
30

NaLIX: A Generic Natural Language Search
Environment for XML Data

YUNYAO LI

IBM Almaden Research Center

HUAHAI YANG

University at Albany, State University of New York

and

H. V. JAGADISH

University of Michigan

We describe the construction of a generic natural language query interface to an XML database.

Our interface can accept a large class of English sentences as a query, which can be quite complex

and include aggregation, nesting, and value joins, among other things. This query is translated,

potentially after reformulation, into an XQuery expression. The translation is based on mapping

grammatical proximity of natural language parsed tokens in the parse tree of the query sentence

to proximity of corresponding elements in the XML data to be retrieved. Iterative search in the

form of followup queries is also supported. Our experimental assessment, through a user study,

demonstrates that this type of natural language interface is good enough to be usable now, with no

restrictions on the application domain.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—Query lan-
guages; H.4.0 [Information Systems Applications]: General

General Terms: System, Design, Algorithms, Experimentation

Additional Key Words and Phrases: Natural language interface, iterative search, XQuery, XML,

dialog system

This work was supported in part by NSF grant IIS 0438909 and NIH grants R01 LM008106 and

U54 DA021519.

An earlier version of this article was presented at the 2006 International Conference on Extending

Database Technology (EDBT’06, March 26–31, Munich, Germany).

Work done while Y. Li was a student at the University of Michigan.

Authors’ addresses: Y. Li (contact author), IBM Almaden Research Center, 650 Harry Road, San

Jose, CA 95120; email: yunyaoli@us.ibm.com; H. Yang, University at Albany, State University of

New York, Draper Hall, Room 113, Western Avenue, Albany, NY 12222; email: hyang@albany.edu;

H. V. Jagadish, Computer Science and Engineering Building, 2260 Hayward Street, Ann Arbor, MI

48109; email: jag@umich.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 0362-5915/2007/11-ART30 $5.00 DOI 10.1145/1292609.1292620 http://doi.acm.org/

10.1145/1292609.1292620

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:2 • Y. Li et al.

ACM Reference Format:
Li, Y., Yang, H., and Jagadish, H. V. NaLIX: A generic natural language search environment

for XML data. ACM Trans. Datab. Syst. 32, 4, Article 30 (November 2007), 44 pages. DOI =
10.1145/1292609.1292620 http://doi.acm.org/10.1145/1292609.1292620

1. INTRODUCTION

In the real world we obtain information by asking questions in a natural lan-
guage, such as English. Not surprisingly, supporting arbitrary natural language
queries is regarded by many as the ultimate goal for a database query inter-
face, and there have been numerous attempts toward this goal. However, two
major obstacles lie in the way of reaching the ultimate goal of support for ar-
bitrary natural language queries: first, automatically understanding natural
language is itself still an open research problem, not just semantically but even
syntactically; second, even if we could fully understand any arbitrary natural
language query, translating this parsed natural language query into a correct
formal query would remain an issue since this translation requires mapping
the understanding of intent into a specific database schema.

In this article, we propose a framework for building a generic interactive
natural language interface to database systems. Our focus is on the second
challenge: given a parsed natural language query, how to translate it into a
correct structured query against the database. The issues we deal with include
those of attribute name confusion (e.g., asked “Who is the president of YMCA?”
we do not know whether YMCA is a country, a corporation, or a club) and of
query structure confusion (e.g., the query “Return the lowest price for each
book” is totally different from the query “Return the book with the lowest price,”
even though the words used in the two are almost the same). We address these
issues in this article through the introduction of the notions of token attachment
and token relationship in natural language parse trees. We also propose the
concept of core token as an effective mechanism to perform semantic grouping
and hence determine both query nesting and structural relationships between
result elements when mapping tokens to queries. Details of these notions can
be found in Section 3.

Of course, the first challenge of understanding arbitrary natural language
cannot be ignored. But a novel solution to this problem per se is out of the
scope of this article. Instead, we leverage existing natural language processing
techniques and use an off-the-shelf natural language parser in our system. We
then extract semantics expressible by XQuery from the output of the parser,
and whenever needed, interactively guide the user to pose queries that our
system can understand by providing meaningful feedback and helpful rephras-
ing suggestions. Section 4 discusses how the system interacts with a user and
facilitates query formulation during the query translation process.

Search is rarely a one-step process: a user often needs to iteratively modify
prior queries to obtain desired results. To facilitate such iterative search, we
provide query history and query template to allow easy reuse of prior queries.
More importantly, we also support followup queries that are partially specified

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:3

as refinement to a prior query in the form of a separate query. Section 5 describes
how followup queries are supported in the system.

We have incorporated our ideas into a working software system called
NaLIX.1 Figure 17 shows the screenshots of NaLIX in action. We evaluated the
system by means of an experimental user study. Our experimental results in
Section 6 demonstrate the feasibility of such an interactive natural language in-
terface to database systems. In most cases no more than two iterations appears
to suffice for the user to submit a natural language query that the system can
parse. This performance is acceptable in practice since previous studies [Bates
1989; Remde et al. 1987] have shown that even casual users frequently revise
queries to meet their information needs. In NaLIX, a correctly parsed query is
almost always translated into a structured query that correctly retrieves the
desired answer (average precision = 95.1%, average recall = 97.6%).

Finally, we discuss related work in Section 7 and conclude in Section 8. We
begin with some necessary background material in Section 2.

In summary, we have been able to produce a natural language query interface
for XML databases that, while far from being able to pass the Turing test, is
perfectly usable in practice, and able to handle even quite complex queries, for
example, involving nesting and aggregation, in a variety of application domains.

2. BACKGROUND

Keyword search interfaces to databases have begun to receive increasing atten-
tion [Hulgeri et al. 2001; Cohen et al. 2003; Guo et al. 2003; Hristidis et al. 2003;
Li et al. 2004, 2007c], and can be considered a first step toward addressing the
challenge of natural language querying. Our work builds upon this stream of
research, so we present some essential background material here. Additional
efforts at constructing natural language interfaces are described in Section 7.

There are two main ideas in using keyword search for databases. First, sets
of keywords expressed together in a query must match objects that are “close
together” in the database (using some appropriate notions of “close together”).
Second, there is a recognition that pure keyword queries are rather blunt—too
many things of interest are hard to specify. So somewhat richer query mecha-
nisms are folded in along with the basic keyword search. A recent effort in this
stream of work is Schema-Free XQuery [Li et al. 2004, 2007c]. The central idea
in Schema-Free XQuery is that of a meaningful query focus (MQF) of a set of
nodes. Beginning with a given collection of keywords, each of which identifies
a candidate XML element to relate to, the MQF of these elements, if one exists,
automatically finds relationships between these elements, if any, including ad-
ditional related elements as appropriate. For example, for the query “Find the
director of Gone with the Wind,” there may be title of movie, and title of book
with value “Gone with the Wind” in the database. However, we do not need
advanced semantic reasoning capability to know that only movies can have a
director and hence “Gone with the Wind” should be the title of a movie instead of
a book. Rather, the computation of mqf(director, title) will automatically choose
only title of movie, as this title has a structurally meaningful relationship with

1NaLIX was demonstrated at SIGMOD 2005, and voted the Best Demo [Li et al. 2005].

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:4 • Y. Li et al.

director. Furthermore, it does not matter whether the schema has director un-
der movie or vice versa (for example, movies could have been classified based
on their directors). In either case, the correct structural relationships will be
found, with the correct director elements be returned.

Schema-Free XQuery greatly eases our burden in translating natural lan-
guage queries in that it is no longer necessary to map the query to the precise
underlying schema. We will use it as the target language of our translation
process. From now on, we will refer to Schema-Free XQuery as XQuery for
simplicity, unless noted otherwise.

3. FROM NATURAL LANGUAGE QUERY TO XQUERY

The relationships between words in the natural language query must decide
how the corresponding components in XQuery will be related to each other and
thus the semantic meaning of the resulting query. We obtain such relationship
information between parsed tokens from a dependency parser, which is based on
the relationship between words rather than hierarchical constituents (group of
words) [Mel’čuk 1979; Sleator and Temperley 1993]. The parser currently used
in NaLIX is MINIPAR [Lin 1998]. The reason we chose MINIPAR is two-fold:
(i) it is a state-of-art dependency parser; (ii) it is free off-the-shelf software, and
thus allows easier replication of our system.

There are three main steps in translating queries from natural language
queries into corresponding XQuery expressions. Section 3.1 presents the
method to identify and classify terms in a parse tree output of a natural lan-
guage parser. This parse tree is then validated, but we defer the discussion
of this second step until Section 4. Section 3.2 demonstrates how a validated
parse tree is translated into an XQuery expression. These three key steps are
independent of one another; improvements can be made to any one without
impacting the other two. Figure 2 presents a bird’s eye view of the transla-
tion process. Figure 1 is used as our running example to illustrate the query
transformation process.

3.1 Token Classification

To translate a natural language query into an XQuery expression, we first
need to identify words/phrases in the original sentence that can be mapped
into corresponding components of XQuery. We call each such word/phrase a
token, and one that does not match any component of XQuery a marker. Tokens
can be further divided into different types as shown in Table I according to the
type of query components they match.2 Enumerated sets of phrases (enum sets)
are the real-world “knowledge base” for the system. In NaLIX, we have kept
these small—each set has about a dozen elements. Markers can be divided into
different types depending on their semantic contribution to the translation.
A unique id is assigned to each token or marker. The parse tree after token
identification for Query 2 in Figure 1 is shown in Figure 3. Note that node 11

2When a noun/noun phrase matches certain XQuery keywords, such as string, special handling is

required. Such special cases are not listed in the table, and will not be discussed in the article due

to space limitations.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:5

Query 1: Return every director who has directed as many movies as has Ron Howard.

Query 2: Return every director, where the number of movies directed by the director is the same as

the number of movies directed by Ron Howard.

Query 3: Return the directors of movies, where the title of each movie is the same as the title of a

book.

Fig. 1. Querying XML database with natural language queries.

1. Given a natural language query SQ
2. Obtain parse tree TQ for SQ from a dependency parser

Step 1:
3. Classify words/phrases in TQ into tokens and markers based on Table I and II

Step 2:
4. Validate TQ based on the grammar supported by NaLIX (Table VI)

Step 3:
5. if TQ is valid then
6. Assign variables for name tokens in TQ
7. Map parse tree fragments in TQ into XQuery fragments

8. Determine groupings and nestings

9. Construct full XQuery expression Q
10. return Q and MessageGenerator.Warnings(TQ)

11. else
12. return MessageGenerator.Errors(TQ)

Fig. 2. Translation process overview: from natural language query to XQuery.

is not in the query, nor in the output of the parser. Rather, it is an implicit node
(formally defined in Section 4) that has been inserted by the token validation
process.

Note that, because of the vocabulary restriction of the system, some terms
in a query may not be classified into one of the categories of token or marker.
Obviously, such unclassified terms cannot be properly mapped into XQuery. Sec-
tion 4 describes how these are reported to the user during parse tree validation,
when the relationship of the “unknown” terms with other tokens (markers) can
be better identified.

3.2 Translation into XQuery

Given a valid parse tree (a discussion of parse tree validation is deferred until
Section 4), we show here how to translate it into XQuery. XML documents are

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:6 • Y. Li et al.

Table I. Different Types of Tokens

Type of Token Query Component Description Examples

Command

Token (CMT)

Return Clause Top main verb or wh-phrase [Quirk

et al. 1985] of parse tree, from
return, what is

an enum set of words and

phrases

Order by Token

(OBT)

Order By Clause A phrase from an enum set of

phrases

sorted by

Function Token

(FT)

Function A word or phrase from an enum set

of adjectives and noun phrases

maximum

Operator Token

(OT)

Operator A phrase from an enum set of

preposition phrases

more than

Value Token

(VT)

Value A noun or noun phrase in

quotation marks, a proper noun

or noun phrase, or a number

Traffic

Name Token

(NT)

Basic Variable A noun or noun phrase that is not

a value token

director

Negation Token

(NEG)

function not() Adjective “not” not

Quantifier

Token (QT)

Quantifier A word from an enum set of

adjectives serving as

determiners

every

Table II. Different Types of Markers

Semantic

Type of Marker Contribution Description Examples

Connection

Marker (CM)

Connect two

related tokens

A preposition from an enumerated

set, or nontoken main verb

of, directed

Modifier Marker

(MM)

Distinguish two

name tokens

An adjectives as determiner or a

numeral as predetermine or

postdeterminer

many, popular

Pronoun Marker

(PM)

None due to

parser’s

limitation

Pronouns this, that, him

General Marker

(GM)

None Auxiliary verbs, articles a, an, the

designed with the goal of being “human-legible and reasonably clear” [World
Wide Web Consortium 2004]. Therefore, any reasonably designed XML doc-
ument should reflect certain semantic structure isomorphous to human con-
ceptual structure, and hence expressible by human natural language. The
challenge is to utilize the structure of the natural language constructions, as
reflected in the parse tree, to generate appropriate structure in the XQuery
expression (If we do not establish this structure, then we may as well just issue
a simple keyword query!!). In particular, we need to be able to take advantage
of the semantic expressiveness of natural language and handle complex query
semantics such as aggregation and quantifier, which can be easily specified in
natural language, but cannot be easily expressed in other user-friendly alter-
natives for formal database query languages [Androutsopoulos et al. 1995]. For
simplicity of presentation, we use the symbol for each type of token (respectively

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:7

Fig. 3. Parse tree for Query 2 in Figure 1 (symbols in parenthesis are defined in Tables I and II).

Fig. 4. Parse tree for Query 3 in Figure 1 (symbols in parenthesis are defined in Tables I and II).

marker) to refer to tokens (markers) of that type, and use subscripts to distin-
guish different tokens (markers) of the same type if needed. For instance, we will
write, “Given NT1, NT2, . . . ” as a short hand for “Given name tokens u and v,”

3.2.1 Concepts and Definitions. We first define the basic notions that we
use to explore the existing structure of a natural language query for the purpose
of query translation.

A natural language query may contain multiple name tokens, each corre-
sponding to an element or an attribute in the database. For example, the query
in Figure 4 contains several name tokens (labeled NT). Name tokens “related”
to each other should be mapped into the same mqf function in Schema-Free
XQuery and hence found in structurally related elements in the database. How-
ever, this relationship among the name tokens is not straightforward. Consider
the example in Figure 4: nodes 2 (director) and 4 (movie) should be considered
as related to nodes 6 (title) and 8 (movie), since the two movie nodes (4, 8) are

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:8 • Y. Li et al.

semantically equivalent. However, they are not related to nodes 9 (title) or 11
(book), although the structural relationship between nodes 9, 11 and nodes 2,
4 is exactly the same as that between nodes 6, 8 and nodes 2, 4. An intuitive
explanation for this distinction is that the two sets of name tokens (director,
movie) and (title, movie) are related to each other semantically because they
share name tokens representing the same movie elements in the database,
whereas the (title, book) pair does not. We now capture this intuition formally.

Definition 3.1 (Name Token Equivalence). NT1 and NT2 are said to be
equivalent if they are (i) both not implicit3 and composed of the same noun
phrase with equivalent modifiers,4 or (ii) both implicit and corresponding to
value tokens of the same value.

In consequence of the above definition, if a query has two occurrences of book,
the corresponding name tokens will be considered equivalent, if they are not
qualified in any way. However, we distinguish first book from second book: even
though both correspond to book nodes, the corresponding name tokens are not
equivalent, since they have different modifiers.

Elements/attributes specified in the same XQuery statement are related ei-
ther via structural join or value join. Elements/attrbiutes related via struc-
tural join are structurally related to each other in the database, while ele-
ments/attributes that are related solely via value join typically are not struc-
turally related. Only elements/attributes that are structurally related should
be mapped into the same mqf function. As a result, in the translation process
from natural language query to XQuery, special attention needs to be paid to
operator tokens with two children name tokens. Such an operator token cor-
responds to value join and thus potentially introduces more than one group of
related name tokens to the query. Below, we define the notion of subparse tree
to capture the existence of value join.

When the same natural language query contains more than one group of
related name tokens, each group of related name tokens typically has a name
token that can be used to differentiate this group of name tokens from others.
In a dependency parse tree, the lower a name token is in the parse tree, the
further it constrains the query semantics, and thus the more important it is.
As such, the lowest name tokens in a sub-parse tree are the name tokens to
differentiate the different groups of name tokens, if any, in the parse tree. For
instance, in the example in Figure 4, nodes 8 (movie) and 11 (book) helps us to
identify the two groups of related nodes: (2, 4, 6, 8) and (9, 11). We capture such
important name tokens by the notion of core token.

Definition 3.2 (Core Token). A core token is a name token that (i) occurs in
a subparse tree and has no descendant name tokens, or (ii) is equivalent to a
core token.

3An implicit name token is a name token not explicitly included in the query. It is formally defined

in Definition 4.1 Section 4.
4Two modifiers are obviously equivalent if they are the same. But some pairs of distinct modifiers

may also be equivalent. We do not discuss modifier equivalence further in this article for lack of

space.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:9

We can further define different types of relationship between two name to-
kens based on how they are related to each other in the parse tree. The depen-
dency relation between two name tokens indicates their semantic relatedness
to each other. For instance, in the example in Figure 4, nodes having a de-
pendency relation with each other—(2, 4), (6, 8), and (9, 11)—are regarded as
related to each other, respectively. We refer to name tokens related to each other
via dependency relations as directly related.

Definition 3.3 (Directly Related Name Tokens). NT1 and NT2 are said to be
directly related to each other, if and only if they have a parent-child relationship
(ignoring any intervening markers, and FT and OT nodes with a single child).

In addition, in the above example, as we have discussed earlier, nodes 2, 4,
6, and 8 should be regarded as related as well, because the two movie nodes 4
and 8 are equivalent core tokens. In general, if two name tokens are related to
the same or equivalent name token, then they are also regarded as related to
each other, unless they are related to different core tokens. We can therefore
define the following types of relationship between name tokens.

Definition 3.4 (Related by Core Tokens). NT1 and NT2 are said to be related
by core token, if and only if they are directly related to the same or equivalent
core tokens.

Definition 3.5 (Related Name Tokens). NT1 and NT2 are said to be related,
if they are directly related to each other, related by core token, or related to the
same name token, or there exists no core token.

As a result of Definition 3.5, if no core token exists in a natural language
query, all the name tokens in the same query are regarded as related to each
other. For Query 3 in Figure 4, only one operator token, node 5, exists in the
parse tree. The lowest name tokens in the operator’s subparse trees, nodes 8
(movie) and 11 (book), are the core tokens in the query. Nodes 2, 6, and 9 are
directly related to nodes 4, 8, and 11, respectively, by Definition 3.3. Node 4
is equivalent to node 8. Hence, according to Definition 3.5, two sets of related
nodes {2, 4, 6, 8} and {9, 11} can be obtained.

All name tokens related to each other should be mapped to the same mqf
function since we seek elements (and attributes) matching these name tokens
in the database that are structurally related.

Additional relationships between tokens (not just name tokens) needed for
query translation are captured by the following definition of attachment.

Definition 3.6 (Attachment). Given any two tokens Ta and Tb, where Ta is
the parent of Tb in the parse tree (ignoring all intervening markers), if Tb follows
Ta in the original sentence, then Ta is said to attach to Tb; otherwise, Tb is said
to attach to Ta.

The notion of attachment allows us to distinguish children of the same node
in the parse tree based on their original word order. Consider the example in
Figure 4, node 5 (be the same as) is the parent of both nodes 6 (title) and 7
(title). However, based on on the above definition, node 5 attaches to node 6,
while node 6 attaches to node 7.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:10 • Y. Li et al.

3.2.2 Token Translation. Given the conceptual framework established
above, we describe in this section how each token in the parse tree is mapped
into an XQuery fragment. The mapping process has several steps. We illustrate
each step with our running example.

3.2.2.1 Identify Core Token. Core tokens in the parse tree are identified
according to Definition 3.2. Two different core tokens can be found for Query 3
in Figure 1. One is movie, represented by nodes 4 and 8 (Figure 4). The other is
book, represented by node 11. Two different core tokens can also be found for
Query 2 in Figure 1. One is director, represented by nodes 2 and 7 (Figure 3).
The other is a different director, represented by node 11. Note although node 11
and nodes 2, 7 are composed of the same word, they are regarded as different
core tokens, as node 11 is an implicit name token, while nodes 2, 7 are not.

3.2.2.2 Variable Binding. Each name token in the parse tree should be
bound to a basic variable in Schema-Free XQuery. We denote such variable
binding as NT ⇒ 〈var〉, where ⇒ stands for “map into.”

Two name tokens should be bound to different basic variables, unless they
are regarded as the same core token, or identical by the following definition:

Definition 3.7 (Identical Name Tokens). NT1 and NT2 are identical, if and
only if (i) they are equivalent, related to each other but not directly related,
(ii) the name token directly related with them, if any, are identical, and (iii) no
function token or quantifier token attaches to either of them.

Note that, in the above definition, we distinguish two equivalent name tokens
that are directly related from each other. The intuition is that directly related
name tokens correspond to objects in the database that are structurally related.
Since, in XML documents, the same object cannot be related to itself, the two
directly related name tokens are not likely to refer to the same object in the
database, and thus should not be regarded as identical.

We then define the relationships between two basic variables based on the
relationships of their corresponding name tokens as follows.

Definition 3.8 (Directly Related Variables). Two basic variables 〈var1〉 and
〈var2〉 are said to be directly related, if and only if, for any NT1 corresponding
to 〈var1〉, there exists a NT2 corresponding to 〈var2〉 such that NT1 and NT2 are
directly related, and vice versa.

Definition 3.9 (Related Variables). Two basic variables 〈var1〉 and 〈var2〉
are said to be related, if and only if any NTs corresponding to them are related
or there is no core token in the query parse tree.

We will discuss later in this section how the above variable relationships
are used to decide how query fragments containing different variables are put
together into a full meaningful query.

Patterns 〈FT + NT〉, 〈FT1 + FT2 + NT〉, and 〈QT + NT 〉 should also be bound
to variables. Variables bound with such patterns are called composed variables,
denoted as 〈cmpvar〉, to distinguish them from the basic variables bound to

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:11

Table III. Variable Bindings for Query 2

Variable Associated Content Nodes Related To

$v∗
1

director 2,7 $v2

$v2 movie 5 $v1

$v3 movie 9 $v4

$v∗
4

director 11 $v3

$cv1 count($v2) 4 + 5 N/A

$cv2 count($v4) 8 + 9 N/A

NT ⇒ 〈var〉
FT ⇒ 〈function〉
QT ⇒ 〈quantifier〉
(〈function〉 + 〈var〉)|(〈function1〉 + 〈function2〉 + 〈var〉) ⇒ 〈cmpvar〉
〈quantifier〉 + 〈var〉 ⇒ 〈cmpvar〉
VT ⇒ 〈constant〉
OT ⇒ 〈opr〉
NEG ⇒ 〈neg〉
QT ⇒ 〈quantifier〉
OBT ⇒ 〈sort〉
CMT ⇒ 〈cmd〉

Fig. 5. Mapping from tokens to XQuery components (symbols on the left hand side are defined in

Table I).

name tokens. We denote such variable binding as

FT ⇒ 〈function〉
QT ⇒ 〈quantifier〉
(〈function〉 + 〈var〉)|(〈function1〉 + 〈function2〉 + 〈var〉) ⇒ 〈cmpvar〉
(〈quantifier〉 + 〈var〉) ⇒ 〈cmpvar〉

Table III shows the variable bindings5 for Query 2 in Figure 1. The nodes
referred to in the table are from the parse tree of Query 2 in Figure 3.

3.2.2.3 Mapping. Similar to variable binding, certain tokens can be directly
mapped into XQuery components. A complete list of such mappings is presented
in Figure 5. Certain patterns of the XQuery components can then be directly
mapped into clauses in XQuery. A complete list of patterns and their corre-
sponding clauses in XQuery can be found in Figure 6. Table IV shows a list of
direct mappings from token patterns to query fragments for Query 2 in Figure 1
(� is used to abbreviate translates into).

3.2.3 Grouping and Nesting. The grouping and nesting of the XQuery frag-
ments obtained in the mapping process must be considered when there are
function tokens in the natural language query, which correspond to aggrega-
tion functions in XQuery, or when there are quantifier tokens, which corre-
spond to quantifiers in XQuery. Determining grouping and nesting for aggre-
gation functions is difficult, because the scope of an aggregation function is not

5The ∗ mark next to $v1, $v4 indicates that the corresponding name tokens are core tokens.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:12 • Y. Li et al.

Let 〈variable〉 stand for 〈var〉|〈cmpvar〉 and 〈arg〉 stand for 〈variable〉|〈constant〉. Let N T
be the name token corresponding to 〈var〉.
FOR clause:
〈var〉 � for 〈var〉 in 〈doc〉//N T

WHERE clause:
〈var〉+〈constant〉 � where 〈var〉 = 〈constant〉
(〈variable〉+〈opr〉+〈arg〉)|(〈opr〉+〈var〉+〈constant〉) � where 〈variable〉+〈opr〉+〈arg〉
〈variable〉+〈neg〉+〈opr〉+〈arg〉 � where not (〈variable〉+〈opr〉+〈arg〉)
〈opr〉+〈constant〉+〈variable〉 � 〈cmpvar〉 → count(〈variable〉)

where 〈cmpvar〉 + 〈opr〉 + 〈constant〉
〈neg〉+〈opr〉+〈constant〉+〈variable〉 � 〈cmpvar〉 → count(〈variable〉)

where not (〈cmpvar〉 + 〈opr〉 + 〈constant〉)

ORDERBY clause:
〈sort〉 + 〈variable〉 � orderby 〈variable〉
RETURN clause:
〈cmd 〉 + 〈variable〉 � return 〈variable〉

Fig. 6. Mapping from token patterns to XQuery fragments.

Table IV. Direct Mapping for Query 2

Pattern Query Fragment

$v1 for $v1 in 〈doc〉//director

$v2 for $v2 in 〈doc〉//movie

$v3 for $v3 in 〈doc〉//movie

$v4 for $v4 in 〈doc〉//director

$cv1 + 〈eq〉 + $cv2 where $cv1 = $cv2

$v4 + 〈constant〉 where $v4 = “Ron Howard”

〈return〉 + $v1 return $v1

always obvious from the token it directly attaches to. Determining grouping
and nesting for quantifiers is comparatively easier.

Consider the following two queries: “Return the lowest price for each book,”
and “Return each book with the lowest price.” For the first query, the scope
of function min() corresponding to “lowest” is within each book, but for the
second query, the scope of function min() corresponding to “lowest” is among
all the books. We observe that price, the name token the aggregation function
attaching to, is related to book in different ways in the two queries. We also
notice that the connection marker “with” in the second query implies that a
price node related to book has the same value as the lowest price of all the
books. Based on the above observation, we propose the transformation rules as
shown in Figure 7 to take the semantic contribution of connection markers into
consideration.

We then propose the mapping rules as shown in Figure 8 to determine the
nesting scope for aggregation functions. Specifically, we identify two different
nesting scopes in a LET clause that results from using an aggregation function—
inner and outer, with respect to the basic variable 〈var〉 that the function directly
attaches to.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:13

CM ⇒ 〈connector〉
NT 1 ⇒ 〈var1〉
NT 2 ⇒ 〈var2〉
〈function1〉 + 〈function2〉 + 〈var2〉 ⇒ 〈cmpvar〉
〈var1〉 + 〈connector〉 + 〈cmpvar〉 �

Create a new variable binding N T2 ⇒ 〈var2〉′
if 〈function1〉 	= null, then

where 〈function2〉 + 〈var2〉′ = 〈cmpvar〉
else

where 〈var2〉′ = 〈cmpvar〉
Record 〈var2〉′ as related to 〈var1〉, 〈var2〉 as not related to 〈var1〉

Fig. 7. Semantic contribution of connection marker in query translation.

Given a non-core name token NT (binding to 〈var〉), denote NT core (binding to 〈core〉)
as the core token related to NT, if any, else as a name token that NT attaching

to and directly related to, if any; else as a randomly chosen name token that is not

directly related to NT.

Denote 〈v〉 as variables directly related to 〈var〉.

if given 〈function〉+〈var〉 ⇒ 〈cmpvar〉
do 〈cmpvar〉 �

if NT is not a core token itself, or there exists no core token, then

let 〈vars〉 := {
for 〈core1〉 in 〈doc〉//NT core

where 〈core1〉 = 〈core〉
return 〈var〉}

Replace 〈cmpvar〉 with 〈function〉 + 〈vars〉.
Mark 〈var〉 and 〈core〉, 〈v〉 and 〈core〉 as unrelated.

Mark 〈var〉 and 〈core1〉, 〈v〉 and 〈core1〉 as related.

Mark nesting scope for the LET clause as outer with respect to 〈var〉.

else if NT is a core token itself, or no 〈core〉 exists, then
let 〈vars〉 := { return 〈var〉}

Replace 〈cmpvar〉 with 〈function〉 + 〈vars〉.
Mark nesting scope for the LET clause as inner with respect to 〈var〉.

else if given 〈function1〉+〈function2〉 + 〈var〉 ⇒ 〈cmpvar〉
and 〈function2〉 + 〈var〉 ⇒ 〈cmpvar2〉

then 〈cmpvar〉 �
let 〈vars〉 := {〈cmpvar2〉}

Recursively rewrite 〈cmpvar2〉.
Replace 〈cmpvar〉 with 〈function〉 + 〈vars〉.

Fig. 8. Grouping and nesting scope determination for aggregation functions.

If an aggregation function attaches to a basic variable 〈var〉 that represents
a core token, then all the clauses containing variables related to the core token
should be put inside the LET clause of this function; otherwise, the relationships
between name tokens (represented by variables) via the core token will be lost.
For example, given the query “Return the total number of movies, where the
director of each movie is Ron Howard,” the only core token is movie. Clearly,

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:14 • Y. Li et al.

(1) count($v2)→$cv1

$v2 is not a core token, and the core

token related to it is $v1, therefore

$cv1 �
let $vars1 := {

for $v5 in 〈doc〉//director
where $v5 = $v1

return $v2 }
Replace all $cv1 with count($vars1).

Mark $v2, $v1 as unrelated.

Mark $v2, $v5 as related.

Mark nesting scope for the LET clause

as outer with respect to $v2.

(2) count($v3)→$cv2

$v3 is not a core token, and the core

token related to it is $v4, therefore

$cv1 �
let $vars2 := {

for $v6 in 〈doc〉//director
where $v6 = $v4

return $v3 }
Replace all $cv2 with count($vars2).

Mark $v3, $v4 as unrelated.

Mark $v3, $v6 as related.

Mark nesting scope for the LET clause

as outer with respect to $v3.

Fig. 9. Grouping and nesting scope determination in Query 2.

Table V. Updated Variable Bindings for Query 2

Variable Associated Content Nodes Related To

$v∗
1

director 2,7 null
$v2 movie 5 $v5

$v3 movie 9 $v6

$v∗
4

director 11 null
$v∗

5
director N/A $v2

$v∗
6

director N/A $v3

$cv1 count($vars1) 4 + 5 N/A

$cv2 count($vars2) 8 + 9 N/A

the condition clause “where $dir = ‘Ron Howard’ ” should be bound with each
movie inside the LET clause. Therefore, the nesting scope of a LET clause cor-
responding to the core token is marked as inner with respect to the variable
〈var〉 (in this case $movie), indicating that in the XQuery construction phrase
(Section 3.2.4), all the variables related to it should be put inside the LET clause.

On the other hand, when there exists no core token in the query, 〈var〉 may
be associated with other variables indirectly related to it only via value joins.
The nesting scope of the LET clause should be marked as outer with respect
to 〈var〉. Similarly, if an aggregation function attaches to a basic variable 〈var〉
representing a noncore token, only those clauses containing variables directly
related to 〈var〉 should be put inside the LET clause, because 〈var〉 is only asso-
ciated with other variables related to it via a core token. The nesting scope of
the LET clause should be marked as outer with respect to 〈var〉. In such a case,
only those directly related to 〈var〉 should be put inside the LET clause during
the full query construction phrase (Section 3.2.4). Query 2 in Figure 1 contains
such cases, and the nesting scope determination is illustrated in Figure 9. The
updated variable bindings and relationships between basic variables for the
query are shown in Table V.

The nesting scope determination for a quantifier (Figure 10) is similar to that
for an aggregation function, except that the nesting scope is now associated with
a quantifier inside a WHERE clause. The nesting scope of a quantifier is marked

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:15

/*Both 〈var〉 and 〈core〉 are the same as that defined in Figure 8*/

if given 〈quantifier〉+〈var〉 ⇒ 〈cmpvar〉
then 〈cmpvar〉 �

if 〈var〉 is not a core token itself, or there is no core token, then

let 〈vars〉 := {
for 〈core1〉 in 〈doc〉//N T
where 〈core1〉 = 〈core〉
return 〈var〉}

where 〈quantifier〉 〈var1〉 in 〈vars〉 satisfies { }

Mark 〈var〉 and 〈core, 〉, 〈core1〉 as unrelated.

Replace 〈var〉 elsewhere with 〈var1〉, except in FOR clause.

Mark nesting scope for the WHERE clause with the quantifier as outer with

respect to 〈var〉.

else if 〈var〉 is a core token itself, or no 〈core〉 exists, then
let 〈vars〉 := { return 〈var〉}
where 〈quantifier〉 〈var1〉 in 〈vars〉 satisfies { }

Mark nesting scope for the WHERE clause with the quantifier as inner with

respect to 〈var〉.
Replace 〈var〉 elsewhere with 〈var1〉, except in FOR clause.

Fig. 10. Grouping and nesting scope determination for quantifier.

as inner with respect to the variable 〈var〉 that the quantifier attaches to, when
〈var〉 is a core token. Otherwise, it is marked as outer with respect to 〈var〉.

3.2.3.1 mqf Function. As we have previously discussed in Section 3.2.1,
all name tokens related to each other should be mapped into the same mqf
function. Hence, basic variables corresponding to such name tokens should be
put into the same mqf function. One WHERE clause containing the mqf function
can be obtained for each set of related basic variables:

let (〈var1〉, . . . , 〈varm〉) be the union of all 〈var〉s related to each other

(〈var1〉, . . . , 〈varm〉) � where mqf(〈vars〉)

For Query 2 in Figure 1, we can see that two sets of related variables can be
found: {$v2,$v5} and {$v3,$v6}. The corresponding WHERE clauses containing
mqf function are: where mqf($v2,$v5) and where mqf($v3,$v6).

3.2.4 Full Query Construction. Multiple XQuery fragments may be ob-
tained from token translation. These fragments alone do not constitute a mean-
ingful query. We need to construct a semantically meaningful Schema-Free
XQuery by putting these fragments together with appropriate nestings and
groupings.

According to the nesting scopes determined by the algorithms in Figures 8
and 10, we construct the query starting from innermost clauses and work out-
wards. If the scope defined is inner with respect to 〈var〉, then all the other query
fragments containing 〈var〉 or basic variables related to 〈var〉 are put within an

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:16 • Y. Li et al.

for $v1 in doc(“movie.xml”)//director,

$v4 in doc(“movie.xml”)//director

let $vars1 := {
for $v5 in doc(“movie.xml”)//director,

$v2 in doc(“movie.xml”)//movie

where mqf($v2,$v5)

and $v5 = $v1

return $v2}
let $vars2 := {

for $v6 in doc(“movie.xml”)//director,

$v3 in doc(“movie.xml”)//movie

where mqf($v3,$v6)

and $v6 = $v4

return $v3}
where count($vars1) = count($vars2)

and $v4 = “Ron Howard”

return $v1

Fig. 11. Full translation for Query 2.

inner query following the FLOWR convention (e.g., conditions in WHERE clauses
are connected by and) as part of the query at the outer level. If the scope defined
is outer with respect to 〈var〉, then only query fragments containing 〈var〉, and
clauses (in case of quantifier, only WHERE clauses) containing basic variables
directly related to 〈var〉 are put inside the inner query, while query fragments
of other basic variables indirectly related to 〈var〉 are put outside of the clause
at the same level of nesting. The remaining clauses are put in the appropriate
places at the outmost level of the query following the FLOWR convention.

As an example, the fully translated XQuery for Query 2 in Figure 1 is shown
in Figure 11. We now describe the details of the query construction process. We
begin with the two LET clauses obtained in Figure 9. The first LET clause is
marked as outer with respect to v2. Thus we put the FOR clause corresponding
to v2 (Table IV) inside the LET clause. We then examine basic variables that
are related to v2 and put them inside the same LET clause as v2 (Table V). In
this case, v5, the only basic variable related to v2, has already been included in
the LET clause, so we need to do nothing. We then complete the LET clause by
adding all the WHERE clause containing the variables in the clause. In this ex-
ample, the only WHERE clause that can be added is “where mqf($v2,$v5)”. Hence,
we add the WHERE clause and complete the first LET clause. We similarly com-
plete the second LET clause. After that, we add the FOR clause for the remain-
ing basic variables v1 and v4, followed by the two LET clauses that we just have
created. Finally, we add the remaining WHERE clauses (“where count($vars1) =
count($vars2)” and “where $v4 = “Ron Howard”) and RETURN clause (“return $v1”)
based on Tables IV and V according to the FLOWR convention. This step com-
pletes the query construction.

4. INTERACTIVE QUERY FORMULATION

The mapping process from natural language to XQuery requires our system to
be able to map words to query components based on token classification. Due
to the limited vocabulary understood by the system, certain terms cannot be

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:17

properly classified. Clever natural language understanding systems attempt
to apply reasoning to interpret these terms, with partial success. We make no
attempt at superior understanding of natural language. Rather, our approach
is to get the user to rephrase the query into terms that we can understand. By
doing so, we shift some burden of semantic disambiguation from the system to
the user, to whom such task is usually trivial. In return, the user obtains better
accessibility to information through precise querying.

To ensure that this process proceeds smoothly for the user, our system pro-
vides the user with helpful feedback on how to rephrase. In this section, we
describe the validation process used to determine whether the system can trans-
late a user query, as well as the informative error messages the system produces
when validation fails.

NaLIX is designed to be a query interface for XML that translates natural
language queries into Schema-Free XQuery. As such, the linguistic capability
of the system is essentially constrained by the expressiveness of XQuery. A nat-
ural language sentence that can be understood and thus meaningfully mapped
into XQuery by NaLIX is one whose semantics are expressible in XQuery. Fur-
thermore, for the purpose of query evaluation, only the semantics that can be
expressed by XQuery need to be extracted from the natural language sentence.

Consider the following query: “Find all the movies directed by director Ron
Howard.” The semantic meaning of “directed by” cannot be directly expressed
with XQuery. It is neither possible nor necessary for NaLIX to understand such
semantics. Instead, based on the dependency parse tree of the query, the system
can determine that movie and director are related and should be mapped into
the same mqf function. Then the structural relationship between movie and
director nodes in the database, which corresponds to directed by, will be properly
captured by Schema-Free XQuery. Generally, the semantics extracted by NaLIX
from a given natural language query are composed of two parts: (i) tokens that
can be directly mapped into XQuery; (ii) semantic relationships between tokens,
which are inexpressible in XQuery, but are reflected by database schema, such
as the attachment relation between movie and director via directed by in the
above example.

Table VI shows the grammar for the subset of natural language correspond-
ing to XQuery semantics that is supported by NaLIX (ignoring all markers).
We call a normalized parse tree that satisfies the grammar a valid parse tree.

A valid parse tree can be translated to an XQuery expression as described
in Section 3.2. An invalid parse tree, however, will be rejected by the system,
with error message(s).6

Each error message is dynamically generated, tailored to the actual query
causing the error. Inside each message, possible ways to revise the query are
also suggested. For example, Query 1 in Figure 1 is found to be an invalid
query, since it contains an unknown term as as highlighted in the parse tree
in Figure 12. An error message will be returned to the user; the same as will
be suggested as a possible replacement for as. If the user takes the suggestion,

6More details on the generation of error and warning messages in NaLIX can be found in the

Electronic Appendix.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:18 • Y. Li et al.

Table VI. Grammar Supported By NaLIX

1. Q → RETURN PREDICATE∗ ORDER BY?

2. RETURN → CMT+(RNP|GVT|PREDICATE)

3. PREDICATE → QT?+((RNP1|GVT1)+GOT+(RNP2|GVT2)

4. |(GOT?+RNP+GVT)

5. |(GOT?+GVT+RNP)

6. |(GOT?+[NT]+GVT)

7. |RNP

8. ORDER BY → OBT+RNP

9. RNP → NT |(QT+RNP)|(FT+RNP)|(RNP∧RNP)

10. GOT → OT|(NEG+OT)|(GOT∧GOT)

11. GVT → VT |(GVT∧GVT)

12. CM → (CM+CM)

Symbol “+” represents attachment relation between two tokens; “[]” in-

dicates implicit token, as defined in Definition 4.1

Fig. 12. Parse tree for Query 1 in Figure 1.

Query 2 in Figure 4 could be the new query issued by the user. By providing such
meaningful feedback tailored to each particular query instance, we eliminate
the need to require users to study and remember tedious instructions on the
system’s linguistic coverage. Instead, through such interactive query formula-
tion process, a user will gradually learn the linguistic coverage of the system.
Although we generally assume user queries are written in grammatically cor-
rect English, no additional rules are needed to deal with incorrect English. If the
parse tree of a grammatically incorrect English sentence is valid, the sentence
can still be translated into XQuery.

For some queries, the system successfully parses and translates the queries,
yet may not be able to correctly interpret the user’s intent. These queries will be
accepted by the system, but with warnings. For example, determining pronoun
references remains an issue in natural language processing. Whenever there
exists a pronoun in a user query, we include a warning message in the feedback
and alert the user of the potential misunderstanding.

During the validation process, we additionally perform the following proce-
dures to deal with some data specific cases.

—Term expansion. A user may not be familiar with the specific attributes and
element names in the database. Therefore, a name token specified in the
user query may be different from the actual name(s) of element or attribute

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:19

contained the database that represents this particular name token. The task
of finding the name(s) of element or attribute in the database that matches
with a given name token is accomplished by ontology-based term expansion
using generic thesaurus WordNet [Miller et al. 1990] and domain-specific on-
tology whenever one is available. The technique we currently use for ontology-
based term expansion is similar to what has been previously described in Li
et al. [2004, 2007c].

—Implicit name token. In a natural language query, we may find value tokens
where the name tokens attaching to them are implicit in the query. For ex-
ample, in Query 1 from Figure 12, element director in the database is related
to value token “Ron Howard,” but is not explicitly included in the query. We
call such name tokens implicit name tokens as defined below. See Table VI
for the definitions of GVT, GOT, and RNP.

Definition 4.1 (Implicit Name Token). For any GVT, if it is not attached by
a command token, nor adjacent to a RNP, nor attached by a GOT that is attached
by an RNP or GVT, then each value token within the GVT is said to be related
to an implicit name token (denoted as [NT]). An implicit name token related to
a value token is the name(s) of element or attribute with the value of a value
token in the database.

We determine the implicit name token associated with a value token by look-
ing up the names of elements/attributes with the given value in the database.
If the names matching a name token or the value of a value token cannot be
found in the database, an error message will be returned. If multiple elements
or attributes with different names matching the name token or value token are
found in the database, the disjunction of the names is regarded as the corre-
sponding name for the given name token, or implicit name token for the given
value token. Users may also change the query by choosing one or more of the
actual names.

5. SUPPORT ITERATIVE SEARCH

Previous studies [Olson et al. 1985; Lauer et al. 1992; Moore 1995] have shown
that search is rarely a single-step process. Users often iteratively modify their
queries based on the results obtained. It is thus important to provide a system
to support a sequence of related queries. In this area of functionality, NaLIX
keeps a query history and query template mechanism to allow old queries to
be easily located, refined, and resubmitted. But this is not enough in itself—in
normal human discourse, followup queries are often only partially specified.
Forcing the user to fully specify each followup query gets in the way of nor-
mal iterative search. Furthermore, sometimes followup queries are required to
express complex query semantics with ease in a divide-and-conquer fashion,
especially when the semantics are too complex to be composed comfortably into
a single query sentence. In this section, we describe how NaLIX supports fol-
lowup queries, thereby allowing users to incrementally focus their search on
the objects of interest while being able to back up at any time, and return to
any point of recent search history should they decide to take a different search
direction.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:20 • Y. Li et al.

Q4. Return the titles for all the movies directed by Ron Howard after 1990.
Q4.1. Only for the movies made after 1995 but before 2000.

Q4.1.1. Return the actors for each movie as well.
Q4.1.2. Only for those made in 1998.

Q4.2. How about those directed by Peter Jackson?
Q4.2.1. Return their producers as well.

Q5. Find the author of book “Gone with the Wind.”
Q5.1. Find the publisher for it as well.
Q5.2. Find all the books by her.

Fig. 13. Example query threads.

5.1 Basic Model

Iterative search by issuing followup queries could be considered analogous to
conversation in a “chat room” with only two participates—a user and NaLIX—
where the user issues questions, and NaLIX responds to each question by query-
ing the database. However, previous studies [Hegngi 1998; Vronay et al. 1999;
Smith et al. 2000] have pointed out a few serious drawbacks of such “chat
room” style communication, including the lack of context and uselessness of
chat history, all attributed to the unorganized text flows. Meanwhile, forum-
style communication is praised for its structured history and ease of context
retrieval [Hegngi 1998; Farnham et al. 2000; Sheard et al. 2003]. Unfortu-
nately, unlike a chat room, a forum is not designed for synchronous communi-
cation such as database search and thus cannot be directly applied to iterative
search. To get the best from both worlds, we design the following model of it-
erative search for our system: while the interaction between a user and the
system for each individual query remains synchronous as in a chat, queries are
explicitly organized into forum style topic threads so that the context of each
query is well maintained.

In our model, the basic unit of iterative search is a query tree. Each query tree
is composed of multiple queries on a single topic or multiple related topics. The
root of a query tree is the first query submitted by the user to initiate search
regarding a specific topic (e.g., Q4 and Q5 in Figure 13), referred as a root query.
The query tree then expands as the user submits new queries to refine existing
queries in the query tree (e.g., Q4.1 and Q4.1.1 in Figure 13). When the user
submits a followup query Qc to an existing query Q p, we will then record Q p

as the parent query of child Qc in the query tree, and Qc is called a child query
of Q p. A parent query Q p can be a root query or a followup query itself, but
a child query Qc is always a followup query. Multiple followup queries can be
issued for the same query so that Q p can have additional children. We also
expect that a user will explicitly specify the parent for each followup query. If
no parent is specified, we treat the given query as a root query and create a new
query tree. Hence, with our model, although iterative search appears as series
of queries, these queries are organized explicitly into tree-hierarchies. A user’s
previous search effort is preserved within context; the user can easily return to
any point of recent search history to take a different search direction.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:21

5.2 The Main Challenges

The system described so far only handles root queries. To support followup
queries, the fundamental challenge is how to identify the semantic meaning
of a partially specified followup query (such as Q4.1 in Figure 13) in the light
of its prior queries. To address this challenge, we first need to identify what
has been inherited by a followup query from its prior queries. To do so, the
issues we need to solve are: (i) identification of equivalent objects between a
followup query and its prior queries; and (ii) reference resolution to determine
the semantic meaning of references to prior queries in the followup query. For
example, to translate Q5.1 in Figure 13, we need to determine the meaning of
it—whether it refers to author or book in the parent query Q5. In addition, since
a followup query is used to refine a prior query, we also need to determine all the
modifications that need to be done on the prior query. The types of modifications
we consider include addition (e.g., adding new constraints), substitution (e.g.,
replacing a selection predicate), and topic switch (e.g., start asking about book
instead of movie). Finally, limited linguistic capability remains an issue when
handling followup queries; we thus need to design interactive facilities to guide
users to formulate followup queries.

The rest of this section focuses on our solution to the above challenges. Sec-
tion 5.3 defines basic notions related to followup queries. Section 5.4 describes
how a followup query is tokenized and translated into an XQuery expression,
with a focus on issues unique to followup queries. Before query translation, a
followup query needs to be validated and has its references resolved, but we
defer discussion of these two steps to Section 5.6 and Section 5.5, respectively.
Finally, in Section 5.7 we propose an extension based on the notions in Sec-
tion 5.3 to automatically determine root queries that are mistakenly submitted
as followup queries by the user. A sketch of the translation process that supports
followup queries is presented in Figure 14.

5.3 Query Context

A root query starts a query tree and defines the basic topic the query tree is
focused on. Followup queries are then used to refine the query topic. We refer
to the information contained in an existing query as query context.

Definition 5.1 (Query Context). Query context of a query refers to tokens in
the query and the patterns of tokens that correspond to XQuery fragments, and
the query context of its parent query, if one exists.

In natural language processing, centering theory claims that a discourse al-
ways has a distinguished discourse entity that represents the topic of the dis-
course [Grosz et al. 1986, 1995]. Similarly, a query tree always has a distin-
guished object of interest that represents the query topic. Such an object of
interest is usually specified along with other related objects in a query. These
related objects are either explicitly constrained (e.g., in year 2000) or restricted
by the object of interest in the form of dependent relations (e.g., title of all the
movies). Meanwhile, the object of interest itself is rarely directly restricted with
any specific conditions. For instance, given a query “Find the titles of all the

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:22 • Y. Li et al.

1. Given a natural language query SQ

2. Obtain parse tree TQ for SQ from a dependency parser

3. if SQ is a not a followup query

Step 1a:

4. Classify words/phrases in TQ into tokens/markers based on Table I and II

Step 2a:

5. Validate TQ based on the grammar supported for stand-alone queries (Table VI)

Step 3a:

6. if TQ is valid then

7. Determine context center TQ .CtxCenter

8. Assign variables for name tokens in TQ

9. Map parse tree fragments in TQ into XQuery fragments

10. Determine groupings and nestings

11. Add the XQuery fragments and their grouping/nesting information to TQ .Ctx

12. Construct full XQuery expression Q based on query context TQ .Ctx

13. return Q and MessageGenerator.Warnings(TQ)

14. else

15. return MessageGenerator.Errors(TQ)

16. else

17. let PQ be the parse tree for the parent query of TQ

Step 1b:

18. Classify words/phrases in TQ into tokens/markers based on Table I,II,and VII

Step 2b:

19. Validate TQ based on the grammar supported for followup queries (Table XIII)

Step 3b:

20. if TQ is valid then

21. TQ .Ctx := PQ .Ctx

22. Determine context center TQ .CtxCenter

23. Assign variables for name tokens and reference tokens in TQ

24. Map parse tree fragments in TQ into XQuery fragments

25. Determine groupings and nestings

26. Updated TQ .Ctx based on the new XQuery fragments and their group/nesting

27. Construct full XQuery expression Q based on TQ .Ctx

28. return Q and MessageGenerator.Warnings(TQ)

29. else

30. return MessageGenerator.Errors(TQ)

Fig. 14. Translation process overview: from natural language query to XQuery with support for

followup queries.

movies directed by John Howard in year 2006,” we can determine that the main
topic of the query is movies for the following reasons. First, the objects director
(corresponding to John Howard) and year are simply used to add constraints
on movies, with their corresponding variables included in WHERE clauses. Sec-
ond, in the dependency parse tree movies is below titles, indicating that ti-
tles is restricted by movies. In some cases, the object of interest itself may be

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:23

constrained. For example, one can write “Find all the titles containing Wind.”
But in such cases, the user is also interested to see the object of interest in the
results (corresponding variable is included in a RETURN clause). To capture the
above intuition, we define the following notion of context center to represent the
object of interest in a query.

Definition 5.2 (Context Center). A context center is the lowest name token
among those whose corresponding basic variables are not included in a WHERE

clause. If no such name token exists, then a context center is a name token whose
corresponding basic variable is included in a RETURN clause.

When a query contains core tokens, the context center of the query must be a
core token, as a core token is always at the leaf level of a parse tree according to
Definition 3.2. If there are multiple core tokens, we pick the first core token as
the context center, as other core tokens are typically used to specify constraints
on the first one in the form of value join. For example, the context center for Q2
is director (node 7 in Figure 3), which is the first core token of the query; the
other core token (node 11) is not the context center.

A followup query inherits and modifies the query context of its parent query
(referred as parent query context) to create its own query context. It usually
inherits the context center as well. For example, Q4 specifies the topic of inter-
est to be movies made by a particular director after certain year; its followup
query Q4.1 imposes more restrictions over year but is also looking for movies.
A followup query can be partially specified and contains no context center. For
example, the user can specify “But before 2000” as a followup query to Q4 in
Figure 13. The only name token year is not a context center according to Defini-
tion 5.2, as it only appears in a WHERE clause. In such a case, the query simply
inherits the context center of its parent query. A followup query can also change
the context center. For instance, in Figure 13, Q5.1 changes the context center
from author in Q5 to publisher. Different context centers in the same query tree
may simply be viewed as disjunctive objects of interest to the user. For ease of
discussion, in this article we limit a query tree to have only one context center
at any time. But it is straightforward (by considering disjunctive variables) to
extend our techniques to allow multiple context centers.

5.4 Query Translation for Followup Query

Translation for followup queries involves the same three major steps for stand-
alone or root queries as described in Section 3, namely, token classification,
parse tree, validation, and query translation. In this section, we focus on issues
unique to followup queries. Techniques discussed in Section 3 are generally
applicable to followup queries unless noted otherwise.

5.4.1 Token Classification. To translate a followup query into an XQuery
expression, we first need to identify words/phrases in the original sentence
that can be mapped into corresponding XQuery components as described in
Section 3.1. In addition, we also need to identify words/phrases7 (Table VII)

7A pronoun that can be classified as Reference Token is no longer classified as Pronoun Marker.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:24 • Y. Li et al.

Table VII. New Types of Tokens and Markers

Type of Token Query Component Description Examples

Reference Token (RT) Basic Variables A word from an enum set of

pronouns and possessive

adjectives

those, her

Semantic

Type of Marker Contribution Description Examples

Substitution Marker (SM) Indication for

results/sorting

specification

replacement

A word from an enum set

of adverbs

instead, only

Table VIII. Variable Bindings for Query 4

Variable Associated Content Related To

$v1 title $v2, $v3, $v4

$v2
� movie $v1, $v3, $v4

$v3 director $v1, $v2, $v4

$v4 year $v1, $v2, $v3

�: corresponding name token is context center.

representing references to the prior queries, which are essential to the query
semantics of the followup query. The classified parse tree is then validated,
but we defer the discussions of parse tree validation for followup queries to
Section 5.6.

5.4.2 Translation into XQuery. Given a valid followup query, we can trans-
late it into XQuery. The major challenge here is to construct an XQuery expres-
sion given a followup query and its ancestor queries in the query tree.

5.4.3 Core Token Identification and Variable Binding. The core token iden-
tification and variable binding for a followup query is essentially the same as
that for a root query, with the following key difference. A name token NTc in a
followup query is bound to a new basic variable, unless it is regarded as identi-
cal to a name token NTp in its parent query context. In such a case, the name
token NTp is called an inherited name token of N Tp and is assigned to the same
variable as NTp (say, $vp). The list of related variables for $vp is also updated
based on the relationships of tokens in the followup query.

Definition 5.3 (Inherited Name Token). A NTc in a followup query is re-
ferred to as an inherited name token of NTp in its parent query context, if
and only if (i) they are equivalent,8 (ii) they are attached by the same name
token or its anaphora,9 and (iii) no FT or QT attaches to either of them.

Tables VIII and IX show the variable bindings for Q4 and Q4.1 in Figure 13,
respectively. As can be seen, the name token movie in Q4.1 is assigned to the

8Based on Definition 3.1, or if NTc is not implicit but NTp is, they are still considered as equivalent

if they are composed of the same noun phrase and directly related to equivalent NTs.
9An anaphora of a name token is a pronoun that refers back to the name token.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:25

Table IX. Variable Bindings for Q4.1

Variable Associated Content Related To

$v2
� movie $v1, $v3, $v4

$v4 year $v1, $v2, $v3

Table X. Direct Mapping for Query 4.1

Pattern Query Fragment

$v2 for $v2 in 〈doc〉//movie

$v4 for $v3 in 〈doc〉//year

$v4+ > + 〈constant〉 where $v4 > 1995

$v4+ < + 〈constant〉 where $v4 < 2000

same variable $v2 as the name token movie in Q4, since it is an inherited name
token of the latter.

During the variable binding process, we also assign variables for reference
tokens. We defer further discussions of this topic to Section 5.5.

5.4.4 Mapping. Patterns of tokens in a followup query can be mapped into
XQuery fragments as described in Section 3.2.2. Tables X and XI show a list
of direct mappings from token patterns to query fragments for Q4 and Q4.1 in
Figure 13, respectively. The determination of grouping and nesting of XQuery
fragments is the same as described in Section 3.2.3.

5.4.5 Update Query Context. The purpose of a followup query is to refine
its parent query by modifying the query context inherited from its parent query.
Three types of revisions to the parent query context can be specified in a fol-
lowup query:

—Type (a): Addition. A followup query can be used to add new constraints and/or
results/sorting specifications to its inherited query context. The patterns for
the additional information are simply added to query context and used for
XQuery construction later on.

—Type (b): Substitution. A followup query can also be used to specify con-
straints and results/sorting specifications that replace existing conditions
and results/sorting specifications in the query context of its parent query.
Corresponding patterns in the original query context are then substituted by
the new patterns.

The algorithm in Figure 15 implements the above updates to query context
for a followup query. For example, as shown in Table XII, Q4.1 in Figure 13
modifies the constraint over $v4 (year) from “$v4 > 1990” in Q4 to “$v4 > 1995,”
and adds one more constraint “$v4 < 2000.”

In addition, whenever the context center is changed in a followup query,
modifications to the query context are also involved. As discussed in Section 5.1,
we currently limit a query tree to have only one context center at a time.

—Type (c): Topic Switch. Whenever a context center is replaced by a new one
in a followup query, any query fragment in the inherited query context that
contains variables unrelated to the new context center is removed from the
query context.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:26 • Y. Li et al.

Table XI. Direct Mapping for Query 4

Pattern Query Fragment

$v1 for $v1 in 〈doc〉//title
$v2 for $v2 in 〈doc〉//movie

$v3 for $v3 in 〈doc〉//director

$v4 for $v4 in 〈doc〉//year

$v3 + 〈constant〉 where $v3 = “Ron Howard”

$v4 + > + 〈constant〉 where $v4 > 1990

〈return〉 + $v1 return $v1

Let C denotes query context; subscript p stands for ‘‘from parent query context,’’

and c for ‘‘from current query context.’’ Operators within the same group {≤,<,=},
{≥,>,=} and {	=} are incompatible with each other.’’ Let 〈replace〉 → SM |∅.

WHERE clause:
for 〈variablec〉 + 〈opr c〉 + 〈argc〉

if ∃ 〈variable p〉 = 〈variablec〉 and 〈variable p〉 + 〈opr p〉 + 〈arg p〉, then
if 〈opr p〉 is incompatible with 〈opr c〉, then

remove 〈variable p〉 + 〈opr p〉 + 〈arg p〉 from C
add 〈variablec〉 + 〈opr c〉 + 〈argc〉 to C

ORDERBY clause:
for 〈sortc〉 + 〈replacel 〉 + 〈variablec〉 + 〈replacer 〉 � orderby (〈variablec〉)

if 〈replacel 〉 	= ∅ or 〈replacer 〉 	= ∅, then
remove 〈sort〉 + 〈variable p〉 from C

add 〈sort〉 + 〈variablec〉 to C
RETURN clause:
for 〈cmdc〉 + 〈replacel 〉 + 〈variablec〉 + 〈replacer 〉 � return (〈variablec〉)

if 〈replacel 〉 	= ∅ or 〈replacer 〉 	= ∅, then
remove 〈return〉 + 〈variable p〉 from C

add 〈return〉 + 〈variablec〉 to C

Fig. 15. Updating query fragments in query context.

For instance, after the context center is changed to publisher in Q5.1, the only
pattern inherited from the parent query context is “$v1 + Gone with the wind,”
where $v1 refers to book, and the other pattern “〈return〉 + $v2,” where $v2

refers to the original context center author, is removed from the query context
of Q5.1.

A full XQuery expression can then be constructed based on the XQuery frag-
ments contained by the updated query context. The construction process is the
same as described in Section 3.2.4.

5.5 Reference Resolution

Reference resolution is an important step in query translation for followup
queries, where semantic meanings of references to prior queries are identified.
Ideally, we would like to directly take advantage of existing reference resolution
tools. Unfortunately, all the tools available to us, such as LingPipe [Alias-i 2006]
or GATE [Cunningham et al. 2002], are mainly designed to handle references

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:27

Table XII. Updated Query Context for Query 4.1

Pattern Query Fragment

$v1 for $v1 in 〈doc〉//title
$v2 for $v2 in 〈doc〉//movie

$v3 for $v3 in 〈doc〉//director

$v4 for $v4 in 〈doc〉//year

$v3 + 〈constant〉 where $v3 = “Ron Howard”

$v4 + > + 〈constant〉 where $v4 > 1995†

$v4 + < + 〈constant〉 where $v4 < 2000‡

〈return〉 + $v1 return $v1

†The fragment is newly modified.
‡The fragment is newly added.

for named entities (proper nouns), such as he referring to Ron Howard, but not
to contend with references to entities in the form of common nouns, such as
he referring to director. Although the former type of reference is common in
news corpora, the default training data for those tools, the latter is far more
important for database queries. For example, for Q4.2 in Figure 13, we need to
know that those refers to movies to be able to translate the query into a correct
XQuery expression. In addition, existing tools cannot directly take advantage of
semantic knowledge the system already has (e.g., John Howard is a director).
Because of this, we have been compelled to derive new reference resolution
techniques in NaLIX, which we now describe.

Our approach is similar to existing salience-based approaches [Mitkov 1998;
Dimitrov et al. 2002], but has a more focused goal: we only seek to address
resolution of pronoun anaphora between sentences where the antecedent is a
common noun. To achieve this goal, we first define a new token type called
Reference Token (RT) (Table VII). Reference resolution in NaLIX is therefore
equivalent to the task of finding the corresponding name token(s) in the parent
query context for a reference token.

Figure 16 (��� is the abbreviation for refer to) presents our light-weight ref-
erence resolution approach. As can be seen, a reference token may refer to
multiple antecedents in RETURN clause (e.g., those may refers to both title
and year). In addition, since the context center is more likely to be referred to
by followup queries, we give higher priority to the context center. For exam-
ple, based on our algorithm, those in Q4.2 (Figure 13) refers to movies instead
of titles. For others, we find the antecedent by just simply relying on number
and gender10 matches. Following this simple rule, we can find it in Q5.1 refers
to book (implicit name token corresponding to Gone with the Wind) instead of
author in Q5, while her in Q5.2 refers to author.

The concept of query context inheritance allows our system to be relatively
robust against errors in reference resolution—in fact, reference resolution er-
rors have no negative impact on query translation results, unless the reference
token is involved in the situations that cause changes to query context as de-
scribed in Section 5.4.2. For example, if Q4.1 is rewritten into “Only for those

10The gender for a given name token is neuter if person is not its hypernym according to WordNet;

we do not distinguish between female and male.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:28 • Y. Li et al.

Let getNum() be a function that returns the number of a word (single/plural), given

the word itself or its corresponding base variable.

Let getGen() be a function that returns the gender (neuter or not) of a word, given

the word itself or its corresponding base.

Denotes 〈context〉 as the context center of the parent query

〈ref 〉 → RT

let 〈ref 〉 ��� ∅

if 〈CMT 〉 + 〈ref 〉 and 〈ref 〉 is a pronoun

then if ∃ return + 〈variable p〉
then 〈ref 〉 ��� 〈ref 〉|〈variable p〉

else if getNum(〈ref 〉)=getNum(〈context〉) and getGen(〈ref 〉)=getGen(〈context〉)
then 〈ref 〉 ��� 〈context〉

else if getNum(〈ref 〉)=getNum(〈variable p〉) and getGen(〈ref 〉)=getGen(〈variable p〉)
then 〈ref 〉 ��� 〈variable p〉

Fig. 16. Reference resolution.

made after 1995 but before 2000,” the resulting XQuery expression remains
the same, even if those was wrongly determined as referring to titles instead of
movies.

We realize that our solution, like any other existing reference resolution
technique, is not perfect. Instead of frustrating users with unexpected wrong
results, we actively seek users’ help via interactive dialog, as described in the
next section.

5.6 Interactive Query Formulation for Followup Query

A valid root query can be translated into a complete XQuery expression. Sim-
ilarly, a valid followup query can also be translated into a complete XQuery
expression. But unlike a root query, a followup query is often an incomplete
(elliptical) sentence, whose meaning is complemented by its prior queries. A
followup query is translated into a new XQuery expression based on its in-
herited query context and the refinements to the query context specified by the
followup query. Since only a valid query is allowed to have followup queries, the
parent query of any followup query is valid. In other words, the inherited query
context of any followup query can always be mapped into a complete XQuery
expression. Therefore, a valid followup query is still confined by XQuery syn-
tax but only needs to provide valid XQuery fragments, instead of a valid full
XQuery expression. The corresponding grammar for followup queries is speci-
fied in Table XIII. Note that a valid followup query must contain at least one
RETURN, WHERE, or ORDERBY clause. In other words, it cannot be empty or
contain only NT/RT tokens and/or markers. For the purpose of presentation,
this restriction is not included in the grammar presented in Table XIII.

A valid parse tree of a followup query can be translated to an XQuery ex-
pression as described in Section 5.4. For an invalid parse tree, error messages
will be generated based on the grammar in Table XIII in the same way as pre-
sented in Section 4 for root queries. Similarly, warnings will be generated when

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:29

Table XIII. Grammar Supported by NaLIX for Followup Queries

1. Q → RETURN? PREDICATE∗ ORDER BY?

2. RETURN → CMT+(RNP|GVT|PREDICATE)

3. PREDICATE → QT?+((RNP1|GVT1)+GOT+(RNP2|GVT2)

4. |(GOT?+RNP+GVT)

5. |(GOT?+GVT+RNP)

6. |(GOT?+[NT]+GVT)

7. |RNP

8. |RT

8. ORDER BY → OBT+RNP

9. RNP → RT | NT | PM |(QT+RNP)|(FT+RNP)|(RNP∧RNP)

10. GOT → OT|(NEG+OT)|(GOT∧GOT)

11. GVT → VT |(GVT∧GVT)

12. CM → (CM+CM)

Symbol “+” represents attachment relation between two tokens; “[]” indi-

cates implicit token, as defined in Definition 4.1.

the system is not able to correctly interpret a valid followup query, including
situations that are unique to followup queries such as ambiguity in reference
resolution. A subtle yet important change in the warning handling for followup
queries is that if, a followup query leads to the same warning message as its
parent query, this warning message is suppressed. This change is based on our
assumption that if a user has already chosen to ignore a warning message (by
typing a new query causing the same warning), then the same warning mes-
sage is likely to be ignored again. If so, displaying the same “useless” message
again is more likely to be annoying instead of helpful to the user.

Figure 17 illustrates an example iteration in NaLIX, in which the user suc-
cessfully formulate a valid followup query with the help from the system.

5.7 Query Tree Detection

Keeping track of query trees is important for supporting iterative search. The
notion of query tree not only helps the system to organize queries in a meaning-
ful way, but also allows the system to handle followup queries within a finite
scope. In the base system we described so far, we expect a user to explicitly
specify a query as root query to create a new query tree. Unfortunately, we
found that users often simply type in a query as a followup query even though
the query is self-contained and essentially starts a new query tree. Such situa-
tions also occur in email communications and online forums, where discussions
totally irrelevant to the original topic may be carried on under the same subject
heading, complicating the task of navigating through messages. Similarly, such
“fake” followup queries in our system can make it difficult for users to navigate
query trees and comprehend query context. In such cases, the usefulness of a
query tree is greatly undermined. Hence, we propose the following extension to
automatically detect such queries and identify them as the start of a new query
tree.

The basic idea is that we can detect new query trees by finding followup
queries that are in fact root queries. The main difference between a root query
and a followup query is that a root query contains all the information needed to

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:30 • Y. Li et al.

Fig. 17. An example iteration: (a) NaLIX generates an error message for an invalid followup query.

The user moves the mouse over a suggested word to see its example usage. The selected query in

Query History provides query context. (b) NaLIX displays search results after the user corrects the

query.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:31

construct an XQuery expression, whereas a followup query needs to inherit and
modify the query context of its parent to create an XQuery expression. There-
fore, if a given query entered as a followup query does not need any information
provided by its prior queries, then it can be regarded as a new root query. We
now formalize this idea based on the notions defined in Section 5.1.

Definition 5.4 (New Query Tree). A query is a root query of a new query tree,
if (i) it has no parent query, or (ii) its context center is different from the context
center of its parent query, and all the pattern of tokens in the parent query
context can be removed.

Based on the above idea, whenever a user submits a new query as a followup
query, we can automatically determine whether this given query is in fact a root
query; if it is, a new query tree with this query as root query is automatically
created. For example, if Q5 in Figure 13 is typed in as a followup query for Q4,
it will be automatically determined to be a new root query for the following
reasons. First, the context center is changed from movie in Q4 to author in
Q5. Second, Q5 contains no inherited name token; all the query fragments in
the query context inherited by Q5 thus can be removed. In another word, Q5
does not need any information from its prior queries to construct an XQuery
expression, and thus is in fact a root query.

6. EXPERIMENT

We implemented NaLIX as a stand-alone interface to the TIMBER native XML

database [Jagadish et al. 2002] that supports Schema-Free XQuery. To eval-
uate the relative strength of NaLIX, we experimentally compared it with a
keyword search interface that supports search over XML documents based on
Meet [Schmidt et al. 2001]. We would have liked to compare NaLIX with an
existing NLP system. Unfortunately, existing NLP systems are mainly designed
for textual content, not for structured data. As such, NLP question answering
system cannot handle queries as complex as NaLIX and we believe no mean-
ingful comparison is possible.

6.1 Methods

Participants were recruited with flyers posted on a university campus. Eighteen
of them completed the full experiment. Their ages ranged from 19 to 55 with
an average of 27. A questionnaire indicated that all participants were familiar
with some form of keyword search (e.g., Google) but had little knowledge of any
formal query language.

6.1.1 Procedures. The experiment was a within-subject design. Each par-
ticipant completed two experimental blocks. In an experimental block, a partic-
ipant used either NaLIX or a keyword search system to accomplish nine search
tasks in a random order determined by a pair of orthogonal 9 × 9 Latin squares
(The order of using the two systems was therefore also counterbalanced for all
participants.)

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:32 • Y. Li et al.

The search tasks were adapted from the “XMP” set in the XQuery Use
Cases [World Wide Web Consortium 2003]. Each search task was described with
the elaborated form of an “XMP” query11 taken from XQuery Use Cases [World
Wide Web Consortium 2003]. Participants received no training at all on how to
formulate a query, except being instructed to use either an English sentence or
some keywords as the query depending on which experiment block the partici-
pant was in.

We noted that, in an experimental setting, a participant could be easily sat-
isfied with poor search quality and go on to the next search task. In order to
obtain objective measurement of interactive query performance, a search qual-
ity criteria was adopted. Specifically, the results of a participant’s query were
compared against a standard results set, upon which precision and recall were
automatically calculated. A harmonic mean of precision and recall [Shaw et al.
1997] greater than 0.5 was set as the passing criteria, beyond which the par-
ticipant may move on to the next task. To alleviate participants’ frustration
and fatigue from repeated passing failures, a time limit of 5 min was set for
each task. If a participant reached the criteria before the time limit, he/she was
given the choice to move on or to revise the query to get better results.

6.1.2 Measurement. We evaluated our system on two metrics: how hard it
was for the users to specify a query (ease of use); and how good was the query
produced in terms of retrieving correct results (search quality).

—Ease of Use. For each search task, we recorded the number of iterations and
the actual time (from the moment the participant started a search task by
clicking on a button) it took for a participant to formulate a system-acceptable
query that returned the best results (i.e., highest harmonic mean of preci-
sion and recall) within the time limit for the task. We also evaluated NaLIX
subjectively by asking each participant to fill out a post-experiment question-
naire.

—Search Quality. The quality of a query was measured in terms of accuracy and
comprehensiveness using standard precision and recall metrics. The correct
results for each search task is easy to obtain given the corresponding correct
schema-aware XQuery. Since the expected results were sometimes complex,
with multiple elements (attributes) of interest, we considered each element
and attribute value as an independent value for the purposes of precision
and recall computation. Thus, a query that returned all the right elements,
but only three out of four attributes requested for each element, would have
a recall score of 75%. The ordering of results was not considered when com-
puting precision and recall, unless the task specifically asked the results be
sorted.

11Q12 is not included, as set comparison is not yet supported in TIMBER. Q5 is not included, as

NaLIX current only supports queries over a single document. Q11 contains two separate search

tasks: the second task was used as Q11 in our experiment; the first task, along with Q2, is the same

as Q3, and thus is not included, as they only differ in the form of result display, which is not the

focus of NaLIX.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:33

Finally, we measured the time NaLIX took for query translation and the
time TIMBER took for query evaluation for each query. Both numbers were
consistently very small (less than 1 s), and so not of sufficient interest to be
worth reporting here. The fast query translation is expected, given that query
sentences were themselves not very large. The fast evaluation time is an artifact
of the miniscule data set that was used. The data set we used was a subcollection
of DBLP, which included all the elements on books in DBLP and twice as many
elements on articles. The total size of the data set is 1.44 MB, with 73,142 nodes
when loaded into TIMBER. We chose DBLP because it is semantically close to
the data set coming with XMP user case such that the “XMP” queries can be
applied with only minor changes (e.g., tag name year is used to replace price,
which is not in the data set but has similar characteristics). A pilot study showed
that slow system response times (likely with very large data sets) resulted in
frustration and fatigue for the participants. Since query evaluation time is not
a focus of this article, we felt that it is most appropriate to use this data set
to balance the tradeoff between performance and realism: we minimized the
overhead resulted from using a larger data set both in terms of query evaluation
and precision/recall computation time; at the same time, the correct results
obtained for any “XMP” query from our data set was the same as those would
have been obtained by using the whole DBLP, as correct answers for each query
included elements related to book elements only.

6.2 Results and Discussion

6.2.1 Ease of Use. The time and the number of iterations needed for partic-
ipants to formulate a valid natural language query with the best search results
is shown in Figure 18. As can be seen, the average total time needed for each
search task is usually less than 90 s, including the time used to read, under-
stand the task description, mentally formulate a query, type in the query, read
the feedback message, revise the query, browse the results, and decide to ac-
cept the results. In consequence, there seems to be a floor of about 50 s, which
is the average minimum time required for any query. The average number of
iterations needed for formulating a query acceptable by NaLIX is less than 2,
with an average of 3.8 iterations needed for the worst query. For about half of
the search tasks (not the same tasks for different participant), all the partic-
ipants were able to formulate a natural language query acceptable by NaLIX
on the first attempt (i.e., with zero iterations). Also, for each task, there was
at least one user (not the same one each time) who had an acceptable phras-
ing right off the bat (i.e., the minimum number of iterations was zero for each
task).

It is worth noting that there was no instance where the participant became
frustrated with the natural language interface and abandoned his/her query
attempt. However, two participants decided to stop the experiment due to frus-
tration during the keyword search block.

According to the questionnaire results, the users felt that simple keyword
search would not have sufficed for the query tasks they had to do. They wel-
comed the idea of a natural language query interface, and found NaLIX easy

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:34 • Y. Li et al.

Fig. 18. Average time (in seconds) and average number of iterations needed for each “XMP” search

task. Error bars show standard errors of means.

to use. The average level of satisfaction with NaLIX was 4.11 on a scale of 1 to
5, where 5 denotes extremely easy to use.

6.2.2 Search Quality. Figure 19 compares the average precision and re-
call of NaLIX with that of a keyword search interface in the experiment. As
can be seen, the search quality of natural language queries was consistently
better than that of keyword search queries. The precision of NaLIX is 83.0% on
average, with an average precision of 70.9% for the worst query; for two out of
the nine search tasks, NaLIX achieved perfect recall, with an average recall of
90.1% for all the queries and an average recall of 79.4% for the worst query. In
contrast, keyword search performed poorly on most of the search tasks,12 espe-
cially on those requiring complex manipulations such as aggregation or sorting
(e.g., Q7, Q10). Even for queries with simple constant search conditions and

12Each search task corresponds to an “XMP” query in [World Wide Web Consortium 2003] with the

same task number.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:35

Fig. 19. Average precision and recall for each “XMP” search task.

requiring no further manipulation (e.g., Q4, Q11), keyword searches produced
results that were less than desirable.

In our experiments, we found two major factors contributing to search qual-
ity loss for NaLIX. First, the participants sometimes failed to write a natural
language query that matched the exact task description. For instance, one of
the users expressed Q6 as “List books with title and authors” (rather than only
list the title and authors of the books), resulting in a loss in precision. The sec-
ond had to do with parsing error. Given a generic natural language query, it is
sometimes difficult to determine what exactly should be returned, and the parse
tree obtained may be incorrect.13 For example, one of the users formulated Q1
as “List books published by Addison-Wesley after 1991, including their year
and title.” MINIPAR wrongly determined that only book and title depended on
List, and failed to recognize the conjunctive relationship between year and title.

13MINIPAR achieves about 88% precision and 80% recall with respect to dependency relation with

the SUSANNE Corpus [Lin 1998].

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:36 • Y. Li et al.

Table XIV. Average Precision and Recall

Avg. Precision Avg. Recall Total Queries

All queries 83.0% 90.1% 162

All queries specified correctly 91.4% 97.8% 120

All queries specified parsed correctly 95.1% 97.6% 112

Consequently, NaLIX failed to return year elements in the result, resulting in a
loss in both precision and recall. Table XIV presents summary statistics to tease
out the contributions of these two factors. If one considers only the 112 of 162
queries that were specified and parsed correctly, then the error rate (how much
less than perfect are the precision and recall) is roughly reduced by 75%, and
NaLIX achieved average precision and recall of 95.1% and 97.6%, respectively,
in this experiment.

7. RELATED WORK

In our preliminary version of this article [Li et al. 2006], we presented the basic
algorithms on constructing a natural language interface for an XML database.
A prototype of the NaLIX system has also been demonstrated at SIGMOD
2005 [Li et al. 2005]. Techniques for enabling domain-awareness of the NaLIX
system have been developed Li et al. [2007b] and demonstrated at SIGMOD
2007 Li et al. [2007a]. These earlier works considers only a single lookup search
model (see Section 3), which assumes that a user already has a specific well-
defined search query in mind. In this work, we extend Li et al. [2006] to support
iterative search, where a user can iteratively modify queries based on the re-
sults obtained. Specifically, we introduce the concept of followup query and a
basic model for iterative search to maintain the sequence of queries in a dia-
log (Sections 5.1). Furthermore, Li et al. [2006] focused on only queries that
are fully specified, whereas we also deal with queries that are only partially
specified. The main challenge is to identify the semantic meaning of a partially
specified query in the light of its prior queries. We first define the basic notion
of query context (Section 5.3). We then extend the algorithm in Li et al. [2006]
to support the translation from a followup query into an XQuery expression
based on the query itself and its prior queries (Section 5.4). We also propose a
light-weight solution for reference resolution (Section 5.5). In addition, we gen-
eralize the grammar supported by NaLIX for followup queries and extend the
user interaction mechanism to help users to formulate a followup query that
can be understood by the system (Section 5.6). We also develop a technique for
automatic query tree discovery to handle “fake” followup queries (Section 5.7).
Finally, detailed descriptions on the generation of feedback messages in NaLIX
can be found in an Electronic Appendix.

Both this work and its preliminary version [Li et al. 2006] use Schema-Free
XQuery [Li et al. 2004, 2007c] as the target language for natural language trans-
lation. As discussed in Section 2, Schema-Free XQuery helps to relieve us from
the burden of having to map a natural language query to the precise underlying
schema. As a result, we were able to focus on issues that are unique to natural
language query translation, such as nesting and grouping determination.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:37

7.1 Natural Language Interface to Databases

In the information retrieval field, research efforts have long been made on
natural language interfaces that take keyword search query as the target lan-
guage [Chu-carroll et al. 2002; Delden and Gomez 2004]. In recent years, key-
word search interfaces to databases have begun to receive increasing attention
[Hulgeri et al. 2001; Cohen et al. 2003; Guo et al. 2003; Hristidis et al. 2003;
Li et al. 2004, 2007c], and have been considered a first step toward addressing
the challenge of natural language querying. Our work builds upon this stream
of research. However, our system is not a simple imitation of those in the infor-
mation retrieval field in that it supports a richer query mechanism that allows
us to convey much more complex semantic meaning than pure keyword search.

Extensive research has been done on developing natural language inter-
faces to databases (NLIDB), especially during the 1980s [Androutsopoulos et al.
1995]. The architecture of our system bears most similarity to syntax-based
NLIDBs, where the resulting parse tree of a user query is directly mapped into
a database query expression. However, previous syntax-based NLIDBs, such as
LUNAR [Woods et al. 1972], interface to application-specific database systems,
and depend on the database query languages specially designed to facilitate
the mapping from the parse tree to the database query [Androutsopoulos et al.
1995]. Our system, in contrast, uses a generic query language, XQuery, as our
target language. In addition, unlike previous systems such as the one reported
in Stallard [1986], our system does not rely on extensive domain-specific knowl-
edge.

The idea of interactive NLIDB was discussed in some early NLIDB litera-
ture [Küpper et al. 1993; Androutsopoulos et al. 1995]. The majority of these
focused on generating cooperative responses using query results obtained from
a database with respect to a user’s task(s). In contrast, the focus of the in-
teractive process of our system is purely query formulation: only one query is
actually evaluated against the database. There has also been work to build
interactive query interfaces to facilitate query formulation [Kapetanios and
Groenewoud 2002; Trigoni 2002]. These depend on domain-specific knowledge.
Also, they assist the construction of structured queries rather than natural
language queries.

Meng and Chu [1999], Tang and Mooney [2001], and Popescu et al. [2003,
2004] depicted a few notable recent work on NLIDB. Tang and Mooney [2001]
presented a learning approach as a combination of learning methods. We view
the learning approach and our approach as complimentary to each other—while
learning techniques may help NaLIX to expand its linguistic coverage, NaLIX
can provide training sources for a learning system. Meng and Chu [1999] de-
scribed an NLIDB based on a query formulator. A statistical approach is applied
to determine the meaning of a keyword. The keywords can then be categorized
into query topics, selection list, and query constraints as the input of the query
formulator. No experimental evaluation on the effectiveness of the system has
been reported. PRECISE [Popescu et al. 2003] is an NLIDB that translates se-
mantically tractable NL questions into corresponding SQL queries. While PRE-

CISE extensively depends on database schema for query mapping, NaLIX does

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:38 • Y. Li et al.

not rely on the availability of a schema for query translation. In addition, PRE-

CISE requires each database attribute be manually assigned with a compatible
wh-value, while NaLIX does not. Finally, NaLIX covers a much broader range
of natural language questions than PRECISE with promising quality.

7.2 Dependency Parser

In NaLIX, we obtain the semantic relationships between words via a depen-
dency parser. Recent work in question answering [Attardi et al. 2001; Gao et al.
2004; Cui et al. 2005] has pointed out the value of utilizing the dependency re-
lation between words in English sentences to improve the precision of question
answering. Such dependency relations are obtained either from dependency
parsers such as MINIPAR [Attardi et al. 2001; Cui et al. 2005] or through
statistic training [Gao et al. 2004]. These works all focus on full text retrieval,
and thus cannot directly apply to XML databases. Nevertheless, they inspire us
to use a dependency parser to obtain semantic relationships between words, as
we have done in NaLIX.

7.3 Support for Iterative Database Search

Previous studies have shown that information seeking often involves multiple
iterations; thus allowing users to ask followup questions is a highly desired fea-
ture in computer-based information-giving systems [Olson et al. 1985; Lauer
et al. 1992; Moore 1995]. However, while support for iterative search is com-
mon in information retrieval systems [Salton 1971; Saracevic 1997], database
systems are typically designed to support one-step search with a few notable
exceptions [Guida and Tasso 1983; Carbonell 1983; Carey et al. 1996; McHugh
et al. 1997; Goldman and Widom 1998; Egnor and Lord 2000; Sinha and Karger
2005; Ioannidis and Viglas 2006]. Most of such systems, such as PESTO [Carey
et al. 1996], DataGuide [McHugh et al. 1997], and Magnet [Sinha and Karger
2005], support followup queries by allowing results browsing as query refine-
ment. Although search in some of the systems (e.g., DataGuide) may start with
keyword search or vague query expressions, when handling followup queries
they are all essentially visual query systems. As such, they all suffer from the
following drawbacks of visual query systems. First, expressing complex queries
in such systems, despite the actual visual representation, usually requires mul-
tiple steps. In contrast, a user familiar with NaLIX can pose a query in a single
step, while a casual user may need two to three iterations to do so, as shown
in our user study. Second, query formulation still requires users to understand
the semantics of the performed operations. This requirement is nontrivial for
casual users—complex concepts such as join, grouping are often found to be am-
biguous and cumbersome, leading to difficulties in both query construction and
query refinement. Meanwhile, such complex concepts can easily be expressed
and understood in natural language. Furthermore, little effort has been made
by these systems to organize queries in a meaningful structure, often result-
ing in the uselessness of query history, whereas a carefully designed iterative
search model is used in NaLIX to maintain previous search queries in a mean-
ingful context.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:39

Recent work on conversation querying [Ioannidis and Viglas 2006] accepted
incomplete SQL queries as input and allows a user to interact with a database
system in a conversational fashion. Besides using different techniques for dif-
ferent types of query input (English sentences vs. SQL), the key differences
between our system and that of Ioannidis and Viglas [2006] are the following.
First of all, in Ioannidis and Viglas [2006], only the last completed query or
last issued query may be modified by a followup query, while in our system, a
user may issue a followup query to any arbitrary existing query. In addition,
Ioannidis and Viglas [2006] assumed that every followup request performs at
most one alternation, while our system does not hold such an assumption.

A few NLIDB systems, including IR-NLI [Guida and Tasso 1983] and XCAL-
IBUR [Carbonell 1983], also support followup queries. However, these systems
all attempt to build dialog systems that can reason about the goals and beliefs
of the user with limited success. Unlike such systems, we do not attempt to
provide a system with superior natural language understanding. Instead, we
carefully design interactive feedback mechanism to get the user to formulate
system-understandable queries.

7.4 Communication Models

Our model for iterative search is inspired by works in dynamic text messages
systems including chat room and discussion forums [Hegngi 1998; Vronay et al.
1999; Smith et al. 2000; Farnham et al. 2000; Sheard et al. 2003]. Hegngi [1998]
and Sheard et al. [2003] presented experimental evidence on the advantage of
the structured communication model used by discussion forums over the con-
ventional free message flow model used in chat rooms. To overcome the short-
comings of a conventional chat room interface, several interface alternatives
for chat have been proposed in recent years [Vronay et al. 1999; Erickson et al.
1999; Viégas and Donath 1999; Smith et al. 2000]. The system most related to
our model is Threaded Text by Smith et al. [2000]. This chat environment is
based on a notion called conversation tree, where the basic turn-taking structure
of human conversation is kept for easy comprehension of chat history. Usability
study results presented by Smith et al. [2000] and Farnham et al. [2000] sug-
gest that synchronous communications such as text chats can indeed benefit
from such structured organization of the messages. Since iterative database
search in our system can also be viewed as chat between a user and the system,
it is reasonable to believe that users of our system can also benefit from the
structured organization of queries in the form of query trees.

7.5 Automatic Topic Discovery

Khan et al. [2002], Kim et al. [2005], and Shen et al. [2006] proposed different
automatic topic discovering techniques for text messages: text messages are
segmented into threads (similar to a query tree) to facilitate navigation of the
messages by keeping messages in a meaningful context. The segmentations are
created either by identifying start/end messages based on linguistic features or
using clustering algorithms. While these works share a goal similar to that
of our extension proposed in Section 5.7, they all analyze text messages in

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:40 • Y. Li et al.

postprocess fashion. In contrast, our system identifies a root query on-the-fly.
In addition, we identify a followup query as a new root query based on its
semantic relationship with its prior queries instead of its linguistic features.

7.6 Reference Resolution

Reference resolution is an important problem in several fields in natural lan-
guage processing, such as information extraction, question answering, and
summarization. Not surprisingly, many techniques have been proposed to ad-
dress the problems. These techniques largely fall into the following three cat-
egories: (i) machine learning approaches [Aone and Bennett 1995; McCarthy
and Lehnert 1995; Ge et al. 1998; Soon et al. 2001; Ng and Cardie 2002]; (ii)
knowledge-poor approaches, which depend on simple salience-based rules in-
stead of linguistic or domain knowledge [Mitkov 1998]; and (iii) knowledge-
rich approaches, which extensively rely on linguistic and/or domain knowl-
edge [Hobbs 1978; Grosz et al. 1986; Delmonte 1990; Delmonte and Bianchi
1991; Lappin and Leass 1994; Hardt 1996, 2004]. Our approach discussed
in Section 5.5 mainly depends on gender and number agreement to decide
candidate antecedents and is essentially knowledge-poor. But unlike pure
knowledge-poor systems, we also take advantage of knowledge readily avail-
able in the system by considering whether a candidate is included in a RE-

TURN clause or is a context center. Since such knowledge is only meaningful
for database queries, our technique does not intend to be applicable as a general
reference resolution method.

8. CONCLUSION AND FUTURE WORK

We have described a natural language query interface for a database. A large
class of natural language queries can be translated into XQuery expressions
that can then be evaluated against an XML database. Where natural language
queries outside this class are posed, an interactive feedback mechanism is de-
scribed to lead the user to pose an acceptable query. The ideas described in
this article have been implemented, and actual user experience gathered. Our
system as it stands supports comparison predicates, conjunctions, simple nega-
tion, quantification, nesting, aggregation, value joins, and sorting. In addition,
iterative search is supported in the form of followup queries in query history.
Along with a query template mechanism, followup queries enable users to in-
crementally focus their search on the objects of interest with previous search
queries preserved in context for reuse should they decide to take a different
search direction. In the future, we plan to add support for disjunction, mul-
tisentence queries, complex negation, and composite result construction. Our
current system is oriented at structured XML databases: we intend to integrate
support for phrase matching by incorporating full-text techniques in XQuery
such as TeXQuery [Amer-Yahia et al. 2004], thereby extending our applicability
to databases primarily comprising text stored as XML.

The system as we have it, even without all these planned extensions, is
already very useful in practice. We already have a request for production de-
ployment by a group outside computer science. We expect the work described

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:41

in this article to lead to a whole new generation of query interfaces for
databases.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital
Library.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful and constructive com-
ments and suggestions. We are also grateful to Mary Fernández for her com-
ments on a preliminary version of this work. This work has also benefitted from
discussions with George Furnas and Dragomir Radev.

REFERENCES

ALIAS-I. 2006. Available online at http://www.alias-i.com/lingpipe/.

AMER-YAHIA, S., BOTEV, C., AND SHANMUGASUNDARAM, J. 2004. TeXQuery: A full-text search exten-

sion to XQuery. In Proceedings of the International World Wide Web Conference. 583–594.

ANDROUTSOPOULOS, I., RITCHIE, G. D., AND THANISCH, P. 1995. Natural language interfaces to

databases—an introduction. J. Lang. Eng. 1, 1, 29–81.

AONE, C. AND BENNETT, S. 1995. Evaluating automated and manual acquisition of anaphora res-

olution strategies. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics. Morgan Kaufmann, San Francisco, CA, 122–129.

ATTARDI, G., FORMICA, F., SIMI, M., AND TOMMASI, A. 2001. PiQASso: Pisa question answering sys-

tem. In Proceedings of the Text REtrieval Conference. National Institute of Standards and Tech-

nology (Gaithersburg, MD). 633–641.

BATES, M. J. 1989. The design of browsing and berrypicking techniques for the on-line search

interface. Online Rev. 13, 5, 407–431.

CARBONELL, J. G. 1983. Discourse pragmatics and ellipsis resolution in task-oriented natural

language interfaces. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics. 164–168.

CAREY, M. J., HAAS, L. M., MAGANTY, V., AND WILLIAMS, J. H. 1996. PESTO: An integrated

query/browser for object databases. In Proceedings of the International Conference on Very Large
Data Bases. 203–214.

CHU-CARROLL, J., PRAGER, J., RAVIN, Y., AND CESAR, C. 2002. A hybrid approach to natural lan-

guage Web search. In Proceedings of the Conference on Empirical Methods on Natural Language
Processing. 180–187.

COHEN, S., MAMOU, J., KANZA, Y., AND SAGIV, Y. 2003. XSEarch: A semantic search engine for XML.

In Proceedings of the International Conference on Very Large Data Bases. 45–56.

CUI, H., SUN, R., LI, K., KAN, M.-Y., AND CHUA, T.-S. 2005. Question answering passage retrieval

using dependency relations. In Proceedings of the ACM International Conference on Information
Retrieval. 400–407.

CUNNINGHAM, H., MAYNARD, D., BONTCHEVA, K., AND TABLAN, V. 2002. GATE: A framework and

graphical development environment for robust NLP tools and applications. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics. 168–175.

DELDEN, S. V. AND GOMEZ, F. 2004. Retrieving NASA problem reports: A case study in natural

language information retrieval. Data Knowl. Eng. 48, 2, 231–246.

DELMONTE, R. 1990. Semantic parsing with an LFG-based lexicon and conceptual representa-

tions. Comput. Human. 5, 6, 461–488.

DELMONTE, R. AND BIANCHI, D. 1991. Binding pronominals with an LFG parser. In Proceedings of
the ACL Workshop on Parsing Technologies. 59–72.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:42 • Y. Li et al.

DIMITROV, M., BONTCHEVA, K., CUNNINGHA, H., AND MAYNARD, D. 2002. A light-weight approach to

coreference resolution for named entities in text. In Proceedings of the Discourse Anaphora and
Anaphor Resolution Colloquium.

EGNOR, D. AND LORD, R. 2000. Structured information retrieval using XML. In Proceedings of the
ACM SIGIR Workshop on XML and Information Retrieval. Published on the World Wide Web at

http://www.haifa.il.ibm.com/sigir00-xml/final-papers/Egnor/.

ERICKSON, T., SMITH, D. N., KELLOGG, W. A., LAFF, M., RICHARDS, J. T., AND BRADNER, E. 1999. So-

cially translucent systems: Social proxies, persistent conversation, and the design of “babble.”

In Proceedings of the ACM International Conference on Human Factors in Computing Systems.

72–79.

FARNHAM, S., CHESLEY, H. R., MCGHEE, D. E., KAWAL, R., AND LANDAU, J. 2000. Structured online

interactions: improving the decision-making of small discussion groups. In Proceedings of the
ACM Conference on Computer Supported Cooperative Work. 299–308.

GAO, J., NIE, J.-Y., WU, G., AND CAO, G. 2004. Dependence language model for information retrieval.

In Proceedings of the ACM International Conference on Information Retrieval. 170–177.

GE, N., HALE, J., AND CHARNIAK, E. 1998. A statistical approach to anaphora resolution. In Pro-
ceedings of the Workshop on Very Large Corpora. 161–170.

GOLDMAN, R. AND WIDOM, J. 1998. Interactive query and search in semistructured databases. In

Proceedings of the the International Workshop on Web and Databases (WebDB). 52–62.

GROSZ, B., JONES, K. S., AND WEBBER, B. L., Eds. 1986. Readings in Natural Language Processing.

Morgan Kaufmann Publishers, San Fransisco, CA.

GROSZ, B., JOSHI, A., AND WEINSTEIN, S. 1995. Centering: A framework for modelling the local

coherence of discourse. Computat. Ling. 2, 21, 203–225.

GUIDA, G. AND TASSO, C. 1983. IR-NLI: An expert natural language interface to online data bases.

In Proceedings of the Annual Meeting of the Association for Computational Linguistics. 31–

38.

GUO, L., SHAO, F., BOTEV, C., AND SHANMUGASUNDARAM, J. 2003. XRANK: Ranked keyword search

over XML documents. In Proceedings of the ACM International Conference on Management of
Data. 16–27.

HARDT, D. 1996. Centering in dynamic semantics. In Proceedings of the International Conference
on Computational Linguistics. 519–524.

HARDT, D. 2004. Dynamic centering. In Procceedings of the ACL Reference Resolution Workshop.

55–62.

HEGNGI, Y. N. 1998. Changing roles, changing technologies: The design, development, implemen-

tation, and evaluation of a media technology and diversity on-line course. In Proceedings of the
American Educational Research Association Annual Meeting. 1–30.

HOBBS, J. R. 1978. Resolving pronoun references. Lingua 44, 311–338.

HRISTIDIS, V., PAPAKONSTANTINOU, Y., AND BALMIN, A. 2003. Keyword proximity search on XML

graphs. In Proceedings of the IEEE International Conference on Data Engineering. 367–

378.

HULGERI, A., BHALOTIA, G., NAKHE, C., CHAKRABARTI, S., AND SUDARSHAN, S. 2001. Keyword search

in databases. IEEE Data Eng. Bull. 24, 22–32.

IOANNIDIS, Y. E. AND VIGLAS, S. D. 2006. Conversational querying. Inform. Syst. 31, 1, 33–56.

JAGADISH, H. V., AL-KHALIFA, S., CHAPMAN, A., LAKSHMANAN, L. V., NIERMAN, A., PAPARIZOS, S., PATEL,

J. M., SRIVASTAVA, D., NUWEE WIWATWATTANA, Y. W., AND YU, C. 2002. TIMBER: A native XML

database. Int. J. Very Large Data Bases 11, 4, 274–291.

KAPETANIOS, E. AND GROENEWOUD, P. 2002. Query construction through meaningful suggestions

of terms. In Proceedings of the International Conference on Flexible Query Answering Systems.

226–239.

KHAN, F. M., FISHER, T. A., SHULER, L., WU, T., AND POTTENGER, W. M. 2002. Mining chatroom

conversations for social and semantic interactions. Tech. Rep. LU-CSE-02-011, Lehigh University,

Bethlehem, PA.

KIM, J. W., CANDAN, K. S., AND DDERLER, M. E. 2005. Topic segmentation of message hierarchies for

indexing and navigation support. In Proceedings of the International World Wide Web Conference.

322–331.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

NaLIX: A Generic Natural Language Search Environment for XML Data • 30:43

KÜPPER, D., STORBEL, M., AND RÖSNER, D. 1993. NAUDA: A cooperative natural language interface

to relational databases. SIGMOD Rec. 22, 2, 529–533.

LAPPIN, S. AND LEASS, H. 1994. An algorithm for pronominal anaphora resolution. Comput.
Ling. 20, 4, 535–561.

LAUER, T., PEACOCK, E., AND GRAESSER, A. 1992. Questions and Information Systems. Lawrence

Erlbaum Associates, Mahwah, NJ.

LI, Y., CHAUDHURI, I., YANG, H., SINGH, S., AND JAGADISH, H. V. 2007a. Danalix: A domain-adaptive

natural language interface for querying xml. In Proceedings of the ACM SIGMOD International
Conference on Management of Data.

LI, Y., CHAUDHURI, I., YANG, H., SINGH, S., AND JAGADISH, H. V. 2007b. Enabling domain-awareness

for a generic natural language interface. In Proceedings of the 22nd Conference on Artificial
Intelligence.

LI, Y., YANG, H., AND JAGADISH, H. V. 2005. NaLIX: An interactive natural language interface for

querying XML. In Proceedings of the ACM International Conference on Management of Data.

900–902.

LI, Y., YANG, H., AND JAGADISH, H. V. 2006. Constructing a generic natural language interface

for an XML database. In Proceedings of the International Conference on Extending Database
Technology. 737–754.

LI, Y., YU, C., AND JAGADISH, H. V. 2004. Schema-Free XQuery. In Proceedings of the International
Conference on Very Large Data Bases. 72–83.

LI, Y., YU, C., AND JAGADISH, H. V. 2007c. Enabling Schema-Free XQuery with Meaningful Query

Focus. Int. J. Very Large Databases. To appear. DOI = 10.1007/s00778-006-0003-4. Available

online at http://www.spingerlink.com/content/7th8518314515x74/.

LIN, D. 1998. Dependency-based evaluation of MINIPAR. In Proceedings of the Workshop on the
Evaluation of Parsing Systems (Granada, Spain).

MCCARTHY, J. F. AND LEHNERT, W. G. 1995. Using decision trees for coreference resolution. In

Proceedings of the International Joint Conferences on Artificial Intelligence. 1050–1055.

MCHUGH, J., ABITEBOUL, S., GOLDMAN, R., QUASS, D., AND WIDOM, J. 1997. Lore: A database man-

agement system for semistructured data. SIGMOD Rec. 26, 3 (Sept.), 54–66.

MEL’ČUK, I. A. 1979. Studies in Dependency Syntax. Karoma Publishers, Ann Arbor, MI.

MENG, F. AND CHU, W. 1999. Database query formation from natural language using semantic

modeling and statistical keyword meaning disambiguation. Tech. Rep. CSD-TR 990003, Univer-

sity of California, Los Angels, Los Angels, CA.

MILLER, G. A., BECKWITH, R., FELLBAUM, C., GROSS, D., AND MILLER, K. 1990. Five papers on WordNet.

Int. J. Lexicol. 3, 4, Available online at http://www.cogsci.princeton.edu/∼wn/.

MITKOV, R. 1998. Robust anaphora resolution with limited knowledge. In Proceedings of the
International Conference on Computational Linguistics.

MOORE, J. D. 1995. Participating in Explanatory Dialogues Interpreting and Responding to Ques-
tions in Context. MIT Press, Cambridge, MA.

NG, V. AND CARDIE, C. 2002. Identifying anaphoric and non-anaphoric noun phrases to im-

prove coreference resolution. In Proceedings of the International Conference on Computational
Linguistics.

OLSON, G. M., DUFFY, S. A., AND MACK, R. L. 1985. The Psychology of Questions. Lawrence Erlbaum

Associates, Mahwah, NJ. Chapter 7, 219–227.

POPESCU, A.-M., ARMANASU, A., ETZIONI, O., KO, D., AND YATES, A. 2004. Modern natural language

interfaces to databases. In Proceedings of the International Conference on Computational Lin-
guistics. 141–147.

POPESCU, A.-M., ETZIONI, O., AND KAUTZ, H. 2003. Towards a theory of natural language interfaces

to databases. In Proceedings of the International Conference on Intelligent User Interfaces. 149–

157.

QUIRK, R., GREENBAUM, S., LEECH, G., AND SVARTVIK, J. 1985. A Comprehensive Grammar of the
English Language. Longman, London, U.K.

REMDE, J. R., GOMEZ, L. M., AND LANDAUER, T. K. 1987. Superbook: An automatic tool for informa-

tion exploration—hypertext? In Proceedings of the ACM Conference on Hypertext and Hyperme-
dia. 175–188.

SALTON, G. 1971. The SMART Retrieval System. Prentice Hall, Upper Saddle River, NJ.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

30:44 • Y. Li et al.

SARACEVIC, T. 1997. The stratified model of information retrieval interaction: Extension and ap-

plications. In Proceedings of the American Society for Information Science & Technology Annual
Meeting.

SCHMIDT, A., KERSTEN, M., AND WINDHOUWER, M. 2001. Querying XML documents made easy: Near-

est concept queries. In Proceedings of the IEEE International Conference on Data Engineering,

321–329.

SHAW, W. M., BURGIN, R., AND HOWELL, P. 1997. Performance standards and evaluations in IR test

collections: Vector-space and other retrieval models. Inform. Process. Manage. 33, 1, 15–36.

SHEARD, J., MILLER, J., AND RAMAKRISHNAN, S. 2003. Web-based discussion forums: The staff per-

spective. In Proceedings of the Annual conference on Innovation and Technology in Computer
Science Education. 158–162.

SHEN, D., YANG, Q., SUN, J.-T., AND CHEN, Z. 2006. Thread detection in dynamic text message

streams. In Proceedings of the ACM International Conference on Information Retrieval. 35–42.

SINHA, V. AND KARGER, D. 2005. Magnet: Supporting navigation in semistructured data environ-

ments. In Proceedings of the ACM International Conference on Management of Data. 97–106.

SLEATOR, D. AND TEMPERLEY, D. 1993. Parsing English with a link grammar. In Proceedings of the
International Workshop on Parsing Technologies.

SMITH, M., CADIZ, J. J., AND BURKHALTER, B. 2000. Conversation trees and threaded chats. In

Proceedings of the ACM Conference on Computer Supported Cooperative Work. 97–105.

SOON, W., NG, H., AND LIM, D. 2001. A machine learning approach to coreference resolution of

noun phrases. Computat. Ling. 27, 4, 521–544.

STALLARD, D. 1986. A terminological transformation for natural language question-answering

systems. In Proceedings of the Australasian Natural Language Processing Workshop. 241–246.

TANG, L. R. AND MOONEY, R. J. 2001. Using multiple clause constructors in inductive logic pro-

gramming for semantic parsing. In Proceedings of the European Conference on Machine Learning.

466–477.

TRIGONI, A. 2002. Interactive query formulation in semistructured databases. In Proceedings of
the International Conference on Flexible Query Answering Systems. 356–369.

VIÉGAS, F. B. AND DONATH, J. S. 1999. Chat circles. In Proceedings of the ACM International Con-
ference on Human Factors in Computing Systems. 9–16.

VRONAY, D., SMITH, M., AND DRUCKER, S. 1999. Alternative interfaces for chat. In Proceedings of
the ACM Symposium on User Interface Software and Technology. 19–26.

WOODS, W., KAPLAN, R. M., AND NASH-WEBBER, B. 1972. The Lunar Sciences Natural Language
Information System: Final Report. Bolt Beranek and Newman Inc., Cambridge, MA.

WORLD WIDE WEB CONSORTIUM. 2003. XML Query Use Cases. World Wide Web Consortium Work-

ing Draft. Available online at http://www.w3.org/TR/xquery-use-cases/.

WORLD WIDE WEB CONSORTIUM. 2004. Extensible Markup Language (XML) 1.0 (Third Edi-

tion). World Wide Web Consortium Recommendation. Available online at http://www.w3.org/

TR/REC-xml/.

Received November 2006; revised May 2007; accepted August 2007

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 30, Publication date: November 2007.

