Efficient Provena

Adriane P. Chapman
University of Michigan
Ann Arbor, M1 48109

apchapma@umich.edu

ABSTRACT

As the world is increasingly networked and digitized, the data we
store has more and more frequently been chopped, baked, dice

H.V. Jagadish
University of Michigan
Ann Arbor, MI 48109

jag@umich.edu

nce Storage

Prakash Ramanan
Wichita State University
Wichita, KS 67260
ramanan@cs.wichita.edu

provenance of an item describes where the item comes from [9],
and why it is found in its current place [4, 12]. Increasingly, prove-

Jrance capture, storage, querying and form have received much at-

and stewed. In consequence, there is an increasing need to stor{aention [4,5,7,9,11, 14, 15, 20, 25, 34].

and manage provenance for each data item stored in a database, de-

scribing exactly where it came from, and what manipulations have

Recently, several scientific endeavors have been coupled with
provenance management studies. Chimera [14] has been used with

been applied to it. Storage of the complete provenance of each datd?1ySics and astronomy data; myGRID [19] with biological data;

item can become prohibitively expensive. In this paper, we identi
important properties of provenance that can be used to considerabl

fy Collaboratory for Multi-Scale Chemical Science (CMCS) [27] with
)phemistry data; Earth System Science Workbench (ESSW) [16]

reduce the amount of storage required. We identify three different with earth science data. These experiments can invell8TB

techniques: a family of factorization processes and two methods

of actual base data [1]. Unfortunately, the provenance information

based on inheritance, to decrease the amount of storage require(‘J\’an grow to be many times larger than the base data [1, 11, 19, 27].

for provenance.

We have used the techniques described in this work to signif-
icantly reduce the provenance storage costs associated with con
structing MiMI [22], a warehouse of data regarding protein inter-
actions, as well as two provenance stores, Karma [31] and PReSer
[20], produced through workflow execution. In these real prove-
nance sets, we were able to reduce the size of the provenance by u
to a factor of 20. Additionally, we show that this reduced store can
be queried efficiently and further that incremental changes can be
made inexpensively.

Categories and Subject Descriptors

H.2.8 [Database Applicationg: Scientific databases; E.rbtal:
Miscellaneous

General Terms
Algorithms, Documentation, Experimentation

Keywords
Provenance storage, Provenance compression

INTRODUCTION
Itis well recognized thaProvenanceor the history of an item, is
as important for scientific data as it is in the study of arts and antiqg-
uities. Derived from the Latin worgdrovenire“to come forth”, the

1.

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMOD’08,June 9-12, 2008, Vancouver, BC, Canada.

Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

This is particularly true if the provenance is fine-grained, particu-
larly rich, or a large number of operations have been performed on

each piece of data.

For instance, in a recent provenance use study [19], provenance

Jvas attached to an experiment to determine the structure of pro-

tein sequences using GRID technology [15]. Starting with sets of

rotein sequences, a workflow containing about 12 steps was run.

he base data was about 100Kb; the provenance size was approxi-
mately 1MB, which is ten times the data size [19]. Other scientific
experiments run in conjunction with provenance storage produce
similar results. MiMI [22], an online protein interaction database
is 270MB; its provenance store is 6GB. We also have anecdotal ev-
idence of a real deployed scientific data system where provenance
information was partially removed to reduce the storage overhead
[30].

To gain an appreciation of where the enormous size of prove-
nance comes from, consider the following small example:

EXAMPLE 1. There are many large protein interaction datasets,
including HPRD [28] and BIND [2]. Figures 1(a)-1(b) show a
small extract from each. A biologist may wish to integrate infor-
mation from these two sources. To do this, she must first create a
unified schema and transform the individual datasets into it. Then,
she merges the datasets such that overlapping entries from differ-
ent sources are combined. Finally, she runs each protein through a
name normalizing script.

Figure 1(c) depicts the workflow described above. Notice that a
piece of data starts at the bottom of the workflow, and can follow
any path through it depending on the data itself. Figure 1(d) depicts
the resulting dataset, along with the provenance associated with
each data item. Even using a small provenance record and minimal
manipulations, the size of the provenance already outweighs the
size of the dataset.

In this paper, we study how to reduce the space required to store
provenance. Ultilizing a generic provenance model, we describe
two classes of space-saving algorithms. The first is a family of

<HPRD> <BI ND>

<protein> <nol ecul e>
<name>Weel</ name> <nanme>WEE1</ nane>
<ref >P3029k/ r ef > <exti d>NP-00338k/ extid>
<descr >tyrosine kinase</ descr > <functi on>protein kinase activity</ f uncti on>
<PubMed| D>15964826</ PubMed| D> <articl e>15964826c/ article>
<l protein> </ nmol ecul e>
<protein> </ Bl ND>

<nanme>ABC1l</ name>
<ref >095477%/ r ef >
<descr >ATP binding cassette k/ descr >
<PubMed| D>16524875:/ PubMed| D>

</ protein>

<protein>
<nane>LXR </ name> Mypro Mypro
<ref >Q13133/ ref > ER
<descr >liver-X-receptor </ descr >
<PubMedl D>16524875/ PubMed| D>

</ protein>

<protein>
<nane>Chkl</ nane>
<ref >AAC51736</r ef >
<descr >cell cycle checkpoint kinase</ descr >
<PubMedl D>1125107@:/ PubMed! D>

</ protein>

</ HPRD>

PubmedID
16524875

PubmedID
11251070
I

PubmedID
16524875

PubmedID
11251070

PubmedID PubmedID
16524875 11251070

\ \
(d)

(@)

Figure 1: (a)-(b)A snapshot of proteins from HPRD and BIND. (c) The workflow used by the scientist. (d) Data and provenance for th&BC1 and
Chk1 molecules, after transforming and merging HPRD and BIND.

algorithms that reduce the size by removing duplicate provenance2. THE PROVENANCE MODEL

records and nodes. In any series of data manipulations, patterns There is currently no standard for representing provenance, al-
can be found in the provenance data. A brief glance at Figure 1(d) though an initial attempt is the Open Provenance Model [26]. Sev-
can elucidate this even in our small example. We propose a se-eral provenance capture systems exist [4, 7, 14, 19, 31], each with
ries of provenance factorizatiotechniques that find common sub- thejr own focus (actor vs data provenance), form (XML vs rela-
trees and manipulate them to reduce the provenance size. Findingjonal) and model. Also, several core systems have actively been
common subtrees is a known hard problem, studied in the contextygsed in the scientific process: Chimera [14], myGRID [19, 20],
of eliminating common subexpressions [10, 13, 18]. We use this ssw [16] and CMCS [27]. In addition, several workflow systems
work to define a “Basic Factorization algquthm. We.the.n develop actively generate provenance [3, 17, 24, 29]. From a high-level pe
several enhancements crucial for good size reduction in our con-gspective, all provenance systems have characteristics similar to the
text. We additionally develop a second set of algorithms through generic model we construct below.

provenance inheritanceThere are two distinct algorithms in this Throughout this work, we call the basic logical data unitaaa
set: one based on Structural Inheritance, and one based on Preditem Data items may be tuples or attributes in a relational table,

cate Inheritance. Finally, we show how both types of Inheritance elements or attributes in XML, objects of arbitrary granularity in
can be combined with Factorization to achieve maximum savings. an OODB, etc. One data item may completely include, overlap
We require that provenance be queriable with the base data, Sowith, or be totally disjoint from another data item. For example,
that queries such as “give me all molecules that came from HPRD" i Figure 1(d), we show six data items: twaolecule items, and
can be quickly answered. Strategies such as XMill [23] lead t0 & thejr name andID sub-items. Adatasetis comprised of a set of
representation that is not queriable. Meanwhile, XML compres- ata items. Datasets are often manipulated via workflows, whether
sors such as XGRIND [32] that facilitate querying of compressed expiicit or implicit. A workflow is defined by an input description,
stores do not support a rich enough query language. In our con-gytput description and transformation rules. An explicit workflow
text, it is imperative that users are able to specify relationships and js gne generated by any number of workflow engines [3, 6, 24, 29];
joins between data and provenance information. Our methods meetan implicit workflow is executed by a user with a specific goal in
this requirement, and can also be used in tandem with other XML mind, but without recording the executed processes. For example,
compressors for maximum size reduction.) MiMI [22] is created via an implicit workflow. A series of steps are
In Section 2, we lay the conceptual foundations needed to de- executed, but they are neither executed within a formal workflow
scribe our methods. In Sections 3—4, we outline the Factorization system, nor even fully documented. A workflow is modeled as
and Inheritance algorithms used to reduce provenance size. In Secy directed graph, where each node represents a manipulation (see
tion 5, we discuss how Factorization and Inheritance can be com- rigyre 1(c)).
bined, the ability to query the reduced provenance stores, and effect
of dataset incremental maintenance on the provenance stores. We DEFINITION 1. Manipulation:
test our reduction methods on real provenance stores, generdted anA manipulation takes one or more datasets as input and produces
stored via three distinct methods, and present results in Section 6.a dataset as output.
In Sections 7-8, we discuss related and future work as well as our
conclusions. Thus, a manipulation is a discrete component of a workflow. An
arc(ma1,m2) in a workflow graph indicates that the output of ma-

nipulationm; is fed as an input to manipulation,. We inten- Mpuprp Ofr Mprnp? The workflow is much more general, apply-
tionally leave the granularity of a manipulation unspecified. De- ing to all data items.

pending on the user’s needs and the workflow system, this can be As stated above, a data item may completely include another
anything from a simple function to a whole program. A query can data item e.g. a tuple can contain an attribute. Each data item may
be a manipulation or a tree of manipulations within a workflow. have an associated a provenance record. In Figure 1(d)\BG&

The workflow in Figure 1(c) consists of five manipulations. A few molecule data item has a provenance record, as doe®&®i77

common manipulations and examples follow: ID data item contained within it.

MANIPULATION 1. Selection DEFINITION 5. Instance-level Provenance
From an input dataset, selects a subset of data, based on some seThe provenance record associated with a particular data item in
lection condition. the dataset.

EXAMPLE 2. Inthe SDSS experiment[1], the firststepiscalled Onthe otherhand, if a query was used to create the entire dataset,
fieldPrep. This manipulation extracts measurements of the galaxiesthe query could be recorded as dataset-level provenance.

of interest from the full dataset. DEFINITION 6. Dataset-level Provenance

The provenance record associated with an entire collection of data

MANIPULATION 2. Translation .
items.

Transforms the input datasétbased on a mapping/ and outputs

!
dataset/". DEFINITION 7. Provenance Store

The repository of all provenance records relating to a dataset and

ExamMPLE 3. In Example 1, the inpuf to the translation ma- all data items in it.

nipulation is the HPRD dataset antl/ prp, @ mapping from
HPRD’s schema to the researcher’s own. The oufpi the trans- Throughout this paper, we b denote the original data store
formed HPRD dataset. that containsV data items (which may overlap), along with their
] provenance records (e.g. Figure 1(d));slete(D) denote the space
The route a data item takes through a workflow can be repre- \;sed to storeD. Each data item inD has a provenance record
sented by a tree. If a manipulation’s output is an input to two dif- 55gociated with it; so the number of provenance records isNlso
ferent manipulations, this route can be represented by a tree withgach provenance record is a tree consisting of several provenance

repeated nodes, similar to query evaluation plans. When an out-nqdes. We let, denote the total number of provenance nodeBjn
put data itemd results from an aggregation of two different input \yheren > N.

data items, its provenance record is a tree whose root element de-

scribes the aggregation step, and the two subtrees are the prove3 PROVENANCE FACTORIZATION

nance structures associated with the two input data items. This tree

is the provenance of the itedh and is shown in the “prov” subtrees Many items in a large data store may have similar or even identi-
in Figure 1(d). Note this is a tree-ified version of the provenance Cal provenance. If we could factor out common “sub-expressions
model described in the Open Provenance Model [26]. in the provenance of different items, these common portions could
be stored just once for the whole data set rather than once for each
DEFINITION 2. Provenance Record: item. We call thisprovenance factorization
The record of input, and the manipulations applied to that input, to We consider Factorization at three different levels: factorization
produce a new data item. of identical provenance records, factorization of identical prove-
nance nodes, and factorization of nodes that are identical except
DEFINITION 3. Provenance Node for their parameters.
A single manipulation, its input and parameters, that comprise a After Factorization, the provenance records and nodes are stored
part of the provenance record for a data item. in a provenance store that is separate from the data store. From each
data item, there are one or more pointers to the provenance store,
DEFINITION 4. Provenance Node Component and in some cases, these pointers have some associated annotation.
er\llr;g:]lznngsrrl:g;lealulon, input, or parameter that forms a part of a 3.1 Basic Factorization

Basic Factorization removes common provenance records; only

A provenance record is a treemvenance nodeg€ach node in one copy is stored. Each data item uses a provenance pointer to
the tree corresponds to one manipulation, andcoagponentshat point to its provenance record. For example, in Figure 2(a), the
are inputs to the manipulation. For example, in Figure 1(d), the ABC1 andLXR molecule data items are shown with their prove-
provenance record for th@BC1 molecule is a tree of two nodes. nance. The Factorization algorithm discovers that the two prove-
The transform node has the componed;prp. The curate nance records are identical, and replaces each with a pointer to the
node has the parameteubMedID 16524875. Provenance con- record, now written separately in the provenance store, as shown in
tains a record of the manipulations used, and relates processes witlrigure 2(b).
input and output data. The provenance model we presentis generic The Basic Factorization Algorithm makes one pass @veand
so that it can be applied to a variety of real-world provenance stores. separates the provenance records from the data items; its runtime is

It would be incorrect to substitute the original workflow for in- O(size(D)). When a provenance record is encountered, it is con-
formation in the provenance store. This is because the provenanceverted to a (possibly long) string; this string represents all the in-
record for each data item is very specific, giving the exact path that formation in the record. The main data structure used is a hashtable
data item took through the workflow: the original source data item on these strings; it is used to identify common provenance records.
it is based on, the exact parameters used in its manipulations, etclf the current provenance recoRlis not found in the hashtable, a
For instance, did th#zansform manipulation for that data item use copy of it is stored in the new provenance store. In the data store,

The pointer from the data items to the provenance store is used to
indicate which ofB or X is present, i.e., which ofy, or P; is the
correct provenance record for that data item.
Prov Store In order to accomplish this reduction, we must be able to deter-
mine that a) thed nodes inP, and P; are equal, b) nod® in Py is
similar to nodeX in Py, and c) the” nodes inP, andP; are equal.
Provenance Node Equality and Similarity are defined as follows.

DEFINITION 8. Provenance Node Equality:

e e Pubtted Two provenance nodesandb are equal, denoted = b, iff
\ \ \ i. they refer to the same manipulation,
@) (b) ii. all parameters and input types to the manipulation are identical.

DEFINITION 9. Provenance Node Specific Similarity:

) Two provenance nodesandb are specifically similar, with respect
Figure 2: Example of Basic Factorization. (a)ABC1 and LXR to a similarity functionS,, if S (a,b) = TRUE.

molecule data items. (b) Same data items after Basic Factorization.) o)
Notice that similarity function values are dependent on the prove-
nance nodes. For instance, we can define a similarity function

Reduction Technique Estimated Provenance Size 51(07 b) = {a.name like ‘curate’ and b.name like ‘cm‘ate’}.
No Reduction NxSornxs In this caseS; (curateH PRD, curateBIND) = TRUE, but
Basic Factorization Nop+ Ny S Si(curateHPRD, trans form) = FALSE. We writeS for the
Node Factorization nxp+4+mni*s bl imilari . defined b
Argument Factorization | n o p+ A % a + na * s set of acceptable similarity functions, as defined by a provenance
Structural Inheritance Ny xS expert familiar with the provenance store in question.
Predicate Based Inheritange N « S/T
Variables Used DEFINITION 10. Provenance Node Similarity:
% tOta'gumtflzr (:,f Pfto‘/e“ance fecordsdg N Two provenance nodesand b are similar, if they are specifically
1 numper ot aistinCt provenance records; < P . L . .
Na | number of data items whose provenance record similar with respect to some similarity functicfy () € S.
is different from that of their parent data itede < N P
n number of provenance nodes:> N Provenance node similarity, as defined above, is a b.lnz.iry'relatlon
n1 | number of distinct provenance nodes; < n on the provenance nodes. We assume that th& sétsimilarity
nz | number of distinct provenance nodes, after removing the arguments; functions is such that this relation has the following properties.
ny <ni <n ¢ Reflexive Each provenance node is similar to itself.
S | average size of a provenance record e Symmetriclf nodea is similar to node, thenb is similar to
s average size ofa provenance node
s’ average size of a provenance node without argumehts: s a. . i . i L .
D size of a pointer from the data store to the provenance store e Transitive If a is similar tob, andb is similar toc, thena is
A average size of an argument similar toc. o . . .
a number of argument annotations _ So, provenance node similarity is an equivalence relation. It di-
T | number of data items that satisfy a predicate, vides the set of all provenance nodedlrinto equivalence classes,
and have common provenance records

such that two nodes are similar iff they are in the same equivalence
class. For example, consider the workflow shown in Figure 1c;
there are five different kinds of manipulations. If we assume that
all provenance nodes that pertain to each kind of manipulation are
similar, then the similarity relation has five equivalence classes. If

the provenance recorfl is replaced by a pointer to its copy in the W€ further assume that altirater; prp andcuratesryp nodes

Table 1: Estimated provenance size for each technique.

provenance store. are similar to each other, then the similarity relation has only four
Since there is one provenance record per data item, the numbefduivalence classes.
of (not necessarily distinct) provenance record¥idet N; be the Using the above definitions, we can combifteand P, asA —

number of distinct provenance records. I%be the average size (B OF X) — C. But what happens if we change our prove-
of a provenance record. The space used for storing provenancenance records slightly tors = J — K — L — M and

before and after Basic Factorization, is shown in Table 1. Py =J — N — O — M; we would like to combine them
asJ — (K OR N) — (L OR O) — M. In other words, two
3.2 Node Factorization provenance records could contain a long chain of similar prove-

nance nodes. We can apply Node Factorization to such records

Often, two data items will have distinct provenance records, but = ™ . o
using the following definitions.

these provenance records will have many nodes in common. Node
Factorization removes common provenance nodes. Only one copy DEFINITION 11. Common Ancestor Node:
of each node is stored in a separate provenance store. Provenanc&wo provenance nodesandb have a common ancestor node if
pointers are stored with data items to refer to these nodes. 4 parent £ b.parent, or

Consider the workflow in Figure 1(c). Two distinct, but simi- i g parent andb.parent are similar, and also have a Common
lar processes existurateHPRD andcurateBIND. Consider two Ancestor Node.
provenance records that contain differentation manipulations,
but are otherwise identical. For instance, for provenance records DEFINITION 12. Common Descendant Node:
Py=A— B — C,andP, = A — X — C, the provenance Two provenance nodesandb have a common descendant node if,
store after Basic Factorization will have one record for eacRpof ~ for some childrerc andd of a andb, respectively, we have
and P;. Obviously, we can do better by factoring common nodes. i. ¢ 24, or
This amounts to combining, andP; asA — (B OR X) — C. ii.c andd are similar, and also have a Common Descendant Node.

DEFINITION 13. Similar Chains: THEOREM 3.1. Order Invariance:
Two equal length chain§ andC’ of provenance nodes are similar ~ Suppose that the s&tof similarity functions is such that the prove-

if nance node similarity is an equivalence relation. Given a set of
i. The topmost nodes i andC’ are equal, provenance records, the order in which they are merged into the
ii. The bottommost nodes @@ andC” are equal, and provenance store by our Node Factorization algorithm does not af-
iii. the " node inC' andC" are similar,Vi # top andi # bottom. fect the content of the provenance store.

Proof: Follows from the fact that the provenance nodes are divided
Utilizing these definitions, our Node Factorization algorithm pro- into equivalence classes.
duces a smaller provenance store. When two nodes are determined)
to be Similar nodes in Similar Chains, they can be merged in the Reca_lll from Section 2 that denotgs the number of provenance
Provenance Store. The equivalence class that they belonged to an§0des inD; let s be their average size. Lef be the number of
the Provenance Store now have one larger node. Moreover, Ia:ecausd'St'nCt provenance n_ode§. The space used for provenancelsecor
of the property of Similar Chains, the parents of these two merged &it€r Node Factorization, is shown in Table 1.

nodes can also be merged and treated as one large node. 3.2.1 Factorization of Optional Nodes
Consider the two provenance records:

Algorithm 1 : The Node Factorization with Similarity Algorithm.

Input : DatasetD with Provenance Records e
Input: Similarity FunctionsS Py = (Y
Output: Dataset with Provenance Store of Factorized Nodes 3 2 T

1 Hashtable H; P = (sl i~{1] 2)

2 forall Dataltemsd & DatasetD do Node factorization will not combine them, because Manipulaion

3 provenanceRecord f = d.provenance; has different parents iy, and ;. This will lead to the followin

4 for ProvenanceNode a- r.nextNode(do p 0 1- g

5 if I H.contains(n Ythen provenance store:

6 | H.put(n, pointer);

7 end

8 pointer = H.get(n);

9 writePointerInDataset(pointer);

10 end (3)

E ?“d” b Node & Hashtable Hd This provenance store is larger than it could be. Instead, we
oral rovenanceNode asntable (o] . .

13 | €= grouplntoEquivalenceClasse(H); would like a much smaller provenance store as:

14 end =

15 forall EquivalenceClasseB € £ do 4 S

16 forall ProvenanceNode, m € E do 4)

17 if n.parent isSimilarTo m.parent && n.child isSimilarTo m.chthen where the square brackets indicate that [Manipulaﬂ]js optional.

18 mergelnProvenanceStore(); . . . R

19 else : v 0 We can achieve this result by using the provenance pointer to

20 | writelnProvenanceStore(); indicate whether the optional part applies in each instance. Once

g; g end this machinery is in place, we can even merge two independent

en .
23 end paths into one longer sequence. For examdle; B — C — D

andA — E — D can be merged a8 — [(B — C) OR E] —

D, with the provenance pointer to indicate which(&f — C') and
Node Factorization makes one pass o¥grand runs in time E is present. Note that we no longer require similarity of merged

O(size(D) + ¢*h), wheree is the number of provenance nodes nodes. In other word¢,B — C) need not be similar té&.

in an equivalence class ands the height of the provenance trees. Our algorithm for Node Factorization can be modified to also

In our experiencesize(D) greatly outweighs:?h. Algorithm 1 factor optional nodes; it will retain a single pag¥size(D)) run

contains the related pseudocode. The main data structure used ig§ime.

a hashtable on the provenance nodes. As each provenance node is Unfortunately, we no longer have order invariance. Because the

encountered in the input data file, we search for it in the hashtable. algorithm adds ‘optional nodes’ based on the parental ordering of

When all provenance nodes have been seen, we find similar nodeghe incoming provenance tree, and attaches them to the bottom of

in the provenance store. If a nodéis equal or similar to a node any other pre-existing optional nodes, the resulting provenance tree

B in the provenance store, and has a common ancestor and comwill be directly affected by the order in which we encounter the

mon a descendant witR, thenX andB are unioned (i.e., OR-ed) sequence of provenance nodes (elg— [B — C] — [E] — D

in the provenance store; see the examplérf, P;) or (Ps, Py) is different fromA — [E] — [B — C] — D).

given above. We further assume the similarity functions are coarse . .

enough such that the following holds: the number of equivalence 3-3 Argument Factorization

classes is some constant determineébindependent afize(D). We find that minor differences across provenance nodes can limit
We must expand the provenance pointer to include more infor- the utility of the Factorization algorithms discussed so far. For ex-

mation. The provenance pointer used in Basic Factorization is ample, PubMedID, an input to thecurateHPRD manipulation,

merely a pointer to the root of a particular tree in the reduced can be different in otherwise identical provenance nodes. Because

provenance store that corresponds to the provenance record of ahis one item is different, we no longer have a common provenance

data item. In our example, if only the base of the branthwere node to factor out. In Figure 3(a), tleeirateHPRD provenance

recorded for a data item’s provenance, does the provenance contaimodes for theABC1 andChk1 molecules are identical except for

B or X? To remedy this, our provenance pointer must note which thePubMedID, leading to no Basic or Node Factorization.

provenance nodes are being referenced. To permit maximum factorization of provenance under such cir-
We have the following result about the content of the provenance cumstances, we consider provenance node components. We explic-

store. itly identify “arguments”, and maintain them as part of the instance

Algorithm 2 : The Argument Factorization Algorithm.

Chk1 Prov Store Input: DatasetD with Provenance Records

Input: Arg_Threshold

Output: Dataset with Provenance Store of Argument Factorized Nodes
1 Hashtable H;
2 forall Dataltemsd € DatasetD do

Moo 3 ProvenanceRecord r = d.provenance;
e 4 for ProvenanceNode #- r.nextNode(do
5 for ProvenanceComponent€ n.nextComponentfo
o 6 if H.contains(¢ xhen
PubMed PubMed PubMed PubMed 7 | H.put(c, c.getCount++);
16524875 11251070 16524875 11251070 8 elSe
\ \ 9 | Hput(c, 1);
10 end
@) (b) 11 end
12 end
13 end

14 forall Dataltemsd € DatasetD do

Figure 3: Example of Argument Factorization. (a) ABC1 and Chkl 15 ProvenanceRecord r = d.provenance;

molecule data items. (b) Same data items with provenance pointers, 16 for ProvenanceNode a- r.nextNode(Ho

after Argument Factorization. 17 for ProvenanceComponent«- n.nextComponentgo
18 int h = H.getCount(c);
19 if h > Arg_Thresholdthen
20 writePointerinDatasetToComponent;
21 writeComponentinProvStore;

. . . 22 else

provenance pointer (from a data item to the provenance store) whileys | writeArgumentinDataset;

factoring out the rest of the node. This begs the question, “What is 24 end

an argument?” While the case is clear for the PubMedID in the ex- 25 end

end

26
ample above, how about a parameter to a process that completely; .4
alters its execution? Rather than attempt to define the semantics
of what is an argument, we say that a component is an argument
if it exists in the provenance store less often than a user-specified) o
threshold. The choice of this threshold is discussed in Section 6.7. Recall thatn is the number of original provenance nodes, and
Argument Factorization involves two passes oger The first ny is the number of distinct provenance nodess their average
pass uses a hashtable of provenance components; it is used to iderize. Now, let; be the number of distinct provenance nodes, after
tify the arguments, by counting the number of times each compo- femoving the arguments; s@ < ny < n. Lets’ < s be the aver-
nent occurs. Using the provenance records in Figure 3(a) forexam 2g€ size of a node without arguments. Lebe the average size of
ple, we do a traversal of each provenance node component in eactn argument, and letbe the total number of argument annotations
provenance record. The first component seen in this case woulduSed on the pointers from the data store to the provenance store.
be PubMedID 16524875. It is placed in the hashtable. The next The Space used for provenance records, after Argument Fagtoriz
provenance component seen is theateHPRD manipulation; it~ tion, is shown in Table 1.
too is placed in the hashtable. This process continues cuil
rateHPRD is seen again from the provenance recor@€bkl. At 4. PROVENANCE INHERITANCE
this point, it is noted thaturateHPRD, is already in the hashtable. Provenance Factorization, discussed above, finds similarities be-
As we continue through the rest of the the provenance nodes, Weyeen the steps used to derive arbitrary data items. An orthogonal
add new provenance components, and count those seen multiplé,yimization finds similarities in a local portion of the data tree
times. Then, the components seen less often than the thresholqgiyctyral Inheritance) or between the provenance associated with
(one in this example) are identified as arguments. The second pasgjata items of a particular type (Predicate Inheritance). When prove-
is used to generate the new provenance store consisting of 0ne coPY,ance is inherited by an item, there is no need to record any prove-

of each distinct node sans its arguments; this process is similar 046 with that item; the inheritance mechanism will correctly in-
Node Factorization (Section 3.2). The result of these operations is gigniiate what is required.

shown in the provenance store of Figure 3(b).
Algorithm 2 contains the pseudocode for Argument Factoriza- 4.1 Structural Inheritance

tion. Argument Factorization makes two passes dveilone pass

to place all the components into the hashtable (for determining the

arguhments), a;ed@on(_e pass to factor the nodes sans their argument,»; have a structural (parent-child or ancestor-descendant) rela-
Eac hpass ta (Szze(D)) time. A_rgumednt quto(;lz_atg)n can 5 Jfionship. Recall that data items can include other data items. For
use the same set of provenance pointers described in ?Ct'on ““example, in Figure 4(a), theolecule data item contains thi

T_h_e arguments are then attached_ to the provenance pointer. Ad'data item, which could in turn contain adiType data item. The
ditionally, we can make the following statements about Argument provenance is the same for both tmelecule andID data items:

Factorization: however, both provenance records are recorded in a full proeena
store. If, instead, we only record provenance for an item when it is

THEOREM 3.2. Arg. Factorization Order Invariance: different from that of its parent, we can reduce the space used. On

The order in which provenance records are added to the prove- the other hand, theame data item does not have the same prove-

nance store using Argument Factorization does not affect the final nance as thenolecule data item, and so cannot inherit from its

version of the provenance store. parent. Figure 4(b) depicts the provenance records using structural

Proof:Proof is straightforward since factorization depends only on inheritance.

the count. We use a single-pass, stack-based algorithm to determine ancestor-

There is often a repetition of provenance information at a fine-
rained level because the same provenance is shared by data items

PubMed
16524875

PubMed

HPR

PubMed

16524875 1652‘4375
i

(@)

PubMed
16524875
i

(b)

Figure 4: Example of Structural Inheritance. (a) The ABC1 molecule
data item. (b) The same data item, after applying Structurallnheri-
tance.

descendant relationships and inheritance patterns; Algorithm 3 con-
tains the pseudocode. Whenever we encounter a new data item, w
compare its provenance with the provenance on top of the stack. If
the two provenance records are not the same, write the provenanc
for the data item, otherwise write nothing. Push the provenance
onto the stack. When we reach the end of a data item, pop a prove
nance from the stack. This one-pass algorithm takésze(D))

time.

Recall from Section 3.1 that the number of (not necessarily dis-
tinct) provenance records ¥, and is the same as the number of
data items;S is the average size of a provenance record. Net
be the number of data items whose provenance record is different
from that of their parent data item. The space used for provenance
records, with Structural Inheritance, is listed in Table 1.

Algorithm 3: The Structural Inheritance Algorithm.

Input: Root Dataltem¢d € DatasetD

Input: Stack S

Output: Data Item with Structurally Inherited Provenance

/*Note that this works through a dataset in tree form. If given a relational
database, this method can still be used by mapping each data item to
Database/table/tuple/row/ or Database/table/tuple/row/attribute etc. and
building the tree in this manner. */

ProvenanceRecord r = d.provenance;

ProvenanceRecord t = S.peek();

S.push(r);

if r=#tthen
\ storeProvenanceWithDataltem;

end

for d < d.nextChild()do
| structinherit(d, S);

end

10 S.pop();

©CO~N®UAWNR

4.2 Predicate Based Inheritance

Some provenance may apply to the dataset as a whole, or to item
of a certain type within it. For instance, a query can be used to cre-
ate an entire dataset; then, all data items in that set would have th
same provenance. If every data item in a dataset contains the sam

provenance record, that record can be moved from the instance-

level provenance to the dataset-level provenance. For instance, i
Example 2, every data item was the result of the same selection
process.

More frequently, it is the case that only some of the data in the

dataset is created using a global operation. For instance, for each

eé;gnd pass involves, for eache D satisfying predicaté, leaving

molecule, we may introduce a new attributelecular weight
computed based on its known sequence information. We would
like to store the provenance once for all of tielecular weight

items in the dataset, rather than storing it once for every data item.
To accomplish this, we partition the data based on the satisfaction
of a boolean predicate. An example of a valid predicate would an
XPath expression such dscument(“dataset™)//molecule. If

the associated provenance, or a subset of the provenance, is the
same for all data items that satisfy some predicate, then the com-
mon provenance can be pulled out of each data instance. It can be
stored at the dataset level, together with the boolean predicate that
specifies the data items to which the provenance applies.

In general, there is a tradeoff between boolean predicate com-
plexity and the efficiency of predicate-inherited provenance. It is
possible to specify a boolean predicate that specifically targets just
one data item within the dataset. In this case, it would be more ef-
ficient to merely store the provenance at the instance level. On the
other hand, if the boolean predicate is not specific enough it will
return too many data items and the likelihood of having a similar
provenance among them is small. However, using some knowledge
of the dataset, it is possible to find a set of boolean predicates that

llow Predicate Based Inheritance on a large portion of the dataset.
n our experiments, we use element type as the predicate. Thus,

éf all elements of the same name in our dataset contain nearly the

same provenance, then the provenance, or subset of provenance
components, can be stored at the dataset level, as shown in Fig-
ure 5. Note that we are agnostic about the actual schema used to
represent the data set.

The Predicate Based Inheritance algorithm makes two passes
over D; pseudocode can be found in Algorithm 4. In the first pass,
we identify those provenance components that are common to all
data items which satisfy a predicate; this is done for each predicate
in a set of user-defined boolean predicates. If a data itesatis-
fies the predicaté, and no provenance information yet exists for
P in the dataset-level provenance store, we create a new entry for
P: It contains all the provenance components dorlf there al-
ready exists a predicate-provenance pairfowe remove from it
those components that are not in the provenance record @nce
this first pass is completed, the provenance store will have a set
of predicate-provenance pairs. A pair is present only if every data
item that satisfies the predicate contains the same nonempty sub-
set of provenance node components. A second pass over the entire
dataset is then needed to write the remaining provenance that is not
predicate-inherited.

Consider the runtime of our Predicate Based Inheritance algo-
rithm. Let Pred be a set of user-defined predicates thatiasgoint
in the sense that no element can satisfy more than one predicate.
Suppose that, for each element, it take&) time to determine
which (if any) predicate inPred that element satisfies. Then the
first pass takes tim@©(Nt + size(D)). The O(size(D)) part
comes from the following: For each elemefite D that sat-
isfies a predicaté® € Pred, we either create a new predicate-
provenance pair foP (if d is the first element seen that satisfiés
or modify the previously existing predicate-provenance paitfor

SThis takes time proportional to the size of the provenance record

for d; over alld € D, the total time isO(size(D)). The sec-
out those components in the provenance recorditbft are in the
dataset level predicate-provenance pairforThis too takes time

4 O(lprovrecord(d)|) = O(size(D)).

Recall from Section 3.1 thaV is the number of provenance
records, andb is their average size. L&t be the average number
of provenance records that satisfy a predicate, and have the same

Algorithm 4 : The Predicate Inheritance Algorithm.

Input: DatasetD with Provenance Records

Input: Predicate ListPred

Output: Dataset with Predicate Inherited Provenance
1 Hashtable H;
2 forall Dataltemsd € DatasetD do

3 if d satisfiesP € Pred then
4 ProvenanceRecord r = d.provenance;
5 if H.get(P)= null then
6 List M;
7 for ProvenanceNode A r.nextNode(do
8 for ProvenanceComponent n.nextComponentfjo
9 M .add(c);
10 H.put(P, M);
11 end
12 end
13 else
14 List M =H.get(P);
15 List N;
16 for ProvenanceNode A r.nextNode(do
17 for ProvenanceComponent€ n.nextComponentfjo
18 | N.add(c);
19 end
20 end
21 forall m € M ¢ N do
22 | M.remove(mn);
23 end
24 end
25 end
26 end
27 forall Dataltemsd € DatasetD do
28 ProvenanceRecord r = d.provenance;
29 if dsatisfiesP € Predthen
30 List M = H.get(P);
31 if M =null then
32 | writeProvForDataltem(r);
33 else
34 for ProvenanceNode & r.nextNode(do
35 for ProvenanceComponent«€ n.nextComponentfo
36 if ¢ € List M then
37 | rremove(c);
38 end
39 end
40 if IrisEmpty()then
41 | writeProvForDataltem(r);
42 end
43 end
a4 end
45 else
46 | writeProvForDataltem(r);
47 end
48 end

49 forall M € Hashtable Hdo
50 | writePredicateProv();
51 end

provenance record. The space used for provenance recsidg, u
Predicate Inheritance, is shown in Table 1.

5. DISCUSSION

5.1 Combining Reduction Techniques

Any member of the Factorization Family (Basic, Node, Optional
and Argument) can be applied independently to any dataset. Any
member of the Factorization Family can also be used with Inheri-
tance. Structural and Predicate Inheritance can also be combined
To apply such combinations, certain properties must be taken into
account.

Using either Inheritance with any Factorization is straightfor-
ward, with two caveats: order and arguments. First, Inheritance
should be performed before Factorization, since there will be fewer
records to factor. Although the same correct results will occur
regardless of ordering, the algorithms will run faster with Inheri-

PubmedID
16524875

PubmedID
11251070

PubmedID
16524875

PubmedID
PubmedID PubmedID 11251070
16524875 11251070

Prov Store

(Element.value()
= molecule)

HPRD.

(Element.value()
=name)

(Element.value()
=id)

M

Figure 5: The data and provenance after applying Predicate Inheri-
tance to the data in Figure 1(d).

Algorithm 5: The Structural and Predicate Inheritance Algorithm.

Input: Root Dataltem¢ € DatasetD
Input: Predicate ListPred
Output: Dataset with Structural and Predicate Inherited Provenance
ProvenanceRecord r = d.provenance;
ProvenanceRecord t = S.peek();
S.push(r);
if r#tthen

| runPredicateinheritance(#red);
end
for d < d.nextChild()do

| structAndPredinherit(d, S);
end
10 S.pop();

©O~NOUTORMWNER

structurally inherited between data items that have the same set of
manipulations but different arguments; only completely identical
provenance records can be structurally inherited.

While both Structural and Predicate Inheritance can be applied
individually to a dataset regardless of any Factorization usage, they
can also be applied to a dataset jointly. Their conjunction is straight-
forward, with just a few details that should be noted. Structural
Inheritance must be applied before Predicate Inheritance, as shown
in Algorithm 5. Otherwise, reconstructing the provenance of a data
item is potentially ambiguous. Consider the scenario:

EXAMPLE 4.

SR == § ()
. @ ©) @
? HEY ¢
® @ ®
da 4b 4c

Consider themolecule andname data items shown in 4a (grey
circles are provenance nodes). If Predicate, then Structural lhher
itance is applied to it, the reduced provenance will look like in 4b
(assuming the provenance for thame data item gets moved to

tance performed before Factorization. Second, provenance is notthe dataset-level provenance store due to Predicate Inheritance).

PubmedID
11251070

PubmedID
16524875

PubmedID PubmedID
16524875 11251070
| |

(Element.value()

@00
(Element.value()

@

Figure 6: The ABC1 and Chk1 records from Figure 1(d) after Struc-
tural and Predicate Inheritance and Argument Factorization.

Class | Description Example

1 retrieve provenance | for $b in document(“MiMI”)/molecule
for specific data where $b/name = “ABC1”
return prov($b)

2 retrieve provenance | for $b in document(“MiMI”)/molecule
of all items of type X | return prov($b)
3 use provenance as | for $b in document(“MiMI”)/molecule
a condition where prov($b) = “HPRD"
(low selectivity) return $b
4 use provenance as | for $b in document(“MiMI”)/molecule
a condition where prov($b) = “PubMedI[15964826"

(high selectivity)

return $b
5 join using for $b in document(“MiMI")/molecule
provenance for $n in document(“MiMI")/name

where prov($b) = prov($n) return $b

Table 2: Sample provenance queries classed by complexity.

5.3 Incremental Maintenance

We have described above how to reduce the cost of storing prove-
nance, through Factorization and Inheritance, for a static data set
with static provenance. We now consider what to do if changes
are made to a data set and/or its associated provenance. How does
the factorized and/or inherited provenance change? Can we man-
age these changes using incremental algorithms, without having to
analyze the entire data set, and yet achieve the same small storage
space as if the static algorithm had been run? Our answer is, for the
most part, positive.

There are three different types of updates that we wish to con-
sider. The first is deletion of data. This is simple — the only case
needing any attention is a possible impact if the deleted itdvad
children that structurally inherited provenance from it. In this case,
we need to locally adjust the provenance for all children that inher-
ited provenance from.

The second type of update is insertion of data. For the entire
family of Factorizations, the provenance associated with the new
data is merged into the provenance store; only the new data and
its provenance pointer(s) are written to the data store. If Structural
Inheritance is used, the task is again simple — first consider the auto-
matically inherited provenance at the newly inserted iteand see
if this is appropriate. If it is, we are done. If it is not, then we have
to record the provenance with If d has children, then the impact
of the insertion on their structurally inherited provenance must also
be considered. If this has changed, then the provenance recadrded a
these child items has to be modified accordingly. We can encounter
a slightly more complicated problem when there is a data insertion
while using Predicate Inheritance. Let the new data itesat-
isfy a boolean predicat® that has dataset-level provenance. If the
dataset-level provenance féris a subset ofl’s provenance, then
this is easy: we store witthonly those provenance components that
are not stored withP at the dataset level. However, if the dataset-
level provenance foP is not a subset of’'s provenance, then we
must do the following: Remove from the dataset-level provenance
for P those components that are notdis provenance, and re-
insert those components as a provenance pointer at every data item
(exceptd) that satisfied.

The third case is where there is no change to the data, but we
change the provenance associated with some data item (perhaps it
had been recorded incorrectly). For this, the exact same steps occur
as if the data item itself changed. Additionally, the provenance
store can be added to, without making any changes to the instance-
level provenance pointers.

6. EXPERIMENTAL EVALUATION

To re-instantiate the provenance, we would first look for Structural
then Predicate Inheritance for theame data item and produce
4c; this is clearly incorrect. Because Structural Inheritance has
the requirement that the entire provenance record is either inher-
ited or not, this situation cannot occur if Structural Inheritance is
performed before Predicate Inheritance.

Figure 6 showsABC1 and Chkl with Structural then Predi-
cate Inheritance applied to the entire dataset. The provenance for
the ABC1 name data item is found at the dataset-level (predicate 6.1 The Setup
based) provenance, and in the reduced provenance pointer. The Currently, few provenance stores exist along with datasets. Most
provenance store size estimation formulas in Table 1 can be modi-are either destroyed after the dataset is created, never created. We
fied to reflect combinations of techniques. were able to gain access to two very distinct styles of provenance

. stores. The first style is a complex workflow used to create a syn-
5.2 Querylng Provenance thetic data set, involving 10 processes each consuming and pro-

There are several classes of queries that utilize provenance. Ta-ducing 10 data items. Provenance storage for this workflow has
ble 2 describes some classes, and provides a sample query for eacheen studied carefully, and in fact two different provenance storage
class from the MiMI query logs. Class 1 asks for the provenance structures have been used: Karma [31] and PReServ [20]. Even
of an individual data item. Class 2 seeks the provenance for all though both stores represent the same base provenance, the Karma
data items of a given type. In Classes 3—4, provenance is used agprovenance store is about 300MB while PReServ is about 500MB.

a selection condition for a data item, with low and high selectiv- The second style of provenance store is from an actual large data
ity, respectively. Finally, Class 5 performs data item joins based on set, MiMI [22]. The implicit workflow to create each data item
provenance information. These query classes were chosen from arcomprises only a few (2-4) steps, but with a very fine-grained ap-
analysis of MiMI's query logs, and represent a mixture of interest proach. The base data in MiMI is 270MB, while the provenance
in the data item, based on its provenance, and the provenance itselfstore is 6GB.

Provenance Store 6.3 Reduction Time

U Unreduced Provenance Store] . .)
S Structural Inheritance Figure 7(b) shows the reduction time for each technique. As
P Predicate Inheritance] can be seen in Figure 7(b), the techniques perform differently on
SP gg;cct"’:;ac'ti‘riﬁ‘iﬂiate Inheritance each provenance store. Reduction time is the worst for Node Fac-
BS | Basic Faciorization with Stuciural Inhertance torization; Argument Factorization and Basic Factorization are not
BP | Basic Factorization with Predicate Inheritance so bad. The reason for this is that Node Factorization maintains
BSP | Basic Factorization with Structural & Predicate Inheritance parental information, and will repeat the same node if it occurs in
N __ | Node Factorization _ _ different places in the workflow, making the underlying data struc-
NS Node Factorization with Structural Inheritance t | d ieldy. A t Factorizati h | .
NP Node Factorization with Predicate Inheritance ures large and unwieldy. Argument Factorization has a large in
NSP | Node Factorization with Structural & Predicate Inheritance memory structure to keep track of the arguments. However, be-
€] Optional Factorization _ _ cause these arguments are not written, there are fewer round trips to
8§ 8”:!0”3: "zaCIO'!Za;!O“ W!:E §”Ud°_‘”’f" I'”Eer_':ance the provenance store, thus keeping the time cost down. Karma and
ptional Factorization wi redicate Inheritance - f - - -
OSP | Optional Factorization with Structural & Predicate Inheritance F_’ReServ reductlon is fast through all FaCt_Onzatlon techniques. At
A Argument Factorization first glance, it could be expected that the time to run Structural In-
AS | Argument Factorization with Structural Inheritance heritance should be less than the time to run both Structural Inheri-
AP__| Argument Factorization with Predicate Inheritance tance and Basic Factorization. However, we do not perform global

ASP | Argument Factorization with Structural & Predicate Inheritarjce Structural Inheritance then global Factorization which would make

S <BS. Instead, for each data item, we test for Structural Inheri-
tance, then immediately, reduce it via Factorization. The overall
data structures are therefore smaller for BS than S, and this is re-
flected in the time. The reduction times presented were generated
using an unoptimized implementation. Instead of reading prove-
nance for a local tree, applying the reduction and writing it out,
We applied various combinations of our provenance reduction gnce the provenance structure is read in, it does not get written un-
techniques, as shown in Table 3, to each provenance store. Alltj the final provenance store build. In other words, as implemented,
Celeron(R) CPU at 3.06GHz with 1.96GB RAM and 122GB disk storage-intensive implementation. In this work, we are more con-

space. The algorithms were implemented in Java, as a utility for cerned with the relative times between techniques.
reducing provenance storage after creation.
6.4 Query Time

6.2 Storage Space The time it takes to reduce the provenance store, and the space
Figure 7(a) shows the space needed to store the provenance, aaised to store it, are only part of the overall needs of a function-
cording to each method; most techniques significantly reduce the ing provenance system. It is imperative that the provenance remain

size. As expected, Argument Factorization (A) does the same or queriable with the data itself. Because MiMI is queriable online,
better than Node (N) and Optional (O) for all the datasets. Whether we were able to obtain the query logs, and use real queries gener-
Structural or Predicate Inheritance is better depends on the makeugated by biologists. In Table 2, we describe five classes of queries
of the dataset. MiMI has a very nested structure in which Struc- from these real queries. Each query was run five times on a cold
tural Inheritance does very well. On the other hand, Karma and cache and the average of the three median times is reported. The
PReServ have flatter data unsuitable for Structural Inheritance, butonly indexes built were element tag indexes. In order to accommo-
use complex workflows that work well with Predicate Inheritance. date Structural Inheritance, a new iterator was created. We obtained
Inheritance combined with Factorization results in greater reduc- and modified Timber [21] such that it will find the provenance of a
tion for all data sets. Regardless of the Inheritance used, Argumentnode even if it inherits from an ancestor. If the provenance is not
Factorization is the clear winner. Using Argument Factorization found at a given node, the iterator returns the provenance of the
with Structural Inheritance (AS), we produce a MiMI provenance parent node. Thus, this new iterator is at wapst) time, whereh
store that is 5% the original size. Meanwhile, using Argument Fac- is the height of the data tree. Figure 10 shows the query execution
torization with Predicate Inheritance (AP) we can reduce the PRe- time for queries in different classes.

Serv and Karma provenance stores to about 15% and 12%, respec- Although our reduction techniques may make the provenance
tively. representation less straightforward, they not only save space, they
Because our reduction techniques are highly dependent on thecan also reduce query time. A look at Figure 10 shows some in-
data store and provenance store characteristics, we also created seteresting trends. For Classes 1, 3 and 4, in which queries have
eral artificial datasets to demonstrate each reduction technique’s ef-selectivity, queries on reduced stores perform on par, or better than
ficacy, based on the data and provenance characteristics; the resultthe original store. In particular, Classes 3 and 4, using provenance
are shown in Figure 8. In Figure 8(a), the provenance store con- as a condition in a low and high selectivity query respectively, show
tained different amounts of provenance records, nodes and argu-how the reduced stores can out-perform the original, based on size
ments, while the dataset and provenance store allowed containedlifferences. Unfortunately, Class 2 queries perform worse on the
different Structural and Predicate Inhertiance characteristics. It reduced store. This is because every such query requires at least
is clear that the Factorization techniques are highly dependent onone join in the reduced stores. Finally, Class 5 query times on
the provenance store’s distribution while the Inheritance techniques reduced stores are mixed compared to the original store. These

vary based on the dataset and provenance store. queries require multiple joins, and it is impossible to push prove-
Using a representative sample of the more interesting techniques,nance instantiation higher in the query plan. This leads to poor
as the size of the provenance store grows, all our reduction algo-performance in some cases, although Predicate Inheritance (P) and
rithms remainO(N), as shown in Figure 9. Argument Factorization with Structural and Predicate Inheritance
(ASP) both do better than unreduced.

Table 3: Combinations of reduction techniques used in our experi-
ments.

R T
@

100

s

Time (s)

chF bbbk

MiMI

: :

(b)

Figure 7: (a) Provenance storage space and (b) reduction time, for eaenethod. See Table 3 for the key to letter codes.

2,000,00 Reduction as a Factor of Input Size
& 150000 . 6.E+09 _m
% 1,000,001 5 5E+09 =
8 50000 @ 8 A ’
a ! 25 3.E+09 -
© N
c ¢ 2.E+09
£ 8 s < S LEwo
oA &2 5 2 e -
~ 8 & 0.E+00 -
mO Percent —
0.E+00 2.E+09 4.E+09 6.E+09
B Redundancy
Number Provenance Records
@ (@)
4,000,000 Reduction Time vs Input Size
3,500,000
3,000,000 1600
= 2,500,000 1400 =
£ 2000000 1200 — S
= 1,500,000 1000 e —B-P
S 1,000,000 g Z o0 _ -
[500000 ° - ——0
o O
» [TR =
FO R 200 e ___|--x--AsP
op Q 3 E g ol k- - -—-————————— &
o
mS Percent Inherited - 0.E+00 1.E+06 2.E+06 3.E+06 4.E+06 5.E+06 6.E+06
Number of Provenance Records
(b)
(b)
Figure 8: Provenance store size based on reduction technique, data
and provenance characteristics. (a) Basicv Node and Argurne Fac- F|gure 9: How the reduction algorlthms scale based on Input size In
torization. (b) Structural and Predicate Inheritance. (a) space and (b) time.
ery Time . . .
1600 Query Ti Reduction Techniques and XGrind
1200 - = . 400,000
g2 800 ms 0 300,000
S £ 200,000
@ 400 - aP @
E © 100,000
[0 BA g o
ql g2 [g3 |q4 [g5 |6 [q7 [a8 |q9 Iqlo Ln W ASP 0 o o a o o a0 9} o
Z_Z . N n e} <]
Class 1 | Class 2 | Class 3 | Class 4 Class 5 g z % < O <
X X

Technique
Query Complexity

Figure 11: XGRIND, GZIP and a sample of Reduction Techniques

Figure 10: Query time for each query class on MiMlI, for different applied to the MiMI Provenance Store.

reduction techniques.

«if = - 1400 1400
1200 - Jl‘,w oty P o 1200 = 1200
1000 il — g1omo — g1000 —
3288 - P S S A 5 800 - g 80 5 -
S S 00 At % el 600 = Rt % e
E 100 E 100 E 400
EQOO 208 ry 208 =
F o mwaogosees 25 T332 8B8RS S TR T RHER 26
Updates Updates Updates
(a) (b) (c)
1400
1400
1200 4— v — T 1200
1000 1000 ---+-- Data Insert
=800 w800
éigg Eggg‘ - s D Deleti
Ezoo g S0 J Nm— il ata Deletion
E S 70 Jrrrrmmm————————————————————
0 4= IS
Ll - - -
- TEASSIEERESS —— Provenance Change
Updates Updates
(d) (e)

Figure 12: Incremental Maintenance on provenance stores with (a) Strucral Inheritance, (b) Predicate Inheritance, (c) Optional Factorization,
(d) Argument Factorization, and (e) Argument Factorization with Structural and Predicate Inheritance.

Structural Inheritance performs well across the board. This is 12(d), the following inserts, deletes and provenance changes were
due to a combination of reduced space anddh) iterator. First, performed: 1. insert a data item; 2. delete a data item; 3. change
the provenance store is so reduced that the entire database is disgrovenance for a data item.
tinctly smaller. Second, no join needs to be performed, and the As shown in Figure 12, no matter what provenance reduction
ancestor-lookup iterator is relatively fast. Predicate Inheritance ap- technique is used, updates are easy to perform. We would like to
pears all over the map in these queries. In some cases it does wellnote that using Predicate Inheritance lowers the average time for a
while in others it is almost the worst. Even within the same query data insert. If the data item and provenance satisfies a predicate,
class, it has wildly varying performance. A closer inspection of the then there is no need to manipulate the provenance store, thus sav-
provenance store itself contains the answer. In the case where theréng time. Additionally, in provenance stores using straight Factor-
is a predicate-inherited item (e.g. type=‘name’) in the provenance ization, deletes and provenance changes are relatively cheap since
store, the method does very well. However, if no predicate inher- there is no need to check inheritance dependencies. The take away
itance exists for a certain element type, then the query performs point here is that incremental maintenance on a reduced provenance
poorly. store is cheap.

As discussed in Section 5.3, the reduction technique used can af- AS Préviously noted, traditional XML compression techniques
fect the complexity of incremental maintenance. Figure 12 shows '€ Not suitable for our purposes because they do not result in a
how each store performs, for data insertion, data deletion and proveProvenance store that is queriable along with base data. Even tech-
nance changes. A random sequence of data inserts, deletions anf]idues such as XGRIND, which support keyword and path queries
provenance changes were performed, in equal measure, legard 32], do not have the full associative power needed to support joins
of the reduction technique. For a provenance store with Structural PEtween provenance and data. However, we have applied XGRIND
Inheritance, Figures 12(a) and 12(e), the following inserts, deletes USing Huffman (H) and Arithmetic (A) encoding to the original
and provenance changes were performed: 1. insert a data item thaProvenance store, "’_‘r.‘d compared the Compressed siz€ W|th_our re-
Structurally Inherits provenance (from its parent): 2. insert a data 9Uced stores. Additionally, although a gzipped document is not
item that does not Structurally Inherit provenance; 3. delete a data 9u€riable, we included the gzipped provenance store as a well known
item with children that Structurally Inherit provenance from it; 4. comparison point. As shown in Figure 11, XGRIND on the un-
delete a data item with no such children; 5. change provenance for"@duced provenance store creates a reduced store smaller than any
a data item; with children that Structurally Inherit provenance from ©f the Inheritance methods on their own. However, using combina-
it; 6. change provenance for a data item with no such children. For tions of reduction techniques it is possible to compress the prove-

a provenance store with Predicate Inheritance, Figures 12(b) angnance store smaller than XGRIND and still maintain the ability to

12(e), the following inserts, deletes and provenance changes weriU€y data and provenance together. Additionally, while we do not

performed: 1. insert a data item that Predicate Inherits provenance;SNOW the numbers here, itis possible to combine XGRIND and our
reduction technigques to get an extremely small store.

2. insert a data item that does not Predicate Inherit; 3. insert a
data item that Predicate Inherits provenance, but breaks the inher-
itance pattern for all elements of that type; 4. delete a data item; 6.7 Other Parameters

5. change provenance for a data item that Predicate Inherits prove- Figure 13 shows the relationship between Argument Threshold,
nance; 6. change provenance for a data item that does not Predicatéhe time to produce the reduced provenance store, and the size of
Inherit; 7. change provenance for a data item that Predicate Inher-the reduced store. In the case of MiMI, there is a drastic drop in the
its, but breaks the inheritance pattern for all elements of that type. runtime between an Argument Threshold of 5 and 50. This drop is
For a provenance store with just Factorization, Figures 12(c) and explained by the makeup of the provenance store. With a threshold

Argument Threshold and Space Argument Threshold and Time Note that if the data or query contains several characteristics
80,0001 25000 _ listed above, our techniques can be combined. The combination

. 20000

29 prpen 2 a0 is synergistic, and will do more together than either alone.

&< 20000 £ soo0 rl
Nl CNeoes 7. RELATED WORK

O Karma B B8 . .

@ PReSer Argument Argument Several real-world applications have generated and used prove-

m MiMI Threshold Threshold nance information [1, 3, 4, 14, 16, 19, 25, 27]. In previous stud-
) (b) ies [7, 20, 31], the major focus has been on creating a provenance

record quickly enough to not substantially slow down the experi-
mental application; the resulting provenance size was of less im-
portance. Only Chimera [14] proposes a method for scaling to ever
larger provenance records, and relies heavily on distributed systems
and virtual provenance. Workflows systems [17, 24] can generate
large amounts of provenance. Some workflow systems [3, 29] are
also trying to reduce provenance size. These systems effectively
normalize provenance data to minimize repetitions of manipula-
jon information across provenance runs. In such cases, our Fac-
orization Algorithms would not provide much benefit. However,
reduction is possible using the Inheritance Algorithms. Addition-
ally, if data is versioned, as in [8], our provenance store reductions

Figure 13: Argument Factorization efficiency depends on Argument
Threshold.

of 5, there are very few arguments; everything gets moved from the
base store to the provenance store, with associated pointers neede
When the threshold moves to 50, however, a substantial part of
provenance records get treated as arguments, and are left uedouch
It?wgr]: igrggg&agZ?Ssatg\r/;;g?Q;réit?g\’l:fittg;;h(;izmgi(?gfrfésgé’can still be applied; distinct versions of a data item will point to
from the general store to the provenance store. Depending on theOllfferent recor_ds n the provenance stc_)re_. .
dataset, the Argument Threshold affects runtirﬁe and reducibility Th.e‘ Faptorlzatlon Algorithms are similar t.o work in workflow
differenifly Reduction of the Karma and PReServ stores performs specification from process logs [11, 33], which attempts to create
: an accurate workflow, with an eye to processes, but our work at-

bestin time and space with an Argument threshold of 10. This is a tempts to understand and reduce the size of arguments found in

reflection of how often common sources or manipulations are used) . . P
in each. MiMI utilizes the same sources and mgmi ulations over provenance files. Compiler optimization [10] has also similarities
' P to the provenance reduction studied here.

and over, while the processes used to generate Karma and PReServ XML compression [23] creates a smaller store than the reduction

do not. X .) .
) _provided in this work. However, the XML compression systems
Between 5-50 seems to be a robust range of values for the Argu do not result in a store that can be queried with an uncompressed

men(;[Threshold,hl.lkﬁly not t(;] bedt?o flar frlomfoptlrrpum. This is dataset via a standard query language. While XGRIND [32] does
gorﬂlergfnt%irlrz]bwa:?hof Ee;; siov?/r?vvgtr\:aMui(l\e/Ho;;n;ZFt)\ilzgg?i?lter(l)fas support exact and substring querying of the compressed store, it
this knob may t;e requi?ed ’ 9 does not support joins and thus cannot build relationships among
’ data and provenance elements; specifically, there is a lack of sup-

6.8 Practitioner's Guide port for value or structural joins between provenance pointers and
the provenance store. Luckily, these compression techniques can

If only one type of reduction were to be used, we would recom- e rther applied to the reduced provenance store we create.
mend Argument Factorization. We have already seen that it results

in better reduction than the other Factorization techniques. Argu- 8. CONCLUSION

ment Factorization is the hands down winner for the following rea- s _ _ -
sons: Provenance storage is becoming essential for scientific research,

but the size of provenance can overwhelm the size of data, in most
cases. In this paper we presented a strategy to reduce provenance
) .) storage size. Specifically, we developed a family of Factorization
e Itis order invariant and does not depend upon whether user 5gorithms, as well as algorithms that exploit Predicate and Struc-
functions are reflexive, symmetric and transitive. tural Inheritance. We described how to apply all three techniques
If further reduction is desired, we suggest the following setups in tandem to the same data set.

e |t has smaller reduction times due to a reduced number of
writes.

based on data and usage criteria: Our experimental assessment showed that our strategy can re-
For Best Storage Reductions duce the size of provenance by up to a factor of 20. The reduction
Data Characteristics Recommended Tech. algorithm scales linearly with provenance store size. Provenance
All Structural Inheritance remains queriable, even after reduction using our strategy. In fact,
Most data types have specific| Predicate Inheritance some f:lasses of qu_eries run faster on tr_u_e reduced store. Also, our
process e.g. every name reduction strategy is orthogonal to traditional text or XML com-
element gets normalized pressign:_pot_h can be applied in tandem to get additional reduction,
For Best Query Times if queriability is not a requirement.
Query Characteristics Recommended Tech. Our work has assumed a generic enough provenance model that
All Structural Inheritance many existing systems could easily be mapped to. We are currently

in conversations with owners of large scientific data sets to have
them adopt our provenance reduction techniques on their produc-
tion data.

Uses provenance as a conditiprArgument Factorization
(high or low selectivity)
Uses provenance as a conditipriPredicate Inheritance
and data has type-specific
processes 'Requires availability of an iterator to trace ancestors.

9. ACKNOWLEDGMENTS

Our many thanks to Yogesh Simmhan for his generous gift of the
PReServ and Karma provenance sets generated in [31]. This work
was supported in part by NSF grant number 1IS 0741620 and by
NIH grant number U54 DA021519.

10. REFERENCES

[1] James Annis, Yong Zhao, Jens-S. Vockler, Michael Wilde,
Steve Kent, and lan T. Foster. Applying chimera virtual data
concepts to cluster finding in the sloan sky surveysQ
pages 1-14, 2002.

Gary Bader, D Betel, and Christopher W.V. Hogue. BIND:

the biomolecule interaction network databasacleic Acids

Research31(1):248-250, 2003.

Roger S. Barga and Luciano A. Digiampietri. Automatic

capture and efficient storage of escience experiment

provenance. li€oncurrency and Computation: Practice and

Experience2007.

Omar Benjelloun, Anish Das Sarma, Alon Halevy, and

Jennifer Widom. ULDBs: Databases with uncertainty and

lineage. INVLDB Seoul, Koregpages 953-964, 2006.

[5] Deepavali Bhagwat et al. An annotation management system

for relational databases. WLDB, pages 900-911, 2004.

[6] Shawn Bowers, Timothy McPhillips, Martin Wu, and

Bertram Ludascher. Project histories: Managing data

provenance across collection-oriented scientific workflow

runs. InDILS, pages 27-29, 2007.

Peter Buneman, Adriane Chapman, and James Cheney.

Provenance management in curated databas@g<hh

SIGMOD, pages 539-550, June 2006.

Peter Buneman, Sanjeev Khanna, Keishi Tajima, and

Wang-Chiew Tan. Archiving scientific data. ACM

SIGMOD pages 1-12, June 2002.

Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan.

Why and Where: A characterization of data provenance. In

ICDT, pages 316-330, 2001.

John Cocke. Global common subexpression elimination. In

Proceedings of a symposium on Compiler optimization

pages 20-24, 1970.

[11] Shirley Cohen, Sarah Cohen Boulakia, and Susan Davidson.
Towards a model of scientific workflows and user views. In
DILS, pages 264-279, 2006.

[12] Yingwei Cui and Jennifer Widom. Lineage tracing for
general data warehouse transformation$oceedings of
the 27th VLDB Conference, Roma, ltghages 41-58, 2001.

[13] Jens Ernst, William Evans, Christopher Fraser, Steven
Lucco, and Todd Proebsting. Code compressio@i
SIGPLAN pages 358-365, 1997.

[14] lan Foster, Jens Vockler, Michael Eilde, and Yong Zhao.
Chimera: A virtual data system for representing, querying,
and automating data derivation. limernational Conference
on Scientific and Statistical Database Managempages
37-46, July 2002.

[15] lan Foster, Jens Vockler, M Wilde, and Yong Zhao. The
virtual data grid: a new model and architecture for
data-intensive collaboration. RIDR, 2003.

[16] James Frew and R Bose. Earth system science workbench: A
data management infrastructure for earth science products. In
SSDBM pages 180-189, 2001.

[17] Yolanda Gil, Ewa Deelman, Mark Ellisman, Thomas
Fahringer, Geoffrey Fox, Dennis Gannon, Carole Goble,

(2]

(3]

(4]

(7]

(8]

(9]

(10]

Miron Livny, Luc Moreau, and Jim Myers. Examining the
challenges of scientific workflowEEE Computer
40(12):26-34, 2007.

[18] Roberto Grossi. On finding common subtreEseor.

Comput. Scj.108(2):345-356, 1993.

[19] Paul Groth et al. Recording and using provenance in a
protein compressibility experiment. HiPDC, 2005.

[20] Paul Groth, Simon Miles, and Luc Moreau. PReServ:

Provenance recording for services Rroceedings of the UK

OST e-Science second All Hands Meeting 2005 (AHM'05)

2005.

H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, et al.

Timber: A native XML databas&he VLDB Journal

11(4):274-291, 2002.

Magesh Jayapandian, Adriane Chapman, V.Glenn Tarcea,

Cong Yu, Aaron Elkiss, Angela lanni, Bin Liu, Arnab Nandi,

Carlos Santos, Philip Andrews, Brian Athey, David States,

and H.V. Jagadish. Michigan Molecular Interactions (MiMI):

Putting the jigsaw puzzle togeth&tucleic Acids Research

pages D566-D571, Jan 2007.

Hartmut Liefke and Dan Suciu. XMill: An efficient

compressor for XML data. IACM Sigmod International

Conference on Management of Da2900.

Luc Moreau, Bertram Ludéscher, et al. The First Provenance

ChallengeConcurrency and Computation: Practice and

Experience2007.

http://twiki.ipaw.info/bin/view/Challenge/SecondProvenance @majé.

Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri

Braun, and Margo |. Seltzer. Provenance-aware storage

systems. IUSENIX Annual Technical Conferengmages

43-56, 2006.

[26] Open provenance model.
http:/itwiki.ipaw.info/bin/view/Challenge/OPM, 2008.

[27] Carmen Pancerella, John Hewson, Wendy Koegler, et al.
Metadata in the collaboratory for multi-scale chemical
science. IDublin Core Conferenge2003.

[28] S Peri et al. Development of human protein reference
database as an initial platform for approaching systems
biology in humansGenome Researcthh3:2363-2371, 2003.

[29] Carlos Eduardo Scheidegger, Huy T. Vo, David Koop,
Juliana Freire, and Claudio T. Silva. Querying and creating
visualizations by analogyEEE Transactions on
Visualization and Computer Graphick3(6):1560-1567,
2007.

[30] Amit Sheth. Metadata storage in the active semantic
electronic medical record system (ASEMR) deployed at the
athens heart center. personal communication, Oct 2006.

[31] Yogesh Simmhan, Beth Plale, and Dennis Gannon. A
framework for collecting provenance in data-centric
scientific workflows. INCWS 2006.

[32] Pankaj M. Tolani and Jayant R. Haritsa. XGRIND: A
query-friendly XML compressor. IICDE, pages 225-234,
2002.

[33] Wil van der Aalst, Ton Weijters, and Laura Maruster.
Workflow mining: Discovering process models from event
logs.|EEE Transactions on Knowledge and Data
Engineering 16(9):1128-1142, 2004.

[34] Allison Woodruff and Michael Stonebraker. Supporting
fine-grained data lineage in a database visualization
environment. Innternational Conference of Data
Engineering pages 97-102, 1997.

[21]

[22]

(23]

[24]

[25]

