
Schema-free SQL∗

Fei Li
Univ. of Michigan, Ann Arbor

lifei@umich.edu

Tianyin Pan
Univ. of Michigan, Ann Arbor

ptianyin@umich.edu

H. V. Jagadish
Univ. of Michigan, Ann Arbor

jag@umich.edu

ABSTRACT
Querying data in relational databases is often challenging
since SQL requires its users to know the exact schema of
the database, the roles of various entities in a query, and
the precise join paths to be followed. On the other hand,
keyword search is unable to express much desired query se-
mantics.

In this paper, we propose a query language, Schema-free
SQL, which enables its users to query a relational database
using whatever partial schema they know. If they know the
full schema, they can write full SQL. But, to the extent they
do not know the schema, Schema-free SQL is tolerant of un-
known or inaccurately specified relation names and attribute
names, and it also does not require information regarding
which relations are involved and how they are joined. We
present techniques to evaluate Schema-free SQL by first con-
verting it to full SQL. We show experimentally that a small
amount of schema information, which one can reasonably ex-
pect most users to have, is enough to get queries evaluated
as if they had been completely and correctly specified.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query lan-
guages; H.1.2 [Information Systems]: User/Machine Sys-
tems—Human factors

Keywords
Query Language; Relational Databases; Usability;

1. INTRODUCTION
Querying data in relational databases is often challenging.

SQL is the standard method to query relational databases.
While expressive and powerful, SQL requires its users to
know the exact schema of the database, the roles of var-
ious entities in a query, and the precise join paths to be

∗Supported in part by NSF grants IIS 1250880 and IIS
1017296

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2588571.

followed. This difficulty is exacerbated by normalization, a
process that is central to relational database design, which
brings benefits including saved space and avoided update
anomalies, at the cost of spreading data across several rela-
tions and thus making the database schema more complex.
Where queries are predictable, forms-based interfaces and
other application-mediated mechanisms can be used. How-
ever, these techniques do not support ad hoc queries.

To address these difficulties, there has been a stream of
research towards querying information from databases us-
ing keywords [6, 4, 8]. In keyword search, the users need
to know neither a query language nor the underlying logical
structure of the database. All they need to do is to type in
some keywords. While very friendly to use, there are intrin-
sic ambiguities in using an unstructured set of keywords to
convey complex information needs. Without properly spec-
ified structure information, it is very hard for a system to
return prefect query results. Furthermore, keyword search
loses many commonly used functions provided by SQL, such
as comparison, computation, ordering and aggregation.

Our goal in this paper is to provide means for a user to
specify queries without the burden of precise schema knowl-
edge while at the same time not burdening the system with
having to guess the desired result of keyword search. Before
we describe our approach towards this goal, let us examine
a motivating example to appreciate the issues.

Consider a movie database with a simplified schema shown
in Figure 1. When trying to use keywords to express the
query example, many difficulties arise. First, traditional
keyword search is designed to find keywords in database val-
ues rather than in metadata. Keywords cannot convey the
information that “male” relates to “actor” and that “James
Cameron” relates to “director”. Fielded keyword queries
have been suggested as a means towards addressing this dif-
ficulty part-way, but typically require that field names be
specified precisely. Moreover, keywords cannot express com-
parisons and computations such as the clause “from 1995 to
2005”. Similarly, “the number of”, which is an aggregation
function, is not supported in keyword search.

In short, an unstructured set of keywords is not capable
of capturing the rich semantics of query intent required to
produce good answers. Surely, we can all remember situa-
tions where we were frustrated because we couldn’t specify
some crucial structure in a query (e.g. movies before 2005).
Though such distinctions are easy to make in SQL, writing
SQL has its own challenges, as we see next.

In Figure 1, the movie information is split into six rela-
tions after normalization. As a result, even queries over such

Person'

person_id*

name*

gender*

Movie'

movie_id*

/tle*

release_year*

Movie_Producer'

movie_id*

company_id*
Company'

company_id*

name*

Query'Example:*Return*the*number*of*male*actors*who*have*cooperated*
with*director*“James*Cameron”*in*a*produc/on*by*“20th*Century*Fox”*from*
1995*to*2005.***

Director'

person_id*

movie_id*

Actor'

person_id*

movie_id*

Figure 1: Running Example.

a tiny schema may be hard to compose in SQL. For exam-
ple, a simple query for (the name of) the director of “Star
Wars” requires a join of three tables (Person, Director, and
Movie). The reader can verify that the query example re-
quires joining 7 relations: all 6 relations in the figure and
one of them (Person) twice. The corresponding SQL query
has over a dozen clauses. Furthermore, it involves tables
(such as Person) and columns (such as Person id) that are
not present in the English language statement of the query
intent. Only someone knowledgeable about the schema can
figure out that these are required. The situation gets much
worse in real-world databases when there are large num-
bers of relations (The Yahoo! Movie database has 43 rela-
tions). We have personal experience with scientist collabo-
rators struggling with such schema issues as they attempt
to conduct “e-science”.

Writing correct SQL is challenging not only for new users,
but also for professional DBAs who have to deal with com-
plex enterprise schemas. Even technically competent pro-
grammers in MIS shops would appreciate being freed from
having to remember large schemas and specify error-prone
long sequences of joins. It would be beneficial if users can use
SQL structure to express their query logic without spending
time to understand the schema in detail.

The basic idea in Schema-free SQL is to reduce the user’s
burden in writing SQL queries through two important re-
laxations:

1. Schema Relaxation: users do not have to specify schema
elements exactly, including relation names and attribute
names.

2. Join Path Relaxation: users do not need to specify
join paths, including which intermediate relations are
involved and how they are joined with one another.

If no schema element or join path is specified, observe
that the SQL query degrades to a set of attribute values
(keywords), but with SQL structure. For example, it is still
possible to query for an attribute that is greater than 1995.
(In contrast, a pure keyword system could only look for at-
tribute values equal to 1995). However, our relaxation is not
that schema information must not be specified, but rather
that it *may* not be specified. In other words, to the ex-
tent that the user is able to guess (or know) element names

and join paths, the user should be able to include it. In the
extreme case, the user may even specify a full SQL query,
with no relaxation at all. However, in a typical situation,
the user will specify as much as they can with ease, and the
system should take care of the rest.

Example 1. Figure 2 shows an example of Schema-free
SQL for the query example in Figure 1. Observe that many
relation names and attribute names are guessed wrong, but
are nevertheless intuitively informative. Observe also that
the query assumes a database structure different from the ac-
tual. For example, it refers to actor.name even though name
is not an attribute of the relation Actor: it is the system’s
responsibility to understand that this refers to Person.name
through a join between Person and Actor. Observe, further,
that there isn’t even a requirement that the user be consis-
tent. For example, the query has in it actor.name and also
director name. Finally, note that the join through Movie
remains implicit in this query just as it was in the English
language version: while the user may have been able to spec-
ify this crucial element, this is exactly the sort of hidden
assumption that requires a high level of understanding of the
underlying database schema to make it explicit.

SELECT count(actor?.name?)
WHERE actor?.gender? = “male”
 and director_name? = “James Cameron”
 and produce_company? = “20th Century Fox”
 and year? > 1995
 and year? < 2005;

Figure 2: Schema-free SQL.

Typically, a schema-free SQL query will be evaluated by
an RDBMS after mapping each vague schema element to
its similar schema elements in the database, and autocom-
pleting the join path using the strongest join network that
connects all the specified schema elements. Specifically, in
the mapping process, we first preprocess all schema elements
specified in a Schema-free SQL into a set of relation trees, in
which each relation tree collects user specified schema ele-
ments relevant to the same relation. Then, we map relation
trees to relations in the database based on a proposed sim-
ilarity function. In the join path generation, we define the
strength for join networks on view graph, which is a modifi-
cation to schema graph. A view graph represents as views
all known join path fragments, including those specified by
the user and observed from query logs. Intuitively, the join
networks constructed from these views are more likely to be
“good” join paths than those constructed by connecting each
single relation. Based on this intuition, in our system, a join
network tends to be evaluated stronger if it contains views.
Experimental results show that the strongest join networks
generated on view graph are more likely to be the correct
join path than those generated on schema graph.

The intellectual contributions of this paper are as follows:

1. Schema-free SQL Framework. We present Schema-free
SQL in which users can query relational databases with
whatever partial knowledge of the schema they have,
all the way from full SQL to just keywords.

2. System Architecture. In Section 2, we describe a mod-
ular architecture that supports Schema-free SQL.

3. Relation Tree. In Section 3, we propose relation tree
as a data structure to uniformly represent all specified
schema elements. We then define an l-relation trees
query as a generalization of an l-keyword search. The
result of an l-relation trees query is a join network of
relations, which contains all the information we need
to transform a Schema-free SQL into a full SQL query.
However, obtaining a good join network requires some
creativity, as we discuss next.

4. View Graph. In Section 5, we define view graph as
a modification to schema graph, which is widely used
in keyword search. Using this concept, we propose
algorithms for join networks generation in Section 6.

Other parts of the paper are organized as follows. In Sec-
tion 4, we provide similarity evaluation functions to map
relation trees to relations in the database. In Section 7, the
usability and accuracy of our method is tested experimen-
tally. We discuss related work in Section 8. In Section 9, we
draw conclusions and point to future work.

2. OVERVIEW
In this section, we define the syntax and semantics of

Schema-free SQL and describe the system architecture.

2.1 Syntax and Semantics
Schema-free SQL is an extension of SQL and hence can

support all the functions provided by SQL. It follows the
syntax of SQL with two relaxations:

1. Schema Relaxation: Users do not have to specify
the exact schema elements including relation names
and attribute names. They can express their uncer-
tainty by means of a question mark in three ways:

(a) “foo?” indicates that the user guesses the name of
the element is foo, but is not sure about this. In
the SELECT clause of the query in Figure 2, the
user thinks there is a relation called “actor” with
an attribute called “name”.

(b) “?x” indicates that the user has no clue about its
name. She calls it x as a placeholder. The variable
x can be used elsewhere in the query to indicate
the same element and distinguish it from other
elements, whatever be its name.

(c) “?” also indicates an element for which the user
has no clue of its name. The user doesn’t have
to bind it to a dummy variable name (such as x
in the preceding case). The system generates a
unique new dummy variable for each occurrence.

Users may also choose not to mention the schema el-
ement at all. In the WHERE clause of the query in
Figure 2, the user mentions an attribute called “year?”
without saying which relation it comes from.

2. Join Path Relaxation: Users do not need to specify
which relations are involved and how they are joined
with each other. They can just leave the FROM clause
blank (or partially populated), and leave out the foreign-
key-primary-key (FK-PK) join path (in the WHERE
clause). They can introduce relation names (exact or
approximate) in other clauses (such as WHERE and
SELECT) without these relations having been men-
tioned in the FROM clause.

A Schema-free SQL query is an under-specified SQL query,
with under-specifications on account of only the two relax-
ations listed above. In consequence, Schema-free SQL sup-
ports all of SQL, including nesting, aggregation, and the
many obscure functions provided in any particular vendor-
specific implementation.

Once these relaxations are resolved, we obtain a fully spec-
ified SQL query, with the usual SQL semantics. Fixing the
relaxations in Schema-free SQL is an inherently heuristic
task, in which the goal is to infer the user’s intent. Specif-
ically, the schema relaxation is resolved by binding each
vague schema element to its similar schema elements in the
database, while the underspecified join path is completed
by the strongest join network that connects all the bound
schema elements.

2.2 Architecture
Our system first fixes the two relaxations in a Schema-free

SQL query, then translates it into a standard SQL query
and finally evaluates it to get accurate query results (it also
supports returning top k translations directly to the user
before evaluating the best one). A high level representa-
tion of the architecture is shown in Figure 3. The Relation
Tree Mapper is used to fix the schema relaxation and the
Network Builder fixes the join path relaxation. These two
main modules are preceded by a Schema-free SQL Parser
and succeeded by a Standard SQL Composer. Here we de-
scribe these four components of the system intuitively. A
more precise and detailed description will have to wait until
the following sections.

User%interface%

Schema/free%SQL%

Rela4on%%
Trees%

Mapping%%
Strategies%

Best%Joining%Network%

Standard%SQL%

Database%

Query%
Results%

View%
Graph%

Index%with%
schema%

join%path%%
(par4ally%
specified)%

Network%Builder%

Standard%SQL%
Composer%

Schema/free%SQL%Parser%

Rela4on%Tree%
Mapper%

Figure 3: System Architecture.

2.2.1 Schema-free SQL Parser
The schema elements and join paths that users specify

in Schema-free SQL can be vague and fragmentary. The
Schema-free SQL Parser separates the schema elements and
join paths from the rest of the query, which will remain
unchanged. The schema elements are merged and uniformly
represented as a set of trees called Relation Trees while the
join paths (if partially specified) are represented by views as
we will discuss below.

2.2.2 Relation Tree Mapper
For a traditional l-keyword search, it is easy to map a

keyword to relations: if one of the tuples in the relation
contains the keyword, the keyword can be mapped to that
relation. But in the case of mapping relation trees, this
is not that obvious since relation trees have a much more
complex structure with multiple components to be matched.
In the Relation Tree Mapper, we first evaluate the similarity
between relation trees and relations in the database, then
map them based on their similarity.

2.2.3 Network Builder
To get the full SQL query, we need to generate the correct

join network of relations that contains all the relation trees.
There is a combinatorial number of possible join networks,
only one (or, occasionally, a few) of which is correct. The
network builder generates join networks using a view graph,
which models all supervised information (e.g. join path frag-
ments specified by the user, query patterns in query logs)
as views. Intuitively, join networks composed of these views
are more likely to be correct than those constructed by con-
necting each single relation from scratch. We present ways
to rank all join networks and develop algorithms to generate
the top k join networks efficiently.

2.2.4 Standard SQL Composer
Each join network obtained from the previous step gives a

possible interpretation of the Schema-free SQL query. Based
on the join path in this network, and the mapping strat-
egy used, the Standard SQL Composer instantiates exact
schema elements in place of user’s guesses, introduces ap-
propriate join conditions in the WHERE clause, and fills in
the FROM clause. The result is a correctly formed SQL
query, which hopefully matches the user’s intent. Note that
k different SQL queries can be output, one for each join net-
work returned from the preceding step. Typically, we may
set k to 1, evaluate the full SQL translated and return the
query results to the user. However, the system architecture
is capable of returning multiple options when desired.

2.2.5 Nested Query
The sequence of steps described above applies only to a

single-block SQL query. Given a nested query, it is processed
one block at a time, starting from the outermost block, so
that values for any correlated variables and other context is
already set when inner blocks are processed.

3. REPRESENTING SCHEMA-FREE CON-
TENT

Our first task is to instantiate the correct names for all
relations and attributes that are insufficiently (or even in-
correctly) specified in a given Schema-free SQL query. As a
starting point, we have the guesses at names provided by the
user in the query itself. Additionally, we may have guesses at
structure, relating attribute to table, in the query. Finally,
we may have values for some attributes in the query specifi-
cation, giving us a hint of what those attributes may be. To
put all of these constraints together in one framework, we
introduce the concept of relation tree in this section. Then,
in the next section, we consider how to map relation trees
to the actual schema of the existing database.

As a first step towards obtaining relation trees, we denote
each occurrence of schema-related content by an expression
triple, comprising relation name, attribute name, and value
condition, some of which may be undefined or inapplicable.

3.1 Expression Triples
There are altogether three kinds of schema-relevant ex-

pressions in Schema-free SQL: (a) the relation names in
FROM clause, both original names and aliases, (b) the at-
tribute names (together with relation names if specified) in
all other clauses, and (c) the value constraint conditions (to-
gether with relation names and attribute names if speci-
fied) in WHERE clause. All other information in the query
is considered schema-irrelevant, including (a) general key-
words like: SELECT, FROM, WHERE, GROUP BY, OR-
DER BY, ASC, OR, (b) aggregation keywords like SUM,
COUNT, MAX, (c) Computation symbols like +, -, *.

Example 2. In the query example in Figure 2, consider
the clause “SELECT count(actor?.name?)”. We do not need
to know what “SELECT” and “count” mean. Instead, the
only thing we need to do is to map “actor?.name?” to the
attribute “Person.name” in the database. Then the clause
is transformed to “SELECT count(Person.name)”, which is
the SELECT clause in the standard SQL.

We uniformly represent all expressions as expression triples
with three entries. The three entries store the relation name,
attribute name and condition constraint, respectively. If
an expression does not specify the relation name, attribute
name or condition constraint, the corresponding entry stores
a star mark instead. For convenience, we represent these
triples as trees of height three and call the three levels as re-
lation level, attribute level and condition level respectively.
The upper part of Figure 4 shows all the expressions in Fig-
ure 2. In the next subsection, these expression triples will
be merged into relation trees.

3.2 Relation Trees
The expression triples are often not independent of one

another. We merge related expression triples according to
the following rules:

1. Expression triples with identical relation name (their
aliases must also be identical if specified) are merged
at the relation level.

2. Expression triples with both identical relation name
and identical attribute name are merged at the at-
tribute level.

3. Expression triples that have identical attribute name,
but do not specify the relation name, are merged at
the attribute level.

The merged results are called Relation Trees since each
of them collects the schema information related to one re-
lation in the database. Similarly, subtrees at the attribute
level are called Attribute Trees.

Example 3. The merging process of expression triples in
the query example is shown in Figure 4.

After the preprocessing, all the schema-relevant informa-
tion are transformed into a set of relation trees, denoted
as RT = {rt1, ..., rtl}. We call this an l-Relation Tree
Query, which can be considered as a generalization of a
traditional l-keyword search, with two major differences:

name?&

*&

gender?&

“male”&

actor?&

rule&1& rule&3&

*&

year?&

>&1995& <&2005&

rt1:&

*&

director_name?&

“James&Cameron”&

actor?&

gender?&

“male”&

*&

year?&

>&1995&

*&

year?&

<&2005&

actor?&

name?&

*&

*&

produce_company?&

“20th¢ury&fox”&

*&

director_name?&

“James&Cameron”&

*&

produce_company?&

“20th¢ury&fox”&

rt2:& rt3:& rt4:&

Figure 4: Merging Expression Triples.

• In l-keyword search, it is easy to tell if a keyword
should be mapped to a relation using the contains
function. Since a relation tree often has much more
information than a keyword, we cannot use simple con-
tainment in an l-relation trees query. In the next sec-
tion, we provide similarity functions to evaluate the
similarity between relation trees and relations, and
map them by their similarity.

• In l-keyword search, many join networks of relations
which contain all keywords will be evaluated. Their
evaluation results are then ranked and the most rel-
evant ones are returned to the user. In contrast, in
l-relation trees query, join networks of relations are
ranked before evaluation. Only the best join network
of relations will be evaluated to return the exact query
results to the user. We provide mechanisms to rank
join networks in Section 5 and generate the best (or
top k) join network efficiently in Section 6.

4. MAPPING RELATION TREES
In this section, we discuss the mapping from relation trees

to relations in the database, which is based on their simi-
larity. There are many ways to define similarity based on
previous efforts described in the literature. All are heuristic
with no clear universal best. The goal of this section is not
to find the best similarity evaluation function. Rather, we
give a framework for the similarity evaluation function and
recommend a “good” one we use in our system.

For each relation tree rt, we call the set of its mapped
relations as the Mapping Set of r, and denote it by MAP(rt).
We define MAP(rt) as follows:

Definition 1 (Mapping Set of a Relation Tree).
Let rt be a relation tree, V = {R1, ..., Rn} be the target
database with n relations, Sim(rt, Ri) be a similarity func-
tion between rt and relation Ri, and σ be a predefined rela-
tive threshold between 0 and 1. The Mapping Set of rt is de-
fined as {Ri|Sim(rt, Ri) > σ ∗MAX {Sim(rt, Rj)|1≤j≤n}}.

Note that we do not simply pick the one relation with
maximum similarity, since relation tree similarity alone may
not give us the right answer. Instead, we would like to keep
in play all relations with high similarity. We could define
an absolute threshold for this purpose. However, we have
preferred to do so in terms of a fraction σ of the maximum,
for the following intuitive reason: when the user specifies
the name(s) correctly, there is usually one relation with high
similarity, and we can ignore all others with low similarity;
on the other hand, if the user specifies the name poorly,

there is no good match and all similarities are low, and in
this case we want to keep around several likely candidates.

4.1 Similarity Evaluation
Let rt be a relation tree with relation name n(rt) and at-

tribute trees {at1,..., atm}, R be a relation in the database.
Intuitively, rt is similar to R if R contains similar informa-
tion for n(rt) (similar at root level) and each ati (similar at
attribute level). We use Sim(n(rt), R) and Sim(ati, R) to
denote the similarity at root level and attribute level respec-
tively, which will be formally defined later. The similarity
between rt and R is defined as follows:

Sim(rt, R) = Sim(n(rt), R)

m∏
i=1

Sim(ati, R)

4.2 Similarity at Root Level
If there is a relation name at the root of a relation tree,

similarity with this name is obviously a major indicator of
a matching relation in the database. Frequently, the user is
off in specifying the relation name because the user has a
different schema in mind than the database, with normal-
ization being a common culprit in this regard. To allow for
this, we also match the name at the root of a relation tree
with names of neighboring relations.

Formally, let n(rt) be the relation name of relation tree
rt, n(R) be the relation name of relation R. Suppose that
{Rneighbor} is all the relations that R refers to or is referred
by. rt is similar with R at root level if n(rt) is similar to n(R)
or there exists a Ri ∈ {Rneighbor} with n(Ri) very similar
to n(rt). The similarity is formally defined as follows:

Sim(n(rt), R) = MAX (Sim(n(rt), n(R)), {Sim′(n(rt), n(Ri))})

In the equation, Ri iterates over all the relations in {Rneighbor}.
Sim(a, b) and Sim′(a, b) are similarity functions between
two strings with the constraint that Sim(a, b) is larger than
Sim′(a, b). In our implementation, we use the Jaccard Coef-
ficient between the q-gram sets of a and b as Sim(a, b), and
multiply it with kref , a predefined constant between 0 and
1, to compute Sim′(a, b).

Example 4. Take the relation tree rt1 in Figure 4 and
all relations in Figure 1 as an example. The root of rt1
is actor?. For relation Actor, the similarity at root level,
Sim(actor,Actor) is 1. Suppose kref is 0.7. rt1’s similarity
with Person and Movie is 0.7 since they are both referred
to by relation Actor.

Sometimes, n(rt) may not be specified. In this case, we
try to find some clues in ats for the mapping. We first set
the root similarity to, kdef , a small default value, then we
use each attribute name in ats instead of n(rt) to compute
the similarity at root level. We update the root similarity
each time when the computed similarity is higher than the
current root similarity.

4.3 Similarity at Attribute Level
Let at be an attribute tree and R be a relation with at-

tributes {A1,..., Am}. We map at to the attribute Ai that
is most similar to at. The similarity between at and R is
formally defined as follows:

Sim(at,R) = MAX ({Sim(at,Ai)|1 ≤ i ≤ m})

Intuitively, an attribute tree at is similar to an attribute A
if (a) their attribute names are similar, (b) the conditions (if
specified) under the attribute tree are satisfied by the tuples
in the attribute. Let n(at) and n(A) be the attribute name
of at and A respectively. The similarity between at and A
is defined as follows:

Sim(at,A) = Sim(n(at), n(A)) ∗ m+ 1

n+ 1

In the equation, Sim(n(at), n(A)) denotes the string simi-
larity between the attribute names of at and A. m+1

n+1
reflects

whether the condition constraints are satisfied, in which n
denotes the total number of condition constraints under at
and m denote the number of conditions constraints which
can be satisfied by the tuples in A.

5. VIEW GRAPH
The previous sections mapped relation trees to relations

in the database. Our next task is to find a join network that
contains these mapped relations, based on which we can
specify the equivalent SQL query. A similar problem arises
in schema-based keyword search (e.g. DISCOVER [8]). We
cannot use their techniques directly for two reasons. First,
in Schema-free SQL, the user may specify part of the join
path, which should be carefully taken into account in the
join path generation. Second, in keyword search, the output
of the join path generation is usually all the possible join
networks within a length threshold. In contrast, the output
in our method is only the (few) best join network(s).

In this section, we introduce the notion of view graph,
which captures partially specified join path and the join path
fragments in the query log as views, which suggest join net-
works that are better than others.

5.1 Model
The schema of the database can be represented as an undi-

rected graph S(V,E), where V is the set of relations in the
database {R1, ..., Rn}, and there exists an edge (Ri, Rj) in
E, if a foreign key defined on Ri refers to the primary key
defined on Rj (FK-PK relationship). In addition, let VIEW
represent the set of predefined views {view1, ..., viewm}. A
view in VIEW is a connected tree of relations with each edge
being a join (not necessarily a FK-PK relationship join) in
the view definition. We can add these views to the schema,
to define an undirected View Graph, G(V,E,VIEW).

Views can come from various sources. First, the join path
may be partially specified by the user in the schema-free
query. If the specified join path is not connected, each of
its connected parts will be transformed to a view. Second,
query patterns mined from query logs and forms designed
by experts may also be suggestive of likely queries, and are
therefore transformed into views. More sophisticated tech-
niques, such as those suggested by [13], may also be used be-
yond this, if desired. Intuitively, join networks constructed
from these views are more likely to be reasonable than those
constructed by arbitrarily connecting single relations from
scratch.

Example 5. Consider the query log along with its corre-
sponding standard SQL shown in Figure 5. We transform it
to a view as shown. For simplicity, we take this view as the
unique view in the view set. This view set and the schema
graph in Figure 1 forms the view graph.

SELECT count(Person_2.name)
From Person as Person_1, Actor, Movie,
 Director, Person as Person_2
WHERE Person_1.name = “Tom Hanks”,
 and Person_2.person_id = Actor.person_id,
 and Actor.movie_id = Movie.movie_id,
 and Movie.movie_id = Director.movie_id,
 and Director.person_id = Person_2.person_id;

Person Actor Movie Director Person

View:

Standard SQL:

Query log: Return all the directors that “Tom Hanks” has
 cooperated with.

Figure 5: View Example.

Given a relation mapping for each relation tree, there
are many possible join networks connecting them. In the
next section, we will discuss how to score these networks to
choose the best. But first we have to deal with the additional
complication that there are several candidate mappings for
each relational tree. To address this challenge, we intro-
duce the notion of an Extended View Graph, denoted as
GX(VX , EX ,VIEWX). Given a view graph G(V,E,VIEW)
and an l-relation trees query RT = {rt1, ..., rtl}, for each
node Ri ∈ V and each relation tree rt ∈ RT that maps to

Ri, there exists a node in GX denoted as R
(rt)
i . There is also

a node R
()
i in GX for each node Ri that has no relation tree

mapped to it. There exists an edge (R
(rt1)
1 , R

(rt2)
2) in EX

if there is an edge (R1, R2) in E. Similarly, for each view
in G, we have to consider all possible mappings of relation
trees to each node in the view. Each of these gives rise to a
view in VIEWX .

Example 6. For the four relation trees in Figure 4, we
assume that rt1 and rt2 map to Person, rt3 maps to Com-
pany and rt4 maps to Movie. This mapping gives rise to the
extended view graph shown in Figure 6. Note that there are
two ways to transform the view example in Figure 5, one
replaces the leftmost Person by Person(rt1) while the other
replaces it by Person(rt2). The values on the edges are their
weights, which will be formally defined later.

Person(rt1)�

Actor(-)-----�

Movie(rt4)�

Director(-)�

Company(rt3)�

Person(rt2)�

Movie_-
Producer(-)�

view2�Person(rt2)�

view1�Person(rt1)� Actor(-)� Movie(rt4)� Director(-)� Person(rt2)�

Views:�

Actor(-)� Movie(rt4)� Director(-)� Person(rt1)�

0.91� 0.7�
0.7�

0.7�0.7�

0.7�

0.84�

0.87�

Figure 6: Extended View Graph.

With the extended view graph in place, we can restrict
the join networks we consider to satisfy a given l-relations
trees query as follows:

Definition 2 (Candidate Join Network). Given an
l-relation trees query RT = {rt1, ..., rtl} and a relational
database with extended view graph GX(VX , EX ,VIEWX), a

candidate join network is a connected tree of nodes where

for every two adjacent nodes R
(rt1)
1 and R

(rt2)
2 in the tree,

(R
(rt1)
1 , R

(rt2)
2) is in EX or in a view in VIEWX . Note that

(R
(rt1)
1 , R

(rt2)
2), (R

(rt1)
1 , R

(rt3)
2) cannot exist in a join net-

work at the same time if the primary key of R2 in R
(rt2)
2

and R
(rt3)
2 is referred to by the same foreign key in R1.

Definition 3 (Minimal Total Join Network (MTJN)).
An MTJN is a candidate join network that satisfies the fol-
lowing two conditions:

• Total: the join network contains all relation trees in
RT .

• Minimal: the join network is not total if any relation
in it is removed.

5.2 Ranking of Results
Given an l-relational tree query and an extended view

graph, the MTJN is not unique. In fact, there will typically
be many MTJNs, and only one of them corresponds to the
correct interpretation of the query. To be able to tell which
MTJN is good, we have to score it, and we do this scoring
based on weights we assign to edges in the (extended) view
graph. In other words, rather than just considering presence
of edges in the view graph, we now weight this presence
depending on how likely that edge is.

To each edge e, we assign a weight w(e), with a value be-
tween 0 and 1, where a larger weight indicates a stronger
connection. While this is *not* formally a probability, it
is intuitively useful to think of it as if it were the proba-
bility that this edge is in the user-desired query. w(e) ini-
tializes all edges to a default constant c. Then for each

edge e = (R
(rt1)
1 , R

(rt2)
2), its connection is enhanced by the

following equation, which follows the standard disjunction
of probabilities for independent events: w(e) = 1 − (1 −
c) ∗ (1 − MAX (Sim ′(n(rt1),n(R2)),Sim ′(n(rt2),n(R1)))),
where Sim′ is defined in Section 4.2. Intuitively, rt2 con-
tains information specified by the user for R2. High similar-
ity between rt2 and R1 may mean some relationship between

R
(rt1)
1 and R

(rt2)
2 . Thus their connection is enhanced.

Example 7. The edges in Figure 6 are marked with their
weights. Let c = 0.7. Suppose that Sim′(n(rt1),n(Actor))

equals to 0.7. Then the edge of (Actor(), P erson(r1)) is
weighted 1− (1− 0.7)(1− 0.7) = 0.91. The weights of other
edges are computed similarly.

The weight of a path is naturally computed as a product
of the weights on its edges – intuitively multiplying proba-
bilities of independent events to find the probability of the
conjunction.

Definition 4 (Basic Weight of JN)). Let jn be a join
network constructed by edges E′ = {ei}. The basic weight
of jn is: wbasic(jn) =

∏
ei∈E′ w(ei)

Definition 5 (Weight of View). Let v be a view con-
structed by edges E′ = {ei}. The weight of v is: wview (v) =

(
∏

ei∈E′ w(ei))
1
2

In general, the weight assignments on views can be very
elaborate. For example, views transformed from partial join
path specified by the user should have very high weight.

Similarly, query patterns mined from the query log can have
different weights according to their frequency and other prop-
erties. Such careful tuning is beyond the scope of this paper.

Definition 6 (Construction Weight of JN). Let jn
be a join network built by views VIEW ′ = {vi} and edges E′

= {ej} (not contained by any vi). The construction weight
of jn is: wcon(jn) = (

∏
vi∈VIEW ′ w(vi))(

∏
ej∈E′ w(ej))

The above formula gives the weight of a particular con-
struction of a join network. In many cases, the same join
network can be constructed in more than one ways, with
one constructed only by edges and others containing views.
In this case, we take the highest construction weight of the
join network as its weight.

Definition 7 (Weight of JN). Given a join network
jn with all possible construction weights {w1

con(jn) ,..., wn
con(jn)},

the weight of jn is defined as:

w(jn) = MAX (w1
con(jn), ..., wn

con(jn))

Example 8. One join network in Figure 6 is shown in
Figure 7. If this join network is constructed from scratch,
its construction weight is the multiplication of all its edge
weights, which is 0.23. Another way to construct the example
join network is to use the view1 in Figure 6. view1 itself
is weighted

√
0.91 ∗ 0.7 ∗ 0.7 ∗ 0.87, which is 0.62. Thus the

construction weight in using view1 is 0.62 ∗ 0.7 ∗ 0.84 =
0.36. This is the highest construction weight of this join
network. So its weight is 0.36.

Person(rt1) Actor() Director() Person(rt2)
0.91 0.7 0.7 0.87

view1 (weighted 0.62)

Movie(rt4)

Company(rt3) Movie_
Producer()

0.84 0.7

Figure 7: Weight of a Join Network.

6. GENERATING TOP K INTERPRETATIONS
OF SCHEMA FREE SQL

The weight functions described above are heuristic, with
no guarantee of the top ranked network being the one de-
sired. For this reason, we would like to be able to generate
the top several choices. Given the combinatorial number of
possible join networks, it is important to develop efficient
algorithms to accomplish this. In Section 6.1, we give al-
gorithms to efficiently generate k MTJNs with the highest
weights. In Section 6.2, we translate the input Schema-free
SQL into a full SQL with the help of an MTJN.

6.1 Top k MTJNs Generation
The basic idea in our algorithm is to first select a set of

nodes in the graph as initial JNs and then gradually expand
this set until top k minimal total ones are generated. The
resulting Algorithm 1 is shown in Figure 8. We choose the
nodes that are mapped by the first relation tree as roots to
expand. We rank these roots by their potential (line 2) and
expand high potential ones first. (How to estimate potential
will be discussed at the end of this subsection). KMTJNUp-
date, shown in Algorithm 2, is the main workhorse of Algo-
rithm 1. We call it to expand each root and update kMTJN

(line 4). To avoid generating isomorphic MTJNs from differ-
ent roots, we delete each root from the extended view graph
after it is expanded (line 5).

The efficiency of the algorithm mainly depends on the to-
tal number of JNs expanded. In DISCOVER [8], JNs are
expanded arbitrarily. As a result, large numbers of isomor-
phic JNs are generated since the edges in a JN can be added
in different orders. In our algorithm, we use legality test to
ensure that each JN will be generated only once (line 7). But
even without generating isomorphic JNs, the total number of
JNs still increases exponentially with the length of JNs. So it
is very beneficial if the JNs that do not have the potential to
generate a top k MTJN can be pruned out early. In our al-
gorithm, we use potential estimation to prune out JNs with
no potential early (line 11-12). If a JN cannot expand to
an MTJN with weight higher than the current kth MTJN’s
weight, it will be pruned out. To maximize this pruning ben-
efit, we generate k MTJNs with high weights early by using
a priority queue to store all partially expanded JNs ordered
by their potential and expanding high potential ones first
(line 3-12).

Algorithm*1:*InitMTJNGen(G
X
(V

X
,-E

X
,-VIEW

X
),'RT)�

1:-kMTJN-���
2:-rank-all-R

i
-mapped-by-rt

1
-by-decreasing-R

i
.poten6al*

3:-for*all*R
i
,-do*�

4:-----KMTJNupdate(R
i
,'G

X
,'kMTJN)�

5:-----remove-R
i
-from-G

X
�

6:-return-kMTJN;'�

Algorithm*2:*KMTJNupdate(R
i
,-G

X
(V

X
,-E

X
,-VIEW

X
),-kMTJN)�

--1:-PriorityQueue-���
--2:-jn-=-a-tree-of-single-node-R

i
!

**3:-PriorityQueue.push(jn)�
--4:-while-PriorityQueue-≠�do*
--5:-----jn-=-PriorityQueue.pop()'-�
�6:-----for*all-e-�-E

X
-and-view�-VIEW

X
'do�

--7:---------if-e'(or-view)-can-be-legally-added-to-jn-then!
--8:-------------jn’'=-a-tree-expanded-from-jn-by-adding-e-(or-view)*
--9:-------------if-jn’-is-both-minimal-and-total-then�
10:-----------------update(kMTJN)�
11:-------------else*if*jn’.poten6al-≠-0-then�
12:-----------------PriorityQueue.push(jn)-

13:-return-kMTJN�

Algorithm*3:*PotenQalEsQmate(jn,-G
X
(V

X
,-E

X
,-VIEW

X
)','RT)�

--1:-jn’-=-jn;-L';'w'='jn.weight;''

--2:-for*all*rt
i
'RT-*

**3:-----if*jn’'does'not'contain'rt
i
�

--4:---------L.addAll(Map(rt
j
))�

--5:-While-jn’'is'not'total-do�
--6:-----find-Rrtj*in'L-which-has-shortest-path-p'to-jn’�
--7:-----jn’.add(p)'

!!8:-----w'*='weight(p)�
--9:-----R.removeAll(Map(rt

j
))!

10:-return-w;'�

Figure 8: Top k MTJNs Generation

Algorithm*1:*InitMTJNGen(G
X
(V

X
,-E

X
,-VIEW

X
),'RT)�

1:-kMTJN-���
2:-rank-all-R

i
-mapped-by-rt

1
-by-decreasing-R

i
.poten6al*

3:-for*all*R
i
,-do*�

4:-----KMTJNupdate(R
i
,'G

X
,'kMTJN)�

5:-----remove-R
i
-from-G

X
�

6:-return-kMTJN;'�

Algorithm*2:*KMTJNupdate(R
i
,-G

X
(V

X
,-E

X
,-VIEW

X
),-kMTJN)�

--1:-PriorityQueue-���
--2:-jn-=-a-tree-of-single-node-R

i
!

**3:-PriorityQueue.push(jn)�
--4:-while-PriorityQueue-≠�do*
--5:-----jn-=-PriorityQueue.pop()'-�
�6:-----for*all-e-�-E

X
-and-view�-VIEW

X
'do�

--7:---------if-e'(or-view)-can-be-legally-added-to-jn-then!
--8:-------------jn’'=-a-tree-expanded-from-jn-by-adding-e-(or-view)*
--9:-------------if-jn’-is-both-minimal-and-total-then�
10:-----------------update(kMTJN)�
11:-------------else*if*jn’.poten6al-≠-0-then�
12:-----------------PriorityQueue.push(jn)-

13:-return-kMTJN�

Algorithm*3:*PotenQalEsQmate(jn,-G
X
(V

X
,-E

X
,-VIEW

X
)','RT)�

--1:-jn’-=-jn;-L';'w'='jn.weight;''

--2:-for*all*rt
i
'RT-*

**3:-----if*jn’'does'not'contain'rt
i
�

--4:---------L.addAll(Map(rt
j
))�

--5:-While-jn’'is'not'total-do�
--6:-----find-Rrtj*in'L-which-has-shortest-path-p'to-jn’�
--7:-----jn’.add(p)'

!!8:-----w'*='weight(p)�
--9:-----R.removeAll(Map(rt

j
))!

10:-return-w;'�

Figure 9: Top k MTJNs Update

Now we discuss the two important functions, legality test
and potential estimation, in detail.

Legality Test: We could, by adding edges in different or-
ders, create the same (isomorphic) join network (JN) mul-
tiple times from the same root. To avoid that, rightmost
path expansion technique has been proposed in [12]. In their
method, a unique numeric label is added to each node in the
graph and a JN is modeled as a rooted, ordered tree, in which
the children of each node are ordered by their numeric label.
The intuition is that only the rightmost nodes, at any level,
in the tree are allowed to expand and the newly expanded
node must be the rightmost node at its level. In the case of
extended view graph, the situation is more complex since a

JN can be expanded by a view, which means a set of edges
will be added to the JN at the same time. We adapt the
rightmost path expansion to extended view graph.

Given a join network jn and a view view , view can be
legally added to jn only if they share exactly one node (the
shared node must be a rightmost node in jn). Now, view
is also considered as a rooted, ordered tree, which is rooted
at the shared node (denoted as root(view)) and orders each
node’s children by their numeric labels. The expansion is
considered as the view is added to jn at root(view). root(view)
might have children both in view and jn. In this case, the
rightmost child of root(view) must be in view , not in jn.
Otherwise, the expansion will be considered illegal. Also,
each view has a numeric label, if jn has already been ex-
panded by some views, the label of the newly added view
must be larger than all previously added views. After ex-
panding jn with view , all the previous nodes in jn, which
are to the left of view (the order of the node is smaller than
the biggest order in the view in post-order traversal), are
marked non-rightmost. While all newly expanded nodes are
marked as rightmost no matter if they are in the rightmost
root-to-leaf path. Following these rules, each JN will be
generated at most once in the whole process1.

Example 9. Take the JNs in Figure 10 as an example.
We suppose that the numeric label of Movie Producer is
smaller than the numeric label of Actor and the numeric
label of Actor is smaller than the numeric label of Director.
So if they appear as siblings to each other, Movie Producer
is always to the left of Actor and Actor is always to the
left of Director. Look at the JN (e), the nodes of Moviert4 ,
Director and Personrt2 are the rightmost nodes at each level.
To distinguish rightmost nodes from others, all the rightmost
nodes are marked red. JN (d) can never be expanded from
JN (b), since the node Movie Producer is not rightmost node
and cannot be expanded any more. Similarly, the expansion
from JN (d) to JN (e) is not an legal expansion, since the
newly added node Actor is to the left of an existing child
Director. Also, the JN (b) can never be an MTJN since
the node Movie Producer is not rightmost and hasn’t been
mapped by any relation tree, which will violate the Minimal
Condition after it reach the Total Condition. So the expan-
sion from JN (a) to (b) is illegal. JN (c) can be expanded
to JN (f) directly by adding the view1 in Figure 6, since JN
(c) and view1 share only one node Moviert4 and the right-
most child of Moviert4 is Director, which is in view1, not
in JN (c). Note that all the nodes of the newly added view
are marked rightmost.

Potential Estimation: Our pruning is based on a JN’s
potential to generate a top k MTJN. Given a JN jn, we ap-
proximate the upper bound of the weight of all the MTJNs
that can be expanded from jn (denoted as upper(jn)) and
use it as its potential. We set the potential to 0 if the ap-
proximated upper bound is lower than the weight of the cur-
rent kth MTJN. The benefit of using upper(jn) is two-fold.
First, if upper(jn) is lower than the weight of the current
kth MTJN, jn can be pruned out almost safely. Second, the
higher upper(jn) is, the more likely jn can generate a top k
MTJN.

1The only exception is when a JN can be constructed in
more than one way using different components. For each
construction, the JN may be generated once.

Movie(rt4) Movie(rt4)

Company(rt3)

Movie(rt4) Movie(rt4)

(a) (c)

Movie(rt4)

(b) (d) (f)

(e)

Movie_
Producer

Movie_
Producer

Movie_
Producer

Director

Director Movie_
Producer

Company(rt3) Person(rt1) Person(rt2)

Actor

Movie(rt4)

Director Actor Movie_
Producer

Director Movie_
Producer

Company(rt3) Person(rt1) Person(rt2) Company(rt3) Person(rt2)

Figure 10: Rightmost Path Expansion

The potential estimation algorithm is shown in Figure 11.
We first find all relation trees not contained by jn and then
put the nodes mapped by these relation trees into a list
L. For each round, we choose the node Rrtj that has the
shortest (highest weight) path to jn and connect it through
the path. After that, we delete all the nodes in L to which rtj
maps. We repeat this process until the jn is total. We use
the weight of this jn as its potential. Later, If the potential
is lower than the current kth MTJN’s weight, it will be set
0. Consider jn may contain views, before we estimate the
potential, we set the weight of each edge on the graph as its
square root if the edge is contained in a view.

Algorithm*1:*InitMTJNGen(G
X
(V

X
,-E

X
,-VIEW

X
),'RT)�

1:-kMTJN-���
2:-rank-all-R

i
-mapped-by-rt

1
-by-decreasing-R

i
.poten6al*

3:-for*all*R
i
,-do*�

4:-----KMTJNupdate(R
i
,'G

X
,'kMTJN)�

5:-----remove-R
i
-from-G

X
�

6:-return-kMTJN;'�

Algorithm*2:*KMTJNupdate(R
i
,-G

X
(V

X
,-E

X
,-VIEW

X
),-kMTJN)�

--1:-PriorityQueue-���
--2:-jn-=-a-tree-of-single-node-R

i
!

**3:-PriorityQueue.push(jn)�
--4:-while-PriorityQueue-≠�do*
--5:-----jn-=-PriorityQueue.pop()'-�
�6:-----for*all-e-�-E

X
-and-view�-VIEW

X
'do�

--7:---------if-e'(or-view)-can-be-legally-added-to-jn-then!
--8:-------------jn’'=-a-tree-expanded-from-jn-by-adding-e-(or-view)*
--9:-------------if-jn’-is-both-minimal-and-total-then�
10:-----------------update(kMTJN)�
11:-------------else*if*jn’.poten6al-≠-0-then�
12:-----------------PriorityQueue.push(jn)-

13:-return-kMTJN�

Algorithm*3:*PotenQalEsQmate(jn,-G
X
(V

X
,-E

X
,-VIEW

X
)','RT)�

--1:-jn’-=-jn;-L';'w'='jn.weight;''

--2:-for*all*rt
i
'RT-*

**3:-----if*jn’'does'not'contain'rt
i
�

--4:---------L.addAll(Map(rt
j
))�

--5:-While-jn’'is'not'total-do�
--6:-----find-Rrtj*in'L-which-has-shortest-path-p'to-jn’�
--7:-----jn’.add(p)'

!!8:-----w'*='weight(p)�
--9:-----R.removeAll(Map(rt

j
))!

10:-return-w;'�

Figure 11: Potential Estimation

The most computationally complex part in this process is
the computation of the shortest paths (highest weight paths)
between each pair of nodes in the view graph. Since we can
compute all shortest paths once and use them repeatedly,
the whole potential estimation process can be efficient.

6.2 Standard SQL Composer
After the generation of the top k MTJNs, k full SQL

queries can be generated, one corresponding to each MTJN.
This is accomplished as a three-step translation of the given
Schema-free SQL query.

1. All the uncertain/unknown relation (attribute) names
in the relation tree are replaced by the relation (at-
tribute) names in the corresponding relations in the
MTJN.

2. All the relations in the MTJN are included in the
FROM clause. If a relation appears more than once
in the MTJN, the keyword AS is used to give an alias
to each appearance.

3. All the edges in the MTJN are included in the WHERE
clause as a join condition to join these relations.

Example 10. Using the MTJN in Figure 7, we transform
the Schema-free SQL in Figure 2 into its corresponding full
SQL. The transformation process is shown in Figure 12.

Step%1:%

Step%2:%
From%Person%as%Personrt1,%Person%as%Personrt2,%Actor,%%%
%%%%%%%%%%Director,%Movie%as%Moviert4,%Movie_producer,%%
%%%%%%%%%%Company%as%Companyrt3%

Step%3:%

Personrt1.person_id%=%Actor.person_id%
Actor.movie_id%=%Movie.movie_id%
Movie.movie_id%=%Director.movie_id%%
Director.person_id%=%Personrt2.person_id%
Movie.movie_id%=%Movie_Producer.movie_id%
Movie_Producer.company_id%=%Company.company_id%%

s%

SELECT%count(actor?.name?)%
WHERE%actor?.gender?%=%“male”%
%%%%%%%and%director?.name?%=%“James%Cameron”%%
%%%%%%%and%produce_company?%=%“20th%Century%Fox”%
%%%%%%%and%year?%>%1995%
%%%%%%%and%year?%<%2005;%%

actor?%%→%Personrt1%(name?%→%name,%gender?%→%gender)%
director_name?%→�Personrt2.name%
produce_company%→%Companyrt3.name%
year?%→%Moviert4.release_year%%

SELECT%count(Personrt1.name)%
WHERE%Personrt1.gender%=%“male”%
%%%%%%%and%Personrt2%.name%=%“James%Cameron”%%
%%%%%%%and%Companyrt3.name%=%“20th%Century%Fox”%
%%%%%%%and%Moviert4.release_year%>%1995%
%%%%%%%and%Moviert4.release_year%<%2005;%%

SELECT%count(Personrt1.name)%
From%Person%as%Personrt1,%Person%as%Personrt2,%Actor,%%%
%%%%%%%%%%Director,%Movie%as%Moviert4,%Movie_producer,%%
%%%%%%%%%%Company%as%Companyrt3%
WHERE%Personrt1.gender%=%“male”%
%%%%%%%and%Personrt2%.name%=%“James%Cameron”%%
%%%%%%%and%Companyrt3.name%=%“20th%Century%Fox”%
%%%%%%%and%Moviert4.release_year%>%1995%
%%%%%%%and%Moviert4.release_year%<%2005%
%%%%%%%and%Personrt1.person_id%=%Actor.person_id%%
%%%%%%%and%Actor.movie_id%=%Movie.movie_id%
%%%%%%%and%Movie.movie_id%=%Director.movie_id%%
%%%%%%%and%Director.person_id%=%Personrt2.person_id%
%%%%%%%and%Movie.movie_id%=%Movie_Producer.movie_id%
%%%%%%%and%Movie_Producer.company_id%=%Company.company_id;%%

Figure 12: Full SQL Translation Process.

7. EXPERIMENTAL RESULTS

7.1 Evaluation Method
There are two crucial aspects we must evaluate: whether

the system can correctly translate Schema-free SQL queries
to full SQL queries (effectiveness), and how much work the
user has to do in composing Schema-free SQL queries (us-
ability). In addition, we must ensure that the running time
of our algorithm is fast enough for interactive use.

Effectiveness: In keyword search systems, researchers
often use IR metrics like precision and recall to evaluate the
search quality. But these IR metrics would not work very
well for Schema-free SQL since they will always be 100% if
a Schema-free SQL is correctly translated into full SQL, and
will be near 0% in most times when it is not. So, in our sys-
tem, we evaluate the effectiveness by counting the fraction
of Schema-free SQL queries that can be translated correctly
in one of the top k translations. In our experiments, we test
the cases when k equals 1 and 10.

User Burden: One way to quantify the user’s burden in
using a query system is to measure the cost (e.g. keystrokes,

time) in the query construction. Recently, in [16, 14], re-
searchers quantified the cost by counting the number of
schema elements users specified in query construction. Fol-
lowing their lead, we use the concept of information unit
as an objective metric to quantify the cost. In a query, any
schema element, including a relation name and an attribute
name, is an information unit. We evaluate the cost of a
query by counting the number of information units used.
In Schema-free SQL, many schema elements may be speci-
fied approximately, or partially. To avoid a complex model
involving partial information units, we significantly overes-
timate the cost of our system by counting each of these as
one full information unit.

Example 11. The cost of the example Schema-free SQL
in Figure 2 is 6: actor, gender, name, director name, year
and produce company.

Many visual SQL query builders [1, 2, 3] interactively help
the user to complete the join path when the user drags and
drops a relation to the query construction window. As a
representative of this class of interfaces, we use Flyspeed
SQL Query [2] to conduct experiments for comparison.

For Schema-free SQL, separate evaluation of the effective-
ness or usability is meaningless since our system can take in
standard SQL, which has a 100% effectiveness but high user
burden, or keywords (with SQL structure), which has low
user burden but low effectiveness. The point of Schema-free
SQL is not to be at either extreme, but rather to be some-
where in between: the user expresses partial schema knowl-
edge they have and the system does the rest. Furthermore,
it is reasonable to assume that users can express selections
and projections, but may not be able to specify joins. Our
experimental assessment focuses on just such a scenario, to
assess the degradation in effectiveness and gain in usability
compared to fully specified SQL.

There are several tuning parameters in our algorithms.
We ran some initial experiments to determine good values
for these parameters. Based on these experiments, not re-
ported for lack of space, we set σ = kref = c = 0.7 and
kdef = 0.3.

7.2 Movie Database
In this subsection, we evaluate the effectiveness and users’

cost in queries over the Yahoo-Movie database, which has 43
relations and 71 FK-PK pairs. The generation of query sets
is a challenging task itself. First, Schema-free SQL is sup-
posed to be composed by users who can express query logic
in SQL but do not know the exact schema of the database.
Second, we would like the queries to cover most of the major
functions of SQL to test whether Schema-free SQL can be
correctly translated in different cases.

In order to satisfy these conditions, we chose two query
sets. The first is composed of 17 example SQL queries2 in
a textbook [15], which are used to illustrate how to com-
pose SQL queries. This query set includes single relation
queries, multi-relation queries, queries with multi-level sub-
queries, and queries with aggregations. These queries were
originally written for a mini database composed of 5 rela-
tions, not for Yahoo-Movies. We preprocess all these SQL

2There are altogether 27 complete SQL queries in [15]. We
remove 10 of them that contain information outside Yahoo-
Movie.

queries in the following steps to remove some misleading
information: delete all the FK-PK join paths in WHERE
clause and the relation names in the FROM clause, then
merge all the column names with their corresponding rela-
tion names. When using these queries to query the Yahoo-
Movie database through our system, all 17 queries can be
correctly translated to full SQLs in the top 1 translation.
Note that in this experiment, no view graph is used to en-
hance effectiveness. The user’s burden for these queries
is shown in Figure 13. Generally, these Schema-free SQL
queries specify only 35 (respectively, 55) percent as many
information units as their corresponding full SQL queries
(with a visual query builder). In short, a good visual query
builder can reduce the query specification cost, compared to
full SQL, but Schema-free SQL can reduce it further.

0"

5"

10"

15"

20"

25"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17"

SF.SQL"
GUI"
SQL"

In
fo
rm

a(
on

)U
ni
t
�

Figure 13: Information Unit Cost for the Queries in
the Textbook.

To test the accuracy and usability of our method in sophis-
ticated queries, which refer to many relations and contain
complex join paths, we chose six complex queries as our sec-
ond query set, in which each one has a join path with more
than five relations. We recruited five students who are major
in information science, all familiar with SQL but not with
the schema of Yahoo-Movie, and asked them to specify these
six queries, based only on the natural language description
shown in Figure 14. The result is that all the users are able
to specify all queries in Schema-free SQL and get the cor-
rect full SQL queries in the top 1 translation. The average
of their information unit cost is only 24 (resp. 45) percent of
the full SQL queries (with a visual query builder). Details
are shown in Figure 14. Once again, view graphs are not
used to enhance effectiveness.

7.3 Course Database
To challenge our system with more sophisticated queries,

we obtain a set of 48 complex SQL queries against the course
database used in CourseRank [5] comprising 53 relations.
We generate Schema-free SQL by deleting all the FK-PK
join paths in the WHERE clauses and all the relations in
the FROM clauses excepting the relations at the ends of
each join path, which are typically used for selection or pro-
jection: information which a typical user should be able to
specify. We also asked a student with experience in database
application development to create his own schema that cov-
ers the query intent in all the 48 queries. He designed a
schema with only 21 relations, very different from the Cours-
eRank schema. We ran the same Schema-free SQL queries
over the two schemas. For each query, we test if it can
be translated correctly in the best translation or at least
in one of the top 10 translations over the two schemas. In
our first test, we use schema graph as the underlying data
model abstraction. The result is shown in Figure 15. The

Queries:((SF�SQL(GUI(SQL(

1(Male(actors(cooperated(with(director(“James(Cameron”(in(the(movies(produced(by(company(“20th(
Century(Fox”(from(1995(to(2010.((6.6(12(22(

2(Movies(with(genre(“Drama”(and(director(“Peter(Jackson”.((3.4(8(15(

3(Movies(produced(by(company(“Carthago(Films”,(distributed(by(company(“Apollo(Films”,(and(directed(by(
director(“Fahdel(Jaziri”.((4.6(11(21(

4� The(number(of(movies(directed(by(“Steven(Spielberg”(and(acted(by(“Tom(Hanks”.(� 3.4� 8� 15�

5� Actors(acted(more(than(3(movies(with(genre(“AcWon(Adventure”(directed(by((“Woody(Allen”.� 3.8� 10� 20�

6� Movies(with(genre(“Drama”,(financed(by(company(“LLC”,(directed(by(“Stephen(Gaghan”.� 5� 11� 21�

Figure 14: Sophisticated Queries for Yahoo-Movie Database.

translation quality decreases significantly when the queries
become more complex. That is because when a query refers
to more relations, the number of possible join paths grows
sharply. Unsupervised join path generation cannot accu-
rately tell which join paths are better than others.

In our second test, we use the view graph instead of schema
graph as the underlying data model abstraction. We order
all the queries by the number of relations they refer to. After
each query is tested, we transform it to a view for future use.
By doing so, the construction of complex queries can benefit
from the previous simple queries by using them as building
blocks. The result is shown in Figure 15. The translation
quality is improved significantly by using view graph. We
see that working with a different schema has virtually little
impact on effectiveness, at least for simpler queries. There
is a slight effect for complex queries (with 6-10 relations).

Rela%ons)referred)
in)Query)) Top)1) Top)10) Top)1)with)

View)Graph)
Top)10)with)
View)Graph)

2"–"4" 9/11"(8/11)" 11/11"(10/11)" 9/11"(8/11)" 11/11"(10/11)"
5" 17/26"(17/26)" 22/26"(22/26)" 25/26"(25/26)" 26/26"(26/26)"

6"–"10" 5/11"(2/11)" 5/11"(2/11)" 10/11"(7/11)" 11/11"(8/11)"

Figure 15: Effectiveness with/without Query Logs
(the numbers in parentheses are for the schema with
21 relations)

The information unit costs are shown in Figure 16. In
general, Schema-free SQLs only specify 33 (reps. 62) percent
as many information units as full SQL queries (with a visual
query builder).

0"

5"

10"

15"

20"

25"

30"

35"

1" 3" 5" 7" 9" 11" 13" 15" 17" 19" 21" 23" 25" 27" 29" 31" 33" 35" 37" 39" 41" 43" 45" 47"

SF,SQL"

GUI"

SQL"

In
fo
rm

a(
on

)U
ni
t
�

Figure 16: Information Unit Costs in Queries on the
Course Database

Finally, we note that the bulk of the execution time is con-
sumed by the Join Network generation. Therefore, we test
the efficiency of the algorithms in top k MTJNs generation.
We compare the algorithm described in Section 6.1 with

the algorithms modified from [8] (Regular) and [12] (Right-
most). The modifications are (a) the expansion stops when
the top k MTJNs are generated, and (b) the expansion of a
JN can be either adding an edge or adding a view. We test
their running time for k equals to 1 and test our algorithms
for various k. The results are shown in Figure 17. Note
that the time is the average query time for queries with the
same number of relations involved (denoted as size). The
algorithm modified from [8] slows down with size quickly
since too many isomorphic JNs exist. The algorithm modi-
fied from [12] behaves much better since it ensures that each
JN will be expanded at most once. For our algorithm, we
compute the upper bound of the weight for each partially ex-
panded JN and prune out many JN before their size reach
size. For these reasons, our algorithm runs substantially
faster (notice that the Y-axis is on a log scale). We also see
that there is a noticeable, but modest, cost to generating
multiple MTJN, and this cost grows with query complexity.

Numbers of Relation Involved

Ti
m

e
 (

s)

0.001

0.01

0.1

1

10

2 3 4 5 6 7 8 9 10

 Regular
 RightMost
 Top 10
 Top 5
 Top 1

Figure 17: Efficiency Test

8. RELATED WORK
The goal of Schema-free SQL is to make sophisticated

queries easier to compose over relational databases. There
are various efforts toward making database systems more
usable and [9] provides a good review for existing methods.

One strategy towards making relational database usable is
using keyword search [17]. Two main families of methods are
used: schema-based approaches (e.g. DISCOVER [8]) and
graph-based approaches (e.g. BANKS [6]). Schema-based
approaches first translate the keywords into a set of mini-
mal total join networks (MTJN) and then evaluate them.
Our MTJNs generation follows DISCOVER, but we focus
on ranking MTJNs accurately through view graph and de-
sign algorithms to generate only the top one or few top k of
them efficiently. In graph-based approaches, the database
is modeled as a data graph, in which each node is a tu-
ple [6]. Steiner trees of tuples that contain all the keywords

are constructed directly on the data graph and outputted as
results.

Recently, variations of keyword-based search have been
proposed. SQAK [14] supports aggregation functions in key-
word search. In [7], keyword search and form-based search
are combined. In their system, a set of forms is pre-specified.
When a user types in some keywords, the system returns the
forms most relevant to the keywords. Qunits [13] represents
the database as a collection of independent basic conceptual
documents (Qunits), each of which represents the desired
results for some queries. Qunits adopts IR-based methods
to find the most relevant Qunits as query results.

Visual query builders (e.g. [1, 2, 3]) are widely used to
facilitate the building of SQL queries. We view the carefully
designed GUI features and our approach as complimentary
to each other - while GUI can help to fix the relaxations in
Schema-free SQL interactively with the user, Schema-free
SQL can provide more powerful functions for metadata ex-
ploration and join path auto-completion. Take join path
auto-completion as an example. A visual query builder sup-
ports creating the join path by dragging and dropping all the
relevant relations to a new window. However, this process
is not often easy since the meaning of some relations in the
join path may be implicit. By merging with our join path
generation approach, a user can create a join path by drag-
ging and dropping only the end relations (relations at the
end of the join path whose meanings are always explicit for
selection or projection), and our system will add the internal
ones automatically. A system that performs this merger is
left to future work: our experimental evaluation considered
the two complementary approaches independently.

SchemaSQL [10] is a principled extension to SQL, which
allows its variables to range over relations and attributes
in multi-database systems. This paper elegantly supports
multi-database heterogeneity, and develops precise seman-
tics to handle concepts that are modeled as attributes in one
database but as relations in another and as tuples in a third.
In its implementation, all the schema elements are stored in
a relation called Federation System Table (FST). By exe-
cuting SQL on the FST, it resolves the open-ended schema
elements of the query into specific ones. In this resolution
of schema element variables, Schema-free SQL bears some
superficial resemblance to SchemaSQL. However, the prob-
lem being addressed is fundamentally different. SchemaSQL
gives users the tools to manage semantic heterogeneity, but
does not relieve them of the burden of knowing the target
schema, and of writing a precise query. Given a SchemaSQL
query, there is only one correct interpretation of the query
against any given schema (at most). In contrast, our focus
is not directly on heterogeneity, but rather on the user’s lack
of schema knowledge, to which heterogeneity is likely to be
an important contributing factor. Schema-free SQL queries
are under-specified, and do not have unique interpretations.
Our task is to infer user intent.

To facilitate users in querying XML database, Schema-
free XQuery [11] integrates keyword search functionality into
XQuery as built-in functions. By doing this, it enables users
to query XML documents based on whatever partial knowl-
edge they have. Our work is directly inspired by this.

9. CONCLUSION AND FUTURE WORK
In this paper, we proposed Schema-free SQL, which en-

ables its users to compose complex queries over relational

databases without requiring full knowledge of the database
schema. To support Schema-free SQL, we provide a modular
architecture and specific techniques in each module: rep-
resenting the partial schema information in relation trees,
mapping relation trees to relations in the database based
on the similarity evaluation, generating “good” minimal to-
tal join networks of relations on the view graph, and finally
translating the Schema-free SQL into full SQL. Our exper-
iments suggest that Schema-free SQL can greatly decrease
users’ burden, particularly for complex queries, with hardly
any loss in effectiveness compared to standard SQL.

Substantial scope for further work remains. First, to take
the most advantage of view graph, we will develop tech-
niques to manage the views: mining frequently appearing
query patterns in the query log and setting a proper weight
for each view. Second, we will merge Schema-free SQL with
visual query builders to both resolve relaxations in Schema-
free SQL interactively and provide more powerful functions
for visual query builder in metadata exploration and join
path auto-completion. Third, we want to take a step fur-
ther in usability by developing a natural language query sys-
tem over Schema-free SQL, which can enable naive users to
compose complex queries over relational databases.

10. REFERENCES
[1] Active query builder: www.activequerybuilder.com.
[2] Flyspeed sql query: www.activedbsoft.com.

[3] Sqleo visual query builder: sqleo.sourceforge.net.
[4] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A

system for keyword-based search over relational databases.
In ICDE, pages 5–16, 2002.

[5] B. Bercovitz, F. Kaliszan, G. Koutrika, H. Liou, Z. M.
Zadeh, and H. Garcia-Molina. Courserank: a social system
for course planning. In SIGMOD Conference, pages
1107–1110, 2009.

[6] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in
databases using banks. In ICDE, pages 431–440, 2002.

[7] E. Chu, A. Baid, X. Chai, A. Doan, and J. F. Naughton.
Combining keyword search and forms for ad hoc querying
of databases. In SIGMOD Conference, pages 349–360, 2009.

[8] V. Hristidis and Y. Papakonstantinou. Discover: Keyword
search in relational databases. In VLDB, pages 670–681,
2002.

[9] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian,
Y. Li, A. Nandi, and C. Yu. Making database systems
usable. In SIGMOD Conference, pages 13–24, 2007.

[10] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian.
Schemasql: An extension to sql for multidatabase
interoperability. ACM Trans. Database Syst.,
26(4):476–519, 2001.

[11] Y. Li, C. Yu, and H. V. Jagadish. Schema-free xquery. In
VLDB, pages 72–83, 2004.

[12] A. Markowetz, Y. Yang, and D. Papadias. Keyword search
on relational data streams. In SIGMOD Conference, pages
605–616, 2007.

[13] A. Nandi and H. V. Jagadish. Qunits: queried units in
database search. In CIDR, 2009.

[14] S. Tata and G. M. Lohman. Sqak: doing more with
keywords. In SIGMOD Conference, pages 889–902, 2008.

[15] J. D. Ullman and J. Widom. A first course in database
systems (2. ed.). Prentice Hall, 2002.

[16] C. Yu and H. V. Jagadish. Querying complex structured
databases. In VLDB, pages 1010–1021, 2007.

[17] J. X. Yu, L. Qin, and L. Chang. Keyword search in
relational databases: A survey. IEEE Data Eng. Bull.,
33(1):67–78, 2010.

