQF opera-
tion, however, it also adds extra cost by checking A-D index
(required for every input and its ancestors pushed onto the

Table 3 Performance (seconds) of XQuery, MQF, MQF+, and SQF
on XMark

Category Query XQuery MQF MQF+ SQF

With selection 1 8.5 28.9 39.6 24.1
4 15.1 29.9 30.3 16.0
5 6.6 7.5 12.5 7.4
11 785 2387 2410 1101
12 7.7 25.0 36 11.9
14 11.5 27.9 25.8 19.4
20 35 13.3 16 33

Without selection

Similar input size 2 14.9 17.9 17.1 243
10 93.2 110.3 1155 116.7
17 10.2 21.5 23.2 26.8
19 19.9 33.2 335 33.9
Different input size 3 13.3 30.4 29.7 29.1

8 25.6 78.1 77.6 57.4
9 38.3 1152 108.9 57.0
13 3.0 3.6 3.5 3.8
15 14.9 38.4 38.9 38.1
16 15.5 54.8 56.5 45.7

Without mgf function 6 0.92 0.84 0.87 0.91
7 4.74 4.76 4.69 4.75
18 12.2 12.3 12.4 12.7
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stack). Given a query with a single selective condition, but a
overall large input size, such as the one in Q1, the extra over-
head of checking A-D index (random disk access) rapidly
exceeds the saving resulted from reduced size of one input.
Consequently, MQF+- loses its advantage over MQF on such
queries, while the “XMP” queries on DBLP benefited more
from applying selection early, as they contain more than one
selective conditions.

The performance of SQF suffers much less from the
overhead of checking A-D index for stack nodes, as it is
able to eliminate unqualified inputs early without pushing
them onto the stack . In fact, SQF algorithm reduces the
query evaluation cost for all the queries with selection con-
ditions by up to 68% (Q12), with the exception of Q20.
This discrepancy is due to the fact that Q20 contains mul-
tiple mgf functions, two of which contain no selections, but
have inputs with large size. Consequently, the total overhead
of checking A-D index exceeds the savings due to reduced
input size.

For queries without selection condition (e.g., Q2), the re-
sults are similar to such queries on DBLP: MQF and MQF+
have the same performance, while SQF outperform MQF
and MQF+ on queries with significant differences among
input sizes (e.g., Q8), but usually underperform otherwise
(e.g., Q2).

The performance of XQuery and mgf-embedded XQuery
are also the same for queries without mgf functions (Q6 and
Q7), since no computation of MQFs is needed.

8.2 Further examination

The comparison study in Sect. 8.1 demonstrates how MQF+
and SQF can help to reduce the evaluation cost of schema-
free queries by supporting the integration of MQF opera-
tion into a query evaluation pipeline. The results also indi-
cate that a number of factors may impact the performance
of MQF+ and SQF, particularly the selectivity of selection
conditions, and the size of inputs. We designed the following
experiment to systematically investigate how the two factors
affect the performance of different algorithms.
Method: Consider the following mqf function:

mqf($y, $t)
$y: inputs of type year.
$t: inputs of type title.

Different selection conditions can be applied to control
the input size and selectivity of search conditions for the
above mqf function. Specifically, we first varied the input
size of nodes of type title by imposing different selection
conditions on it. Then for each fixed input size of title nodes,
we varied the selection conditions on nodes of type year
to change its selectivity. We measured the actual execution
time of evaluating the above mgf function on DBLP with dif-
ferent implementations: MQF, MQF+ and SQF. The results
are shown in Fig. 19. The performance of algorithm MQF
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Fig. 19 Performance of algorithm MQF, MQF+ and SQF, varying se-
lectivity of year nodes and the input size of title nodes

can be viewed as a comparison base line, as it is consis-
tent across different search conditions on nodes year given
the same input size of nodes title, with only small variations
among different input sizes of title, due to the different selec-
tion conditions applied after the MQF operator (e.g., selec-
tion condition applied on fitle in Fig. 19 is more expensive
than the one used in Fig. 19).

Results Figure 19 displays the performance of different algo-
rithms computing MQF under varying selectivities of selec-
tion conditions on year, when the input size of fitle node is
very small (|ni17.| = 5). As can been seen, SQF consistently
outperforms MQF by approximately 36% regardless of the
selectivity of search conditions on year. This advantage of
SQF can be mainly attributed to its capability of eliminat-
ing unqualified nodes early without stack operations: the
number of expensive stack operations is limited by the in-
put with a smaller size. However, MQF+ performs better
than MQF only when the search conditions on year is fairly
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selective (selectivity < 0.1). When the search conditions be-
come less selective, the performance of MQF+ quickly be-
comes worse than that of MQF, as the declining savings
from reduced input size are surpassed by the increasing over-
head incurred from checking A-D index for every stack
node.

Given a relatively larger input size (|n4;.| = 1318), the
performance of both MQF+- and SQF decreases, as shown in
Fig. 19. This observation can be attributed to the increased
overhead from checking A-D index, with a overall larger
input size. The performance of MQF+- suffers the most, as
MQF+ is much more sensitive to the total number of input
nodes than SQF. SQF still consistently outperforms MQF,
but only by about 12% on average.

When the input size of title nodes is large (including all
the fitle nodes in DBLP), as shown in Fig. 19, a signifi-
cant performance decline can be observed for both MQF+
and SQF. The performance of MQF~+ becomes consistently
worse than that of MQF. Such degradation in performance
is not surprising: given the overall significantly larger in-
put size, the cost incurred in MQF+ from checking A-D
index for every stack operation is overwhelmingly higher
than the saving obtained from the reduced input size of MQF
function by applying selection early. In particular, when the
selectivity of search condition on year increases from O to
0.001, the evaluation cost of MQF function jumps from 212
to 852 s. This sharp rise of evaluation cost is also due to
the overhead occurred from checking A-D index for every
stack node. When the selectivity of search condition on year
is zero, an empty result is returned without further com-
putation, while even when the search condition on year is
fairly selective, the computation of MQFs is still needed:
given a large input size of title nodes, such overhead un-
avoidably becomes the dominant factor in determining the
performance of MQF+. Meanwhile, SQF no longer con-
sistently outperforms MQF. With a large input size of #i-
tle, SQF can no longer benefit from first applying selec-
tion on title. Its performance now depends on the selectiv-
ity of year, winning over MQF only when this selectivity
is less than 0.18. Given less selective conditions, the per-
formance of SQF gradually degrades, and finally becomes
the same as that of MQF. The benefit of reducing input size
of MQF function and pruning unqualified nodes early with-
out stack operations is gradually overtaken by the increasing
cost of checking A-D index for base data information for the
inputs.

Finally, the execution time of mgqf function decreases
when the selectivity of the search condition on year is in-
creased to 1, regardless of the input size of title. This decline
in query evaluation time is due to the absence of selection
conditions.

Overall, we can draw the following conclusion on the
performance of three different algorithms introduced in this
paper: when there exist selective conditions, or significant
differences among input sizes, SQF tends to perform better
than MQF or MQF+; otherwise, MQF is likely to be a better
choice.

9 Related work

Extensive research has been done on structured declarative
queries as well as on keyword based text search. In recent
years, there has been interests in techniques that merge the
two. BANKS [5], DBXplorer [6], DISCOVER [26], and [21]
attempt to use keyword searches in relational database. In
those studies, a database is viewed as a graph with objects
as nodes and relationships between objects as edges; sub-
graphs of the database are returned as answers to the origi-
nal keyword query. A similar approach has also been taken
to employ keyword search in XML documents (e.g., XKey-
word [25] and XRANK [22]). Ranking mechanisms have
been applied to the search results such that results with per-
ceived higher relevance are returned to the user first. All such
keyword search approaches suffer from two drawbacks: (1)
they do not distinguish tag names from textual content; (2)
they cannot express complex query semantics.

Several attempts have also been made to support infor-
mation retrieval style search by expanding XQuery or other
structured query languages (e.g., [9, 10, 13, 16, 19, 20, 35]).
In particular, XXL [35], XIRQL [20], ELIXIR [16], and
JuruXML [13] focus on vague matching for limited XPath
predicates, while FleXpath [9] proposes a more comprehen-
sive formalization for structural relaxation in XML queries.
Different relaxation and ranking techniques have been pro-
posed in these works to support vague matching for XPath
predicates. These approaches require a user to understand
XPath, and have some knowledge on the document struc-
ture to specify meaningful XPath queries as the base for
query relaxation and result ranking. In cases where a user
is unaware of the document structure, and cannot specify
meaningful XPath predicates, they do not exploit any doc-
ument structure. Unlike the above fuzzy matching methods,
Schema-Free XQuery provides well defined exact matches,
and thus requires no scoring or ranking. Other approaches
(e.g., LOREL [30] and Meet [34]) created query languages
to enable keyword search in XML documents and exploit
some structural information that is not specified in the query.
The major differences between those approaches and ours
are that we eliminate any requirement for path expressions.
We also exploit the document structure better to identify re-
sults that are more meaningful.

A recent closely related work is XSEarch [17], which at-
tempts to return meaningful results based on query as well
as document structure using a heuristic called interconnec-
tion relationship. In XSEarch, two nodes are considered to
be semantically related if and only if there are no two distinct
nodes with the same tag name on the path between these two
nodes (excluding the two nodes themselves). Queries are al-
lowed to specify tag names and attribute value pairs. How-
ever, interconnection does not work when two unrelated en-
tities are present in entities of different types. For example,
two author nodes may be considered as interconnected, even
though one of them belongs to an article node and the other
belongs to a book node. Moreover, due to the simple query
semantics used, XSEarch suffers from drawbacks similar to
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keyword search methods: difficulty of expressing complex
knowledge semantics. The MQF operator, on the other hand,
takes full advantage of well-defined XQuery, and enables the
user to take more control of search results without knowing
document structure.

In addition, query mediation systems such as the RE-
VERE system [23] allow query answering across schemas
by deploying schema mapping and query rewriting tech-
niques. Users are still required to have extensive knowledge
of at least one schema to pose queries.

Term expansion has been studied extensively in the in-
formation retrieval literature [3, 12, 18, 31]. Various tech-
niques have been also proposed in previous work on fuzzy
matching for XML queries [20, 33] to address term ex-
pansion. In fact, recently released W3C Working Draft on
XQuery Full-Text [39] already includes a framework to sup-
port the integration of (ontology-based) term expansion.
Compared with techniques such as the one proposed in
XIRQL [20], where complex DTD extension is required,
our approach to term expansion is straightforward: we uti-
lize WordNet [3] for synonym expansion, and depend on
domain-specific ontology for hypernym and hyponym ex-
pansion. Indices are designed to support efficient expansion.
One may view our method as a specific implementation that
fits into the framework of XQuery Full-Text. Note, however,
we only deal with the term expansion for tag names in our
work. This special handling of tag name is due to the fact that
tag name confusion tends to have greater impact on search
results, especially in Schema-Free XQuery, as it directly af-
fects the MQFs generated as query context. It would be in-
teresting to investigate how more complex term expansion
methods, such as the distance metric in [31], can be inte-
grated into our work, but it is out of the scope of this paper.

Finally, much work has been done on efficiently com-
puting LCAs [24, 32, 40, 41]. In [24, 32, 40], constant time
algorithms for main memory data structures obtained by pre-
processing of the tree are proposed. Those works do not con-
sider disk access minimization when the structures cannot fit
into memory, while in both our work and [41], disk access
is minimized such that no disk access is necessary when
computing the LCAs of given nodes. However, the meth-
ods proposed in [41] are based on some special properties
of Smallest LCA. They cannot be easily adopted to compute
MQFs, as MQF is much more complex than Smallest LCA,
and does not exhibit the same properties.

10 Conclusion

The main contribution of this paper is to show that a simple,
novel XML document search technique, namely Schema-
Free XQuery, can enable users to take full advantage of
XQuery in querying XML data precisely and efficiently
without requiring full knowledge of the document schema.
At the same time, any partial knowledge available to the user
can be exploited to advantage. We have shown that it is pos-
sible to express a wide variety of queries in a schema-free

manner and have them return correct results over a broad
diversity of schema. Given its robustness against schema
changes, Schema-Free XQuery is potentially of value in a
data integration or data evolution context where one would
like a query written once to apply “universally” and “for-
ever.” By bridging the gap between the limited user knowl-
edge of an XML document and the actual document schema,
Schema-Free XQuery also exhibits great potential for sup-
porting more flexible yet powerful user interface for query-
ing XML documents, as demonstrated by our recent work
NaLIX [29], a Natural Language Interface for Querying
XML.

We also devised a stack-based algorithms for the MQF
computation at the heart of schema-free query. Experiments
show that this algorithm is up to 16 times faster than a ba-
sic MQF computation using standard operators. Schema-
Free XQuery evaluated with this stack-based algorithm in-
curs an overhead no more than three times the execution
time of an equivalent schema-aware query. To further im-
prove the query processing of schema-free queries by inte-
grating MQF calculation in the query evaluation pipeline,
we designed an index structure called Ancestor—Descendant
Summarization (A-D) index to enable fast access to base
data. We also developed two different algorithms utilizing
A-D index, namely MQF+ and SQF, to further reduce the
evaluation cost of schema-free query evaluation.

Future directions for research include investigating tech-
niques for applying MQF to queries involving references.
We also intend to use more sophisticated IR techniques
where appropriate in schema-free queries.
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