
Efficient Provenance Storage

Adriane P. Chapman
University of Michigan
Ann Arbor, MI 48109

apchapma@umich.edu

H.V. Jagadish
University of Michigan
Ann Arbor, MI 48109
jag@umich.edu

Prakash Ramanan
Wichita State University

Wichita, KS 67260
ramanan@cs.wichita.edu

ABSTRACT
As the world is increasingly networked and digitized, the data we
store has more and more frequently been chopped, baked, diced
and stewed. In consequence, there is an increasing need to store
and manage provenance for each data item stored in a database, de-
scribing exactly where it came from, and what manipulations have
been applied to it. Storage of the complete provenance of each data
item can become prohibitively expensive. In this paper, we identify
important properties of provenance that can be used to considerably
reduce the amount of storage required. We identify three different
techniques: a family of factorization processes and two methods
based on inheritance, to decrease the amount of storage required
for provenance.

We have used the techniques described in this work to signif-
icantly reduce the provenance storage costs associated with con-
structing MiMI [22], a warehouse of data regarding protein inter-
actions, as well as two provenance stores, Karma [31] and PReServ
[20], produced through workflow execution. In these real prove-
nance sets, we were able to reduce the size of the provenance by up
to a factor of 20. Additionally, we show that this reduced store can
be queried efficiently and further that incremental changes can be
made inexpensively.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Scientific databases; E.m [Data]:
Miscellaneous

General Terms
Algorithms, Documentation, Experimentation

Keywords
Provenance storage, Provenance compression

1. INTRODUCTION
It is well recognized thatProvenance, or the history of an item, is

as important for scientific data as it is in the study of arts and antiq-
uities. Derived from the Latin wordprovenire“to come forth”, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08,June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

provenance of an item describes where the item comes from [9],
and why it is found in its current place [4, 12]. Increasingly, prove-
nance capture, storage, querying and form have received much at-
tention [4, 5, 7, 9, 11, 14, 15, 20, 25, 34].

Recently, several scientific endeavors have been coupled with
provenance management studies. Chimera [14] has been used with
physics and astronomy data; myGRID [19] with biological data;
Collaboratory for Multi-Scale Chemical Science (CMCS) [27] with
chemistry data; Earth System Science Workbench (ESSW) [16]
with earth science data. These experiments can involve∼10TB
of actual base data [1]. Unfortunately, the provenance information
can grow to be many times larger than the base data [1, 11, 19, 27].
This is particularly true if the provenance is fine-grained, particu-
larly rich, or a large number of operations have been performed on
each piece of data.

For instance, in a recent provenance use study [19], provenance
was attached to an experiment to determine the structure of pro-
tein sequences using GRID technology [15]. Starting with sets of
protein sequences, a workflow containing about 12 steps was run.
The base data was about 100Kb; the provenance size was approxi-
mately 1MB, which is ten times the data size [19]. Other scientific
experiments run in conjunction with provenance storage produce
similar results. MiMI [22], an online protein interaction database
is 270MB; its provenance store is 6GB. We also have anecdotal ev-
idence of a real deployed scientific data system where provenance
information was partially removed to reduce the storage overhead
[30].

To gain an appreciation of where the enormous size of prove-
nance comes from, consider the following small example:

EXAMPLE 1. There are many large protein interaction datasets,
including HPRD [28] and BIND [2]. Figures 1(a)–1(b) show a
small extract from each. A biologist may wish to integrate infor-
mation from these two sources. To do this, she must first create a
unified schema and transform the individual datasets into it. Then,
she merges the datasets such that overlapping entries from differ-
ent sources are combined. Finally, she runs each protein through a
name normalizing script.

Figure 1(c) depicts the workflow described above. Notice that a
piece of data starts at the bottom of the workflow, and can follow
any path through it depending on the data itself. Figure 1(d) depicts
the resulting dataset, along with the provenance associated with
each data item. Even using a small provenance record and minimal
manipulations, the size of the provenance already outweighs the
size of the dataset.

In this paper, we study how to reduce the space required to store
provenance. Utilizing a generic provenance model, we describe
two classes of space-saving algorithms. The first is a family of

<HPRD>
<protein>

<name>Wee1</name>
<ref>P30291</ref>
<descr>tyrosine kinase</descr>
<PubMedID>15964826</PubMedID>

</protein>
<protein>

<name>ABC1</name>
<ref>O95477</ref>
<descr>ATP binding cassette 1</descr>
<PubMedID>16524875</PubMedID>

</protein>
<protein>

<name>LXR </name>
<ref>Q13133</ref>
<descr>liver-X-receptor</descr>
<PubMedID>16524875</PubMedID>

</protein>
<protein>

<name>Chk1</name>
<ref>AAC51736</ref>
<descr>cell cycle checkpoint kinase</descr>
<PubMedID>11251070</PubMedID>

</protein>
</HPRD>

(a)

<BIND>
<molecule>

<name>WEE1</name>
<extid>NP 003381</extid>
<function>protein kinase activity</function>
<article>15964826</article>

</molecule>
</BIND>

(b)

merge

nameN

transform

curate

HPRD

curate

BIND

(c)

dataset

Prov

nameN

transform

curate

HPRD

PubmedID

16524875

molecule

name

id

...
 ABC1

O95477

Prov

transform

curate

HPRD

PubmedID

16524875

Prov

transform

curate

HPRD

PubmedID

16524875

Prov

nameN

transform

curate

HPRD

PubmedID

11251070

molecule

name

id

...

Chk1

AAC51736

Prov

transform

curate

HPRD

PubmedID

11251070

Prov

transform

curate

HPRD

PubmedID

11251070

M
HPRD

M
HPRD

M
HPRD
 M
HPRD

M
HPRD

M
HPRD

(d)

Figure 1: (a)-(b)A snapshot of proteins from HPRD and BIND. (c) The workflow used by the scientist. (d) Data and provenance for theABC1 and
Chk1 molecules, after transforming and merging HPRD and BIND.

algorithms that reduce the size by removing duplicate provenance
records and nodes. In any series of data manipulations, patterns
can be found in the provenance data. A brief glance at Figure 1(d)
can elucidate this even in our small example. We propose a se-
ries ofprovenance factorizationtechniques that find common sub-
trees and manipulate them to reduce the provenance size. Finding
common subtrees is a known hard problem, studied in the context
of eliminating common subexpressions [10, 13, 18]. We use this
work to define a “Basic Factorization” algorithm. We then develop
several enhancements crucial for good size reduction in our con-
text. We additionally develop a second set of algorithms through
provenance inheritance. There are two distinct algorithms in this
set: one based on Structural Inheritance, and one based on Predi-
cate Inheritance. Finally, we show how both types of Inheritance
can be combined with Factorization to achieve maximum savings.

We require that provenance be queriable with the base data, so
that queries such as “give me all molecules that came from HPRD”
can be quickly answered. Strategies such as XMill [23] lead to a
representation that is not queriable. Meanwhile, XML compres-
sors such as XGRIND [32] that facilitate querying of compressed
stores do not support a rich enough query language. In our con-
text, it is imperative that users are able to specify relationships and
joins between data and provenance information. Our methods meet
this requirement, and can also be used in tandem with other XML
compressors for maximum size reduction.

In Section 2, we lay the conceptual foundations needed to de-
scribe our methods. In Sections 3–4, we outline the Factorization
and Inheritance algorithms used to reduce provenance size. In Sec-
tion 5, we discuss how Factorization and Inheritance can be com-
bined, the ability to query the reduced provenance stores, and effect
of dataset incremental maintenance on the provenance stores. We
test our reduction methods on real provenance stores, generated and
stored via three distinct methods, and present results in Section 6.
In Sections 7–8, we discuss related and future work as well as our
conclusions.

2. THE PROVENANCE MODEL
There is currently no standard for representing provenance, al-

though an initial attempt is the Open Provenance Model [26]. Sev-
eral provenance capture systems exist [4, 7, 14, 19, 31], each with
their own focus (actor vs data provenance), form (XML vs rela-
tional) and model. Also, several core systems have actively been
used in the scientific process: Chimera [14], myGRID [19, 20],
ESSW [16] and CMCS [27]. In addition, several workflow systems
actively generate provenance [3, 17, 24, 29]. From a high-level per-
spective, all provenance systems have characteristics similar to the
generic model we construct below.

Throughout this work, we call the basic logical data unit adata
item. Data items may be tuples or attributes in a relational table,
elements or attributes in XML, objects of arbitrary granularity in
an OODB, etc. One data item may completely include, overlap
with, or be totally disjoint from another data item. For example,
in Figure 1(d), we show six data items: twomolecule items, and
their name and ID sub-items. Adatasetis comprised of a set of
data items. Datasets are often manipulated via workflows, whether
explicit or implicit. A workflow is defined by an input description,
output description and transformation rules. An explicit workflow
is one generated by any number of workflow engines [3, 6, 24, 29];
an implicit workflow is executed by a user with a specific goal in
mind, but without recording the executed processes. For example,
MiMI [22] is created via an implicit workflow. A series of steps are
executed, but they are neither executed within a formal workflow
system, nor even fully documented. A workflow is modeled as
a directed graph, where each node represents a manipulation (see
Figure 1(c)).

DEFINITION 1. Manipulation:
Amanipulation takes one or more datasets as input and produces
a dataset as output.

Thus, a manipulation is a discrete component of a workflow. An
arc(m1, m2) in a workflow graph indicates that the output of ma-

nipulationm1 is fed as an input to manipulationm2. We inten-
tionally leave the granularity of a manipulation unspecified. De-
pending on the user’s needs and the workflow system, this can be
anything from a simple function to a whole program. A query can
be a manipulation or a tree of manipulations within a workflow.
The workflow in Figure 1(c) consists of five manipulations. A few
common manipulations and examples follow:

MANIPULATION 1. Selection
From an input dataset, selects a subset of data, based on some se-
lection condition.

EXAMPLE 2. In the SDSS experiment [1], the first step is called
fieldPrep. This manipulation extracts measurements of the galaxies
of interest from the full dataset.

MANIPULATION 2. Translation
Transforms the input datasetI based on a mappingM and outputs
datasetI ′.

EXAMPLE 3. In Example 1, the inputI to the translation ma-
nipulation is the HPRD dataset andMHPRD, a mapping from
HPRD’s schema to the researcher’s own. The outputI ′ is the trans-
formed HPRD dataset.

The route a data item takes through a workflow can be repre-
sented by a tree. If a manipulation’s output is an input to two dif-
ferent manipulations, this route can be represented by a tree with
repeated nodes, similar to query evaluation plans. When an out-
put data itemd results from an aggregation of two different input
data items, its provenance record is a tree whose root element de-
scribes the aggregation step, and the two subtrees are the prove-
nance structures associated with the two input data items. This tree
is the provenance of the itemd, and is shown in the “prov” subtrees
in Figure 1(d). Note this is a tree-ified version of the provenance
model described in the Open Provenance Model [26].

DEFINITION 2. Provenance Record:
The record of input, and the manipulations applied to that input, to
produce a new data item.

DEFINITION 3. Provenance Node
A single manipulation, its input and parameters, that comprise a
part of the provenance record for a data item.

DEFINITION 4. Provenance Node Component
A single manipulation, input, or parameter that forms a part of a
provenance node.

A provenance record is a tree ofprovenance nodes. Each node in
the tree corresponds to one manipulation, and hascomponentsthat
are inputs to the manipulation. For example, in Figure 1(d), the
provenance record for theABC1 molecule is a tree of two nodes.
The transform node has the componentMHPRD. The curate
node has the parameterPubMedID 16524875. Provenance con-
tains a record of the manipulations used, and relates processes with
input and output data. The provenance model we present is generic
so that it can be applied to a variety of real-world provenance stores.

It would be incorrect to substitute the original workflow for in-
formation in the provenance store. This is because the provenance
record for each data item is very specific, giving the exact path that
data item took through the workflow: the original source data item
it is based on, the exact parameters used in its manipulations, etc.
For instance, did thetransform manipulation for that data item use

MHPRD or MBIND? The workflow is much more general, apply-
ing to all data items.

As stated above, a data item may completely include another
data item e.g. a tuple can contain an attribute. Each data item may
have an associated a provenance record. In Figure 1(d), theABC1
molecule data item has a provenance record, as does theO95477
ID data item contained within it.

DEFINITION 5. Instance-level Provenance
The provenance record associated with a particular data item in
the dataset.

On the other hand, if a query was used to create the entire dataset,
the query could be recorded as dataset-level provenance.

DEFINITION 6. Dataset-level Provenance
The provenance record associated with an entire collection of data
items.

DEFINITION 7. Provenance Store
The repository of all provenance records relating to a dataset and
all data items in it.

Throughout this paper, we letD denote the original data store
that containsN data items (which may overlap), along with their
provenance records (e.g. Figure 1(d)); letsize(D) denote the space
used to storeD. Each data item inD has a provenance record
associated with it; so the number of provenance records is alsoN .
Each provenance record is a tree consisting of several provenance
nodes. We letn denote the total number of provenance nodes inD,
wheren ≥ N .

3. PROVENANCE FACTORIZATION
Many items in a large data store may have similar or even identi-

cal provenance. If we could factor out common “sub-expressions”
in the provenance of different items, these common portions could
be stored just once for the whole data set rather than once for each
item. We call thisprovenance factorization.

We consider Factorization at three different levels: factorization
of identical provenance records, factorization of identical prove-
nance nodes, and factorization of nodes that are identical except
for their parameters.

After Factorization, the provenance records and nodes are stored
in a provenance store that is separate from the data store. From each
data item, there are one or more pointers to the provenance store,
and in some cases, these pointers have some associated annotation.

3.1 Basic Factorization
Basic Factorization removes common provenance records; only

one copy is stored. Each data item uses a provenance pointer to
point to its provenance record. For example, in Figure 2(a), the
ABC1 andLXR molecule data items are shown with their prove-
nance. The Factorization algorithm discovers that the two prove-
nance records are identical, and replaces each with a pointer to the
record, now written separately in the provenance store, as shown in
Figure 2(b).

The Basic Factorization Algorithm makes one pass overD, and
separates the provenance records from the data items; its runtime is
O(size(D)). When a provenance record is encountered, it is con-
verted to a (possibly long) string; this string represents all the in-
formation in the record. The main data structure used is a hashtable
on these strings; it is used to identify common provenance records.
If the current provenance recordR is not found in the hashtable, a
copy of it is stored in the new provenance store. In the data store,

molecule

. . .

molecule

. . .

prov

transform

curate

HPRD

PubMed

16524875

ABC1
 LXR

prov

transform

curate

HPRD

PubMed

16524875

M
HPRD
 M
HPRD

(a)

molecule

. . .

molecule

. . .

ABC1
 LXR

1
 1

prov

transform

curate

HPRD

PubMed

16524875

1

Prov Store

M
HPRD

(b)

Figure 2: Example of Basic Factorization. (a) ABC1 and LXR
molecule data items. (b) Same data items after Basic Factorization.

Reduction Technique Estimated Provenance Size
No Reduction N ∗ S or n ∗ s
Basic Factorization N ∗ p + N1 ∗ S
Node Factorization n ∗ p + n1 ∗ s
Argument Factorization n ∗ p + A ∗ a + n2 ∗ s′

Structural Inheritance N2 ∗ S
Predicate Based Inheritance N ∗ S/T

Variables Used
N total number of provenance records
N1 number of distinct provenance records;N1 ≤ N
N2 number of data items whose provenance record

is different from that of their parent data item;N2 ≤ N
n number of provenance nodes;n ≥ N
n1 number of distinct provenance nodes;n1 ≤ n
n2 number of distinct provenance nodes, after removing the arguments;

n2 ≤ n1 ≤ n
S average size of a provenance record
s average size of a provenance node
s′ average size of a provenance node without arguments;s′ ≤ s
p size of a pointer from the data store to the provenance store
A average size of an argument
a number of argument annotations
T number of data items that satisfy a predicate,

and have common provenance records

Table 1: Estimated provenance size for each technique.

the provenance recordR is replaced by a pointer to its copy in the
provenance store.

Since there is one provenance record per data item, the number
of (not necessarily distinct) provenance records isN . LetN1 be the
number of distinct provenance records. LetS be the average size
of a provenance record. The space used for storing provenance,
before and after Basic Factorization, is shown in Table 1.

3.2 Node Factorization
Often, two data items will have distinct provenance records, but

these provenance records will have many nodes in common. Node
Factorization removes common provenance nodes. Only one copy
of each node is stored in a separate provenance store. Provenance
pointers are stored with data items to refer to these nodes.

Consider the workflow in Figure 1(c). Two distinct, but simi-
lar processes exist,curateHPRD andcurateBIND. Consider two
provenance records that contain differentcuration manipulations,
but are otherwise identical. For instance, for provenance records
P0 = A → B → C, andP1 = A → X → C, the provenance
store after Basic Factorization will have one record for each ofP0

andP1. Obviously, we can do better by factoring common nodes.
This amounts to combiningP0 andP1 asA → (B OR X) → C.

The pointer from the data items to the provenance store is used to
indicate which ofB or X is present, i.e., which ofP0 or P1 is the
correct provenance record for that data item.

In order to accomplish this reduction, we must be able to deter-
mine that a) theA nodes inP0 andP1 are equal, b) nodeB in P0 is
similar to nodeX in P1, and c) theC nodes inP0 andP1 are equal.
Provenance Node Equality and Similarity are defined as follows.

DEFINITION 8. Provenance Node Equality:

Two provenance nodesa andb are equal, denoteda
P
= b, iff

i. they refer to the same manipulation,
ii. all parameters and input types to the manipulation are identical.

DEFINITION 9. Provenance Node Specific Similarity:
Two provenance nodesa andb are specifically similar, with respect
to a similarity functionSx, if Sx(a,b) = TRUE.

Notice that similarity function values are dependent on the prove-
nance nodes. For instance, we can define a similarity function
S1(a, b) = {a.name like ‘curate’ and b.name like ‘curate’}.
In this caseS1(curateHPRD, curateBIND) = TRUE, but
S1(curateHPRD, transform) = FALSE. We writeS for the
set of acceptable similarity functions, as defined by a provenance
expert familiar with the provenance store in question.

DEFINITION 10. Provenance Node Similarity:
Two provenance nodesa and b are similar, if they are specifically
similar with respect to some similarity functionSx() ∈ S.

Provenance node similarity, as defined above, is a binary relation
on the provenance nodes. We assume that the setS of similarity
functions is such that this relation has the following properties.

• Reflexive: Each provenance node is similar to itself.
• Symmetric: If nodea is similar to nodeb, thenb is similar to

a.
• Transitive: If a is similar tob, andb is similar toc, thena is

similar toc.
So, provenance node similarity is an equivalence relation. It di-
vides the set of all provenance nodes inD into equivalence classes,
such that two nodes are similar iff they are in the same equivalence
class. For example, consider the workflow shown in Figure 1c;
there are five different kinds of manipulations. If we assume that
all provenance nodes that pertain to each kind of manipulation are
similar, then the similarity relation has five equivalence classes. If
we further assume that allcurateHPRD andcurateBIND nodes
are similar to each other, then the similarity relation has only four
equivalence classes.

Using the above definitions, we can combineP0 andP1 asA →
(B OR X) → C. But what happens if we change our prove-
nance records slightly to:P3 = J → K → L → M and
P4 = J → N → O → M ; we would like to combine them
asJ → (K OR N) → (L OR O) → M . In other words, two
provenance records could contain a long chain of similar prove-
nance nodes. We can apply Node Factorization to such records
using the following definitions.

DEFINITION 11. Common Ancestor Node:
Two provenance nodesa andb have a common ancestor node if

i. a.parent
P
= b.parent, or

ii. a.parent and b.parent are similar, and also have a Common
Ancestor Node.

DEFINITION 12. Common Descendant Node:
Two provenance nodesa andb have a common descendant node if,
for some childrenc andd of a andb, respectively, we have

i. c
P
= d, or

ii.c andd are similar, and also have a Common Descendant Node.

DEFINITION 13. Similar Chains:
Two equal length chainsC andC′ of provenance nodes are similar
if
i. The topmost nodes inC andC′ are equal,
ii. The bottommost nodes inC andC′ are equal, and
iii. the ith node inC andC′ are similar,∀i 6= top andi 6= bottom.

Utilizing these definitions, our Node Factorization algorithm pro-
duces a smaller provenance store. When two nodes are determined
to be Similar nodes in Similar Chains, they can be merged in the
Provenance Store. The equivalence class that they belonged to and
the Provenance Store now have one larger node. Moreover, because
of the property of Similar Chains, the parents of these two merged
nodes can also be merged and treated as one large node.

Algorithm 1 : The Node Factorization with Similarity Algorithm.

Input : DatasetD with Provenance Records
Input : Similarity FunctionsS
Output : Dataset with Provenance Store of Factorized Nodes
Hashtable H;1
forall DataItemsd ∈ DatasetD do2

ProvenanceRecord r = d.provenance;3
for ProvenanceNode n← r.nextNode()do4

if ! H.contains(n)then5
H.put(n, pointer);6

end7
pointer = H.get(n);8
writePointerInDataset(pointer);9

end10
end11
forall ProvenanceNode n∈ Hashtable Hdo12
E= groupIntoEquivalenceClasses(S, H);13

end14
forall EquivalenceClassesE ∈ E do15

forall ProvenanceNoden, m ∈ E do16
if n.parent isSimilarTo m.parent && n.child isSimilarTo m.child then17

mergeInProvenanceStore();18
else19

writeInProvenanceStore();20
end21

end22
end23

Node Factorization makes one pass overD, and runs in time
O(size(D) + e2h), wheree is the number of provenance nodes
in an equivalence class andh is the height of the provenance trees.
In our experience,size(D) greatly outweighse2h. Algorithm 1
contains the related pseudocode. The main data structure used is
a hashtable on the provenance nodes. As each provenance node is
encountered in the input data file, we search for it in the hashtable.
When all provenance nodes have been seen, we find similar nodes
in the provenance store. If a nodeX is equal or similar to a node
B in the provenance store, and has a common ancestor and com-
mon a descendant withB, thenX andB are unioned (i.e., OR-ed)
in the provenance store; see the example of(P0, P1) or (P3, P4)
given above. We further assume the similarity functions are coarse
enough such that the following holds: the number of equivalence
classes is some constant determined byS, independent ofsize(D).

We must expand the provenance pointer to include more infor-
mation. The provenance pointer used in Basic Factorization is
merely a pointer to the root of a particular tree in the reduced
provenance store that corresponds to the provenance record of a
data item. In our example, if only the base of the branch,A, were
recorded for a data item’s provenance, does the provenance contain
B or X? To remedy this, our provenance pointer must note which
provenance nodes are being referenced.

We have the following result about the content of the provenance
store.

THEOREM 3.1. Order Invariance:
Suppose that the setS of similarity functions is such that the prove-
nance node similarity is an equivalence relation. Given a set of
provenance records, the order in which they are merged into the
provenance store by our Node Factorization algorithm does not af-
fect the content of the provenance store.
Proof: Follows from the fact that the provenance nodes are divided
into equivalence classes.

Recall from Section 2 thatn denotes the number of provenance
nodes inD; let s be their average size. Letn1 be the number of
distinct provenance nodes. The space used for provenance records,
after Node Factorization, is shown in Table 1.

3.2.1 Factorization of Optional Nodes
Consider the two provenance records:

P0 =
4

5

3
 1

(1)

P1 =
4

5

3
 2
 1

(2)
Node factorization will not combine them, because Manipulation3

has different parents inP0 andP1. This will lead to the following
provenance store:

2

4

5

3

4

5

3

1

(3)
This provenance store is larger than it could be. Instead, we

would like a much smaller provenance store as:

4

5

3
 2
 1

(4)
where the square brackets indicate that [Manipulation2] is optional.

We can achieve this result by using the provenance pointer to
indicate whether the optional part applies in each instance. Once
this machinery is in place, we can even merge two independent
paths into one longer sequence. For example,A → B → C → D
andA → E → D can be merged asA → [(B → C) OR E] →
D, with the provenance pointer to indicate which of(B → C) and
E is present. Note that we no longer require similarity of merged
nodes. In other words,(B → C) need not be similar toE.

Our algorithm for Node Factorization can be modified to also
factor optional nodes; it will retain a single pass,O(size(D)) run
time.

Unfortunately, we no longer have order invariance. Because the
algorithm adds ‘optional nodes’ based on the parental ordering of
the incoming provenance tree, and attaches them to the bottom of
any other pre-existing optional nodes, the resulting provenance tree
will be directly affected by the order in which we encounter the
sequence of provenance nodes (e.g.A → [B → C] → [E] → D
is different fromA → [E] → [B → C] → D).

3.3 Argument Factorization
We find that minor differences across provenance nodes can limit

the utility of the Factorization algorithms discussed so far. For ex-
ample,PubMedID, an input to thecurateHPRD manipulation,
can be different in otherwise identical provenance nodes. Because
this one item is different, we no longer have a common provenance
node to factor out. In Figure 3(a), thecurateHPRD provenance
nodes for theABC1 andChk1 molecules are identical except for
thePubMedID, leading to no Basic or Node Factorization.

To permit maximum factorization of provenance under such cir-
cumstances, we consider provenance node components. We explic-
itly identify “arguments”, and maintain them as part of the instance

molecule

. . .

prov

transform

curate

HPRD

PubMed

16524875

ABC1
 Chk1

molecule

. . .

prov

transform

curate

HPRD

PubMed

11251070

M
HPRD
 M
HPRD

(a)

molecule

. . .

PubMed

16524875

molecule

. . .

PubMed

11251070

ABC1
 Chk1

1

2

1

2

prov

transform

curate

HPRD

2

Prov Store

1
M
HPRD

(b)

Figure 3: Example of Argument Factorization. (a) ABC1 and Chk1
molecule data items. (b) Same data items with provenance pointers,
after Argument Factorization.

provenance pointer (from a data item to the provenance store) while
factoring out the rest of the node. This begs the question, “What is
an argument?” While the case is clear for the PubMedID in the ex-
ample above, how about a parameter to a process that completely
alters its execution? Rather than attempt to define the semantics
of what is an argument, we say that a component is an argument
if it exists in the provenance store less often than a user-specified
threshold. The choice of this threshold is discussed in Section 6.7.

Argument Factorization involves two passes overD. The first
pass uses a hashtable of provenance components; it is used to iden-
tify the arguments, by counting the number of times each compo-
nent occurs. Using the provenance records in Figure 3(a) for exam-
ple, we do a traversal of each provenance node component in each
provenance record. The first component seen in this case would
bePubMedID 16524875. It is placed in the hashtable. The next
provenance component seen is thecurateHPRD manipulation; it
too is placed in the hashtable. This process continues untilcu-
rateHPRD is seen again from the provenance record ofChk1. At
this point, it is noted thatcurateHPRD, is already in the hashtable.
As we continue through the rest of the the provenance nodes, we
add new provenance components, and count those seen multiple
times. Then, the components seen less often than the threshold
(one in this example) are identified as arguments. The second pass
is used to generate the new provenance store consisting of one copy
of each distinct node sans its arguments; this process is similar to
Node Factorization (Section 3.2). The result of these operations is
shown in the provenance store of Figure 3(b).

Algorithm 2 contains the pseudocode for Argument Factoriza-
tion. Argument Factorization makes two passes overD: one pass
to place all the components into the hashtable (for determining the
arguments), and one pass to factor the nodes sans their arguments.
Each pass takesO(size(D)) time. Argument Factorization can
use the same set of provenance pointers described in Section 3.2.
The arguments are then attached to the provenance pointer. Ad-
ditionally, we can make the following statements about Argument
Factorization:

THEOREM 3.2. Arg. Factorization Order Invariance:
The order in which provenance records are added to the prove-
nance store using Argument Factorization does not affect the final
version of the provenance store.
Proof:Proof is straightforward since factorization depends only on
the count.

Algorithm 2 : The Argument Factorization Algorithm.

Input : DatasetD with Provenance Records
Input : Arg Threshold
Output : Dataset with Provenance Store of Argument Factorized Nodes
Hashtable H;1
forall DataItemsd ∈ DatasetD do2

ProvenanceRecord r = d.provenance;3
for ProvenanceNode n← r.nextNode()do4

for ProvenanceComponent c← n.nextComponent()do5
if H.contains(c)then6

H.put(c, c.getCount++);7
else8

H.put(c, 1);9
end10

end11
end12

end13
forall DataItemsd ∈ DatasetD do14

ProvenanceRecord r = d.provenance;15
for ProvenanceNode n← r.nextNode()do16

for ProvenanceComponent c← n.nextComponent()do17
int h = H.getCount(c);18
if h > Arg Thresholdthen19

writePointerInDatasetToComponent;20
writeComponentInProvStore;21

else22
writeArgumentInDataset;23

end24
end25

end26
end27

Recall thatn is the number of original provenance nodes, and
n1 is the number of distinct provenance nodes;s is their average
size. Now, letn2 be the number of distinct provenance nodes, after
removing the arguments; son2 ≤ n1 ≤ n. Let s′ ≤ s be the aver-
age size of a node without arguments. LetA be the average size of
an argument, and leta be the total number of argument annotations
used on the pointers from the data store to the provenance store.
The space used for provenance records, after Argument Factoriza-
tion, is shown in Table 1.

4. PROVENANCE INHERITANCE
Provenance Factorization, discussed above, finds similarities be-

tween the steps used to derive arbitrary data items. An orthogonal
optimization finds similarities in a local portion of the data tree
(Structural Inheritance) or between the provenance associated with
data items of a particular type (Predicate Inheritance). When prove-
nance is inherited by an item, there is no need to record any prove-
nance with that item; the inheritance mechanism will correctly in-
stantiate what is required.

4.1 Structural Inheritance
There is often a repetition of provenance information at a fine-

grained level because the same provenance is shared by data items
that have a structural (parent-child or ancestor-descendant) rela-
tionship. Recall that data items can include other data items. For
example, in Figure 4(a), themolecule data item contains theID
data item, which could in turn contain anidType data item. The
provenance is the same for both themolecule and ID data items;
however, both provenance records are recorded in a full provenance
store. If, instead, we only record provenance for an item when it is
different from that of its parent, we can reduce the space used. On
the other hand, thename data item does not have the same prove-
nance as themolecule data item, and so cannot inherit from its
parent. Figure 4(b) depicts the provenance records using structural
inheritance.

We use a single-pass, stack-based algorithm to determine ancestor-

molecule

name

ID

descr

ABC1

O95477

. . .
prov

nameN

transform

PubMed

16524875

curate

HPRD

prov

transform

curate

HPRD

PubMed

16524875

prov

transform

curate

HPRD

PubMed

16524875

M
HPRD

M
HPRD

M
HPRD

(a)

O95477

M
HPRD

molecule

name

ID

descr

ABC1

. . .

prov

transform

curate

HPRD

PubMed

16524875

prov

nameN

transform

PubMed

16524875

curate

HPRD

M
HPRD

(b)

Figure 4: Example of Structural Inheritance. (a) TheABC1 molecule
data item. (b) The same data item, after applying StructuralInheri-
tance.

descendant relationships and inheritance patterns; Algorithm 3 con-
tains the pseudocode. Whenever we encounter a new data item, we
compare its provenance with the provenance on top of the stack. If
the two provenance records are not the same, write the provenance
for the data item, otherwise write nothing. Push the provenance
onto the stack. When we reach the end of a data item, pop a prove-
nance from the stack. This one-pass algorithm takesO(size(D))
time.

Recall from Section 3.1 that the number of (not necessarily dis-
tinct) provenance records isN , and is the same as the number of
data items;S is the average size of a provenance record. LetN2

be the number of data items whose provenance record is different
from that of their parent data item. The space used for provenance
records, with Structural Inheritance, is listed in Table 1.

Algorithm 3 : The Structural Inheritance Algorithm.

Input : Root DataItem,d ∈ DatasetD
Input : Stack S
Output : Data Item with Structurally Inherited Provenance
/*Note that this works through a dataset in tree form. If given a relational

database, this method can still be used by mapping each data item to
Database/table/tuple/row/ or Database/table/tuple/row/attribute etc. and
building the tree in this manner. */

ProvenanceRecord r = d.provenance;1
ProvenanceRecord t = S.peek();2
S.push(r);3
if r 6= t then4

storeProvenanceWithDataItem;5
end6
for d← d.nextChild()do7

structInherit(d, S);8
end9
S.pop();10

4.2 Predicate Based Inheritance
Some provenance may apply to the dataset as a whole, or to items

of a certain type within it. For instance, a query can be used to cre-
ate an entire dataset; then, all data items in that set would have the
same provenance. If every data item in a dataset contains the same
provenance record, that record can be moved from the instance-
level provenance to the dataset-level provenance. For instance, in
Example 2, every data item was the result of the same selection
process.

More frequently, it is the case that only some of the data in the
dataset is created using a global operation. For instance, for each

molecule, we may introduce a new attributemolecular weight
computed based on its known sequence information. We would
like to store the provenance once for all of themolecular weight
items in the dataset, rather than storing it once for every data item.
To accomplish this, we partition the data based on the satisfaction
of a boolean predicate. An example of a valid predicate would an
XPath expression such asdocument(“dataset”)//molecule. If
the associated provenance, or a subset of the provenance, is the
same for all data items that satisfy some predicate, then the com-
mon provenance can be pulled out of each data instance. It can be
stored at the dataset level, together with the boolean predicate that
specifies the data items to which the provenance applies.

In general, there is a tradeoff between boolean predicate com-
plexity and the efficiency of predicate-inherited provenance. It is
possible to specify a boolean predicate that specifically targets just
one data item within the dataset. In this case, it would be more ef-
ficient to merely store the provenance at the instance level. On the
other hand, if the boolean predicate is not specific enough it will
return too many data items and the likelihood of having a similar
provenance among them is small. However, using some knowledge
of the dataset, it is possible to find a set of boolean predicates that
allow Predicate Based Inheritance on a large portion of the dataset.
In our experiments, we use element type as the predicate. Thus,
if all elements of the same name in our dataset contain nearly the
same provenance, then the provenance, or subset of provenance
components, can be stored at the dataset level, as shown in Fig-
ure 5. Note that we are agnostic about the actual schema used to
represent the data set.

The Predicate Based Inheritance algorithm makes two passes
overD; pseudocode can be found in Algorithm 4. In the first pass,
we identify those provenance components that are common to all
data items which satisfy a predicate; this is done for each predicate
in a set of user-defined boolean predicates. If a data itemd satis-
fies the predicateP , and no provenance information yet exists for
P in the dataset-level provenance store, we create a new entry for
P : It contains all the provenance components ford. If there al-
ready exists a predicate-provenance pair forP , we remove from it
those components that are not in the provenance record ford. Once
this first pass is completed, the provenance store will have a set
of predicate-provenance pairs. A pair is present only if every data
item that satisfies the predicate contains the same nonempty sub-
set of provenance node components. A second pass over the entire
dataset is then needed to write the remaining provenance that is not
predicate-inherited.

Consider the runtime of our Predicate Based Inheritance algo-
rithm. LetPred be a set of user-defined predicates that aredisjoint
in the sense that no element can satisfy more than one predicate.
Suppose that, for each element, it takesO(t) time to determine
which (if any) predicate inPred that element satisfies. Then the
first pass takes timeO(Nt + size(D)). The O(size(D)) part
comes from the following: For each elementd ∈ D that sat-
isfies a predicateP ∈ Pred, we either create a new predicate-
provenance pair forP (if d is the first element seen that satisfiesP),
or modify the previously existing predicate-provenance pair forP .
This takes time proportional to the size of the provenance record
for d; over all d ∈ D, the total time isO(size(D)). The sec-
ond pass involves, for eachd ∈ D satisfying predicateP , leaving
out those components in the provenance record ofd that are in the
dataset level predicate-provenance pair forP . This too takes timeP

d
O(|provrecord(d)|) = O(size(D)).

Recall from Section 3.1 thatN is the number of provenance
records, andS is their average size. LetT be the average number
of provenance records that satisfy a predicate, and have the same

Algorithm 4 : The Predicate Inheritance Algorithm.

Input : DatasetD with Provenance Records
Input : Predicate ListPred
Output : Dataset with Predicate Inherited Provenance
Hashtable H;1
forall DataItemsd ∈ DatasetD do2

if d satisfiesP ∈ Pred then3
ProvenanceRecord r = d.provenance;4
if H.get(P) = null then5

List M ;6
for ProvenanceNode n← r.nextNode()do7

for ProvenanceComponent c← n.nextComponent()do8
M .add(c);9
H.put(P , M);10

end11
end12

else13
List M = H.get(P);14
List N ;15
for ProvenanceNode n← r.nextNode()do16

for ProvenanceComponent c← n.nextComponent()do17
N .add(c);18

end19
end20
forall m ∈M /∈ N do21

M .remove(m);22
end23

end24
end25

end26
forall DataItemsd ∈ DatasetD do27

ProvenanceRecord r = d.provenance;28
if d satisfiesP ∈ Pred then29

List M = H.get(P);30
if M = null then31

writeProvForDataItem(r);32
else33

for ProvenanceNode n← r.nextNode()do34
for ProvenanceComponent c← n.nextComponent()do35

if c ∈ List M then36
r.remove(c);37

end38
end39
if !r.isEmpty()then40

writeProvForDataItem(r);41
end42

end43
end44

else45
writeProvForDataItem(r);46

end47
end48
forall M ∈ Hashtable Hdo49

writePredicateProv();50
end51

provenance record. The space used for provenance records, using
Predicate Inheritance, is shown in Table 1.

5. DISCUSSION

5.1 Combining Reduction Techniques
Any member of the Factorization Family (Basic, Node, Optional

and Argument) can be applied independently to any dataset. Any
member of the Factorization Family can also be used with Inheri-
tance. Structural and Predicate Inheritance can also be combined.
To apply such combinations, certain properties must be taken into
account.

Using either Inheritance with any Factorization is straightfor-
ward, with two caveats: order and arguments. First, Inheritance
should be performed before Factorization, since there will be fewer
records to factor. Although the same correct results will occur
regardless of ordering, the algorithms will run faster with Inheri-
tance performed before Factorization. Second, provenance is not

dataset

Prov

curate

HPRD

PubmedID

16524875

molecule

name

id

...

ABC1

O95477
Prov

curate

HPRD

PubmedID

16524875

Prov

curate

HPRD

PubmedID

16524875

Prov

curate

HPRD

PubmedID

11251070

molecule

name

id

...

Chk1

AAC51736
 Prov

curate

HPRD

PubmedID

11251070

Prov

curate

HPRD

PubmedID

11251070

Prov Store

(Element.value()

= id)

M
HPRD

transform

(Element.value()

= molecule)

M
HPRD

transform

(Element.value()

= name)

nameN

M
HPRD

transform

Figure 5: The data and provenance after applying Predicate Inheri-
tance to the data in Figure 1(d).

Algorithm 5 : The Structural and Predicate Inheritance Algorithm.

Input : Root DataItem,d ∈ DatasetD
Input : Predicate ListPred
Output : Dataset with Structural and Predicate Inherited Provenance
ProvenanceRecord r = d.provenance;1
ProvenanceRecord t = S.peek();2
S.push(r);3
if r 6= t then4

runPredicateInheritance(d,Pred);5
end6
for d← d.nextChild()do7

structAndPredInherit(d, S);8
end9
S.pop();10

structurally inherited between data items that have the same set of
manipulations but different arguments; only completely identical
provenance records can be structurally inherited.

While both Structural and Predicate Inheritance can be applied
individually to a dataset regardless of any Factorization usage, they
can also be applied to a dataset jointly. Their conjunction is straight-
forward, with just a few details that should be noted. Structural
Inheritance must be applied before Predicate Inheritance, as shown
in Algorithm 5. Otherwise, reconstructing the provenance of a data
item is potentially ambiguous. Consider the scenario:

EXAMPLE 4.

molecule

1

2
 name

3

molecule

1

2
 name

3

(Element.value() = name)

molecule

1

2
 name

3

1

2

4a 4b 4c
Consider themolecule andname data items shown in 4a (grey

circles are provenance nodes). If Predicate, then Structural Inher-
itance is applied to it, the reduced provenance will look like in 4b
(assuming the provenance for thename data item gets moved to
the dataset-level provenance store due to Predicate Inheritance).

dataset

molecule

name

id

...

ABC1
O95477

Prov Store

(Element.value()

= name)

nameN

M
HPRD

transform

curate

HPRD

1

2

3

Prov

PubmedID

16524875

1

Prov

PubmedID

16524875

1

1
2
3

(Element.value()

= molecule)

2

molecule

name

id

...
Chk1

AAC51736

Prov

PubmedID

11251070

1

Prov

PubmedID

11251070

1

Figure 6: The ABC1 and Chk1 records from Figure 1(d) after Struc-
tural and Predicate Inheritance and Argument Factorization.

Class Description Example
1 retrieve provenance for $b in document(“MiMI”)/molecule

for specific data where $b/name = “ABC1”
return prov($b)

2 retrieve provenance for $b in document(“MiMI”)/molecule
of all items of type X return prov($b)

3 use provenance as for $b in document(“MiMI”)/molecule
a condition where prov($b) = “HPRD”
(low selectivity) return $b

4 use provenance as for $b in document(“MiMI”)/molecule
a condition where prov($b) = “PubMedID15964826”
(high selectivity)

return $b
5 join using for $b in document(“MiMI”)/molecule

provenance for $n in document(“MiMI”)/name
where prov($b) = prov($n) return $b

Table 2: Sample provenance queries classed by complexity.

To re-instantiate the provenance, we would first look for Structural
then Predicate Inheritance for thename data item and produce
4c; this is clearly incorrect. Because Structural Inheritance has
the requirement that the entire provenance record is either inher-
ited or not, this situation cannot occur if Structural Inheritance is
performed before Predicate Inheritance.

Figure 6 showsABC1 and Chk1 with Structural then Predi-
cate Inheritance applied to the entire dataset. The provenance for
theABC1 name data item is found at the dataset-level (predicate
based) provenance, and in the reduced provenance pointer. The
provenance store size estimation formulas in Table 1 can be modi-
fied to reflect combinations of techniques.

5.2 Querying Provenance
There are several classes of queries that utilize provenance. Ta-

ble 2 describes some classes, and provides a sample query for each
class from the MiMI query logs. Class 1 asks for the provenance
of an individual data item. Class 2 seeks the provenance for all
data items of a given type. In Classes 3–4, provenance is used as
a selection condition for a data item, with low and high selectiv-
ity, respectively. Finally, Class 5 performs data item joins based on
provenance information. These query classes were chosen from an
analysis of MiMI’s query logs, and represent a mixture of interest
in the data item, based on its provenance, and the provenance itself.

5.3 Incremental Maintenance
We have described above how to reduce the cost of storing prove-

nance, through Factorization and Inheritance, for a static data set
with static provenance. We now consider what to do if changes
are made to a data set and/or its associated provenance. How does
the factorized and/or inherited provenance change? Can we man-
age these changes using incremental algorithms, without having to
analyze the entire data set, and yet achieve the same small storage
space as if the static algorithm had been run? Our answer is, for the
most part, positive.

There are three different types of updates that we wish to con-
sider. The first is deletion of data. This is simple – the only case
needing any attention is a possible impact if the deleted itemd had
children that structurally inherited provenance from it. In this case,
we need to locally adjust the provenance for all children that inher-
ited provenance fromd.

The second type of update is insertion of data. For the entire
family of Factorizations, the provenance associated with the new
data is merged into the provenance store; only the new data and
its provenance pointer(s) are written to the data store. If Structural
Inheritance is used, the task is again simple – first consider the auto-
matically inherited provenance at the newly inserted itemd, and see
if this is appropriate. If it is, we are done. If it is not, then we have
to record the provenance withd. If d has children, then the impact
of the insertion on their structurally inherited provenance must also
be considered. If this has changed, then the provenance recorded at
these child items has to be modified accordingly. We can encounter
a slightly more complicated problem when there is a data insertion
while using Predicate Inheritance. Let the new data itemd sat-
isfy a boolean predicateP that has dataset-level provenance. If the
dataset-level provenance forP is a subset ofd’s provenance, then
this is easy: we store withd only those provenance components that
are not stored withP at the dataset level. However, if the dataset-
level provenance forP is not a subset ofd’s provenance, then we
must do the following: Remove from the dataset-level provenance
for P those components that are not ind’s provenance, and re-
insert those components as a provenance pointer at every data item
(exceptd) that satisfiesP .

The third case is where there is no change to the data, but we
change the provenance associated with some data item (perhaps it
had been recorded incorrectly). For this, the exact same steps occur
as if the data item itself changed. Additionally, the provenance
store can be added to, without making any changes to the instance-
level provenance pointers.

6. EXPERIMENTAL EVALUATION

6.1 The Setup
Currently, few provenance stores exist along with datasets. Most

are either destroyed after the dataset is created, never created. We
were able to gain access to two very distinct styles of provenance
stores. The first style is a complex workflow used to create a syn-
thetic data set, involving 10 processes each consuming and pro-
ducing 10 data items. Provenance storage for this workflow has
been studied carefully, and in fact two different provenance storage
structures have been used: Karma [31] and PReServ [20]. Even
though both stores represent the same base provenance, the Karma
provenance store is about 300MB while PReServ is about 500MB.
The second style of provenance store is from an actual large data
set, MiMI [22]. The implicit workflow to create each data item
comprises only a few (2-4) steps, but with a very fine-grained ap-
proach. The base data in MiMI is 270MB, while the provenance
store is 6GB.

Provenance Store
U Unreduced Provenance Store
S Structural Inheritance
P Predicate Inheritance
SP Structural & Predicate Inheritance
B Basic Factorization
BS Basic Factorization with Structural Inheritance
BP Basic Factorization with Predicate Inheritance
BSP Basic Factorization with Structural & Predicate Inheritance
N Node Factorization
NS Node Factorization with Structural Inheritance
NP Node Factorization with Predicate Inheritance
NSP Node Factorization with Structural & Predicate Inheritance
O Optional Factorization
OS Optional Factorization with Structural Inheritance
OP Optional Factorization with Predicate Inheritance
OSP Optional Factorization with Structural & Predicate Inheritance
A Argument Factorization
AS Argument Factorization with Structural Inheritance
AP Argument Factorization with Predicate Inheritance
ASP Argument Factorization with Structural & Predicate Inheritance

Table 3: Combinations of reduction techniques used in our experi-
ments.

We applied various combinations of our provenance reduction
techniques, as shown in Table 3, to each provenance store. All
experiments were run on a Dell Windows XP workstation with
Celeron(R) CPU at 3.06GHz with 1.96GB RAM and 122GB disk
space. The algorithms were implemented in Java, as a utility for
reducing provenance storage after creation.

6.2 Storage Space
Figure 7(a) shows the space needed to store the provenance, ac-

cording to each method; most techniques significantly reduce the
size. As expected, Argument Factorization (A) does the same or
better than Node (N) and Optional (O) for all the datasets. Whether
Structural or Predicate Inheritance is better depends on the makeup
of the dataset. MiMI has a very nested structure in which Struc-
tural Inheritance does very well. On the other hand, Karma and
PReServ have flatter data unsuitable for Structural Inheritance, but
use complex workflows that work well with Predicate Inheritance.

Inheritance combined with Factorization results in greater reduc-
tion for all data sets. Regardless of the Inheritance used, Argument
Factorization is the clear winner. Using Argument Factorization
with Structural Inheritance (AS), we produce a MiMI provenance
store that is 5% the original size. Meanwhile, using Argument Fac-
torization with Predicate Inheritance (AP) we can reduce the PRe-
Serv and Karma provenance stores to about 15% and 12%, respec-
tively.

Because our reduction techniques are highly dependent on the
data store and provenance store characteristics, we also created sev-
eral artificial datasets to demonstrate each reduction technique’s ef-
ficacy, based on the data and provenance characteristics; the results
are shown in Figure 8. In Figure 8(a), the provenance store con-
tained different amounts of provenance records, nodes and argu-
ments, while the dataset and provenance store allowed contained
different Structural and Predicate Inhertiance characteristics. It
is clear that the Factorization techniques are highly dependent on
the provenance store’s distribution while the Inheritance techniques
vary based on the dataset and provenance store.

Using a representative sample of the more interesting techniques,
as the size of the provenance store grows, all our reduction algo-
rithms remainO(N), as shown in Figure 9.

6.3 Reduction Time
Figure 7(b) shows the reduction time for each technique. As

can be seen in Figure 7(b), the techniques perform differently on
each provenance store. Reduction time is the worst for Node Fac-
torization; Argument Factorization and Basic Factorization are not
so bad. The reason for this is that Node Factorization maintains
parental information, and will repeat the same node if it occurs in
different places in the workflow, making the underlying data struc-
tures large and unwieldy. Argument Factorization has a large in
memory structure to keep track of the arguments. However, be-
cause these arguments are not written, there are fewer round trips to
the provenance store, thus keeping the time cost down. Karma and
PReServ reduction is fast through all Factorization techniques. At
first glance, it could be expected that the time to run Structural In-
heritance should be less than the time to run both Structural Inheri-
tance and Basic Factorization. However, we do not perform global
Structural Inheritance then global Factorization which would make
S <BS. Instead, for each data item, we test for Structural Inheri-
tance, then immediately, reduce it via Factorization. The overall
data structures are therefore smaller for BS than S, and this is re-
flected in the time. The reduction times presented were generated
using an unoptimized implementation. Instead of reading prove-
nance for a local tree, applying the reduction and writing it out,
once the provenance structure is read in, it does not get written un-
til the final provenance store build. In other words, as implemented,
we have a large memory overhead which can be reduced by a more
storage-intensive implementation. In this work, we are more con-
cerned with the relative times between techniques.

6.4 Query Time
The time it takes to reduce the provenance store, and the space

used to store it, are only part of the overall needs of a function-
ing provenance system. It is imperative that the provenance remain
queriable with the data itself. Because MiMI is queriable online,
we were able to obtain the query logs, and use real queries gener-
ated by biologists. In Table 2, we describe five classes of queries
from these real queries. Each query was run five times on a cold
cache and the average of the three median times is reported. The
only indexes built were element tag indexes. In order to accommo-
date Structural Inheritance, a new iterator was created. We obtained
and modified Timber [21] such that it will find the provenance of a
node even if it inherits from an ancestor. If the provenance is not
found at a given node, the iterator returns the provenance of the
parent node. Thus, this new iterator is at worstO(h) time, whereh
is the height of the data tree. Figure 10 shows the query execution
time for queries in different classes.

Although our reduction techniques may make the provenance
representation less straightforward, they not only save space, they
can also reduce query time. A look at Figure 10 shows some in-
teresting trends. For Classes 1, 3 and 4, in which queries have
selectivity, queries on reduced stores perform on par, or better than
the original store. In particular, Classes 3 and 4, using provenance
as a condition in a low and high selectivity query respectively, show
how the reduced stores can out-perform the original, based on size
differences. Unfortunately, Class 2 queries perform worse on the
reduced store. This is because every such query requires at least
one join in the reduced stores. Finally, Class 5 query times on
reduced stores are mixed compared to the original store. These
queries require multiple joins, and it is impossible to push prove-
nance instantiation higher in the query plan. This leads to poor
performance in some cases, although Predicate Inheritance (P) and
Argument Factorization with Structural and Predicate Inheritance
(ASP) both do better than unreduced.

0

20

40

60

80

100

S

P

S
P

B

B

S

B
P

B

S
P

N

N

S

N
P

N

S
P

O

O

S

O
P

O

S
P

A

A

S

A
P

A

S
P

S

P

S

P

B

B
S

B

P

B
S

P

N

N
S

N

P

N
S

P

O

O
S

O

P

O
S

P

A

A
S

A

P

A
S

P

S

P

S
P

B

B

S

B
P

B

S
P

N

N

S

N
P

N

S
P

O

O

S

O
P

O

S
P

A

A

S

A
P

A

S
P

MiMI
 Karma
 PReServ

Reduction Technique

%
 o

f O
rig

in
al

P

ro
v.

 S
to

re

(a)

1

100

10000

1000000

100000000

S

P

S
P

B

B

S

B
P

B

S
P

N

N

S

N
P

N

S
P

O

O

S

O
P

O

S
P

A

A

S

A
P

A

S
P

S

P

S

P

B

B
S

B

P

B
S

P

N

N
S

N

P

N
S

P

O

O
S

O

P

O
S

P

A

A
S

A

P

A
S

P

S

P

S
P

B

B

S

B
P

B

S
P

N

N

S

N
P

N

S
P

O

O

S

O
P

O

S
P

A

A

S

A
P

A

S
P

MiMI
 Karma
 PReServ

Reduction Technique

T
im

e
(s

)

(b)

Figure 7: (a) Provenance storage space and (b) reduction time, for each method. See Table 3 for the key to letter codes.

0%

25
%

50
%

75
%

10
0%

0

500,000

1,000,000

1,500,000

2,000,000

S
pa

ce
 (

M
B

)

Percent

Redundancy

A

O

B

(a)

0%

25
%

50
%

75
%

10
0%

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

S
iz

e
(M

B
)

Percent Inherited

P

S

(b)

Figure 8: Provenance store size based on reduction technique, data
and provenance characteristics. (a) Basic, Node and Argument Fac-
torization. (b) Structural and Predicate Inheritance.

Reduction as a Factor of Input Size

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

6.E+09

0.E+00
 2.E+09
 4.E+09
 6.E+09

Number Provenance Records

P

ro
ve

na
nc

e
S

to
re

S

iz
e

(k
b)

(a)

Reduction Time vs Input Size

0

200

400

600

800

1000

1200

1400

1600

0.E+00
1.E+06
2.E+06
3.E+06
4.E+06
5.E+06
6.E+06

Number of Provenance Records

T
im

e
(s

)

S

P

O

A

ASP

(b)

Figure 9: How the reduction algorithms scale based on input size in
(a) space and (b) time.

Query Time

0

400

800

1200

1600

q1
 q2
 q3
 q4
 q5
 q6
 q7
 q8
 q9
 q10
 q11

Class 1
 Class 2
 Class 3
 Class 4
 Class 5

Query Complexity

T
im

e
(m

s)

 U

S

P

A

ASP

Figure 10: Query time for each query class on MiMI, for different
reduction techniques.

Reduction Techniques and XGrind

0

100,000

200,000

300,000

400,000

X
G

R
IN

D

(H
)

X
G

R
IN

D

(A
)

G
Z

IP

S

P

S
P

O
S

A
S

A
S

P

Technique

S
pa

ce
 (

M
B

)

Figure 11: XGRIND, GZIP and a sample of Reduction Techniques
applied to the MiMI Provenance Store.

(a) (b) (c)

(d) (e)

Figure 12: Incremental Maintenance on provenance stores with (a) Structural Inheritance, (b) Predicate Inheritance, (c) Optional Factorization,
(d) Argument Factorization, and (e) Argument Factorization with Structural and Predicate Inheritance.

Structural Inheritance performs well across the board. This is
due to a combination of reduced space and anO(h) iterator. First,
the provenance store is so reduced that the entire database is dis-
tinctly smaller. Second, no join needs to be performed, and the
ancestor-lookup iterator is relatively fast. Predicate Inheritance ap-
pears all over the map in these queries. In some cases it does well,
while in others it is almost the worst. Even within the same query
class, it has wildly varying performance. A closer inspection of the
provenance store itself contains the answer. In the case where there
is a predicate-inherited item (e.g. type=‘name’) in the provenance
store, the method does very well. However, if no predicate inher-
itance exists for a certain element type, then the query performs
poorly.

6.5 Incremental Maintenance
As discussed in Section 5.3, the reduction technique used can af-

fect the complexity of incremental maintenance. Figure 12 shows
how each store performs, for data insertion, data deletion and prove-
nance changes. A random sequence of data inserts, deletions and
provenance changes were performed, in equal measure, regardless
of the reduction technique. For a provenance store with Structural
Inheritance, Figures 12(a) and 12(e), the following inserts, deletes
and provenance changes were performed: 1. insert a data item that
Structurally Inherits provenance (from its parent); 2. insert a data
item that does not Structurally Inherit provenance; 3. delete a data
item with children that Structurally Inherit provenance from it; 4.
delete a data item with no such children; 5. change provenance for
a data item; with children that Structurally Inherit provenance from
it; 6. change provenance for a data item with no such children. For
a provenance store with Predicate Inheritance, Figures 12(b) and
12(e), the following inserts, deletes and provenance changes were
performed: 1. insert a data item that Predicate Inherits provenance;
2. insert a data item that does not Predicate Inherit; 3. insert a
data item that Predicate Inherits provenance, but breaks the inher-
itance pattern for all elements of that type; 4. delete a data item;
5. change provenance for a data item that Predicate Inherits prove-
nance; 6. change provenance for a data item that does not Predicate
Inherit; 7. change provenance for a data item that Predicate Inher-
its, but breaks the inheritance pattern for all elements of that type.
For a provenance store with just Factorization, Figures 12(c) and

12(d), the following inserts, deletes and provenance changes were
performed: 1. insert a data item; 2. delete a data item; 3. change
provenance for a data item.

As shown in Figure 12, no matter what provenance reduction
technique is used, updates are easy to perform. We would like to
note that using Predicate Inheritance lowers the average time for a
data insert. If the data item and provenance satisfies a predicate,
then there is no need to manipulate the provenance store, thus sav-
ing time. Additionally, in provenance stores using straight Factor-
ization, deletes and provenance changes are relatively cheap since
there is no need to check inheritance dependencies. The take away
point here is that incremental maintenance on a reduced provenance
store is cheap.

6.6 Interaction with Other Compressors
As previously noted, traditional XML compression techniques

are not suitable for our purposes because they do not result in a
provenance store that is queriable along with base data. Even tech-
niques such as XGRIND, which support keyword and path queries
[32], do not have the full associative power needed to support joins
between provenance and data. However, we have applied XGRIND
using Huffman (H) and Arithmetic (A) encoding to the original
provenance store, and compared the compressed size with our re-
duced stores. Additionally, although a gzipped document is not
queriable, we included the gzipped provenance store as a well known
comparison point. As shown in Figure 11, XGRIND on the un-
reduced provenance store creates a reduced store smaller than any
of the Inheritance methods on their own. However, using combina-
tions of reduction techniques it is possible to compress the prove-
nance store smaller than XGRIND and still maintain the ability to
query data and provenance together. Additionally, while we do not
show the numbers here, it is possible to combine XGRIND and our
reduction techniques to get an extremely small store.

6.7 Other Parameters
Figure 13 shows the relationship between Argument Threshold,

the time to produce the reduced provenance store, and the size of
the reduced store. In the case of MiMI, there is a drastic drop in the
runtime between an Argument Threshold of 5 and 50. This drop is
explained by the makeup of the provenance store. With a threshold

1
 2
 5

10

50

10
0

0

20,000

40,000

60,000

80,000

S

pa
ce

(M

B
)

Argument

Threshold

Argument Threshold and Space

Karma

PReServ

MiMI

(a)

1
 2
 5

10

50

10
0

0

5000

10000

15000

20000

25000

T
im

e
(s

)

Argument

Threshold

Argument Threshold and Time

(b)

Figure 13: Argument Factorization efficiency depends on Argument
Threshold.

of 5, there are very few arguments; everything gets moved from the
base store to the provenance store, with associated pointers needed.
When the threshold moves to 50, however, a substantial part of
provenance records get treated as arguments, and are left untouched
in the provenance store. Unfortunately, as the threshold gets larger,
there is again a disadvantage since fewer items qualify to be moved
from the general store to the provenance store. Depending on the
dataset, the Argument Threshold affects runtime and reducibility
differently. Reduction of the Karma and PReServ stores performs
best in time and space with an Argument threshold of 10. This is a
reflection of how often common sources or manipulations are used
in each. MiMI utilizes the same sources and manipulations over
and over, while the processes used to generate Karma and PReServ
do not.

Between 5-50 seems to be a robust range of values for the Argu-
ment Threshold, likely not to be too far from optimum. This is a
good range in which to set the default value for this parameter, as
a rule of thumb, although as shown with MiMI, some twiddling of
this knob may be required.

6.8 Practitioner’s Guide
If only one type of reduction were to be used, we would recom-

mend Argument Factorization. We have already seen that it results
in better reduction than the other Factorization techniques. Argu-
ment Factorization is the hands down winner for the following rea-
sons:

• It has smaller reduction times due to a reduced number of
writes.

• It is order invariant and does not depend upon whether user
functions are reflexive, symmetric and transitive.

If further reduction is desired, we suggest the following setups
based on data and usage criteria:

For Best Storage Reductions
Data Characteristics Recommended Tech.
All Structural Inheritance
Most data types have specific Predicate Inheritance
process e.g. every name
element gets normalized

For Best Query Times
Query Characteristics Recommended Tech.
All Structural Inheritance1

Uses provenance as a conditionArgument Factorization
(high or low selectivity)
Uses provenance as a conditionPredicate Inheritance
and data has type-specific
processes

Note that if the data or query contains several characteristics
listed above, our techniques can be combined. The combination
is synergistic, and will do more together than either alone.

7. RELATED WORK
Several real-world applications have generated and used prove-

nance information [1, 3, 4, 14, 16, 19, 25, 27]. In previous stud-
ies [7, 20, 31], the major focus has been on creating a provenance
record quickly enough to not substantially slow down the experi-
mental application; the resulting provenance size was of less im-
portance. Only Chimera [14] proposes a method for scaling to ever
larger provenance records, and relies heavily on distributed systems
and virtual provenance. Workflows systems [17, 24] can generate
large amounts of provenance. Some workflow systems [3, 29] are
also trying to reduce provenance size. These systems effectively
normalize provenance data to minimize repetitions of manipula-
tion information across provenance runs. In such cases, our Fac-
torization Algorithms would not provide much benefit. However,
reduction is possible using the Inheritance Algorithms. Addition-
ally, if data is versioned, as in [8], our provenance store reductions
can still be applied; distinct versions of a data item will point to
different records in the provenance store.

The Factorization Algorithms are similar to work in workflow
specification from process logs [11, 33], which attempts to create
an accurate workflow, with an eye to processes, but our work at-
tempts to understand and reduce the size of arguments found in
provenance files. Compiler optimization [10] has also similarities
to the provenance reduction studied here.

XML compression [23] creates a smaller store than the reduction
provided in this work. However, the XML compression systems
do not result in a store that can be queried with an uncompressed
dataset via a standard query language. While XGRIND [32] does
support exact and substring querying of the compressed store, it
does not support joins and thus cannot build relationships among
data and provenance elements; specifically, there is a lack of sup-
port for value or structural joins between provenance pointers and
the provenance store. Luckily, these compression techniques can
be further applied to the reduced provenance store we create.

8. CONCLUSION
Provenance storage is becoming essential for scientific research,

but the size of provenance can overwhelm the size of data, in most
cases. In this paper we presented a strategy to reduce provenance
storage size. Specifically, we developed a family of Factorization
algorithms, as well as algorithms that exploit Predicate and Struc-
tural Inheritance. We described how to apply all three techniques
in tandem to the same data set.

Our experimental assessment showed that our strategy can re-
duce the size of provenance by up to a factor of 20. The reduction
algorithm scales linearly with provenance store size. Provenance
remains queriable, even after reduction using our strategy. In fact,
some classes of queries run faster on the reduced store. Also, our
reduction strategy is orthogonal to traditional text or XML com-
pression: both can be applied in tandem to get additional reduction,
if queriability is not a requirement.

Our work has assumed a generic enough provenance model that
many existing systems could easily be mapped to. We are currently
in conversations with owners of large scientific data sets to have
them adopt our provenance reduction techniques on their produc-
tion data.

1Requires availability of an iterator to trace ancestors.

9. ACKNOWLEDGMENTS
Our many thanks to Yogesh Simmhan for his generous gift of the

PReServ and Karma provenance sets generated in [31]. This work
was supported in part by NSF grant number IIS 0741620 and by
NIH grant number U54 DA021519.

10. REFERENCES
[1] James Annis, Yong Zhao, Jens-S. Vöckler, Michael Wilde,

Steve Kent, and Ian T. Foster. Applying chimera virtual data
concepts to cluster finding in the sloan sky survey. InSC,
pages 1–14, 2002.

[2] Gary Bader, D Betel, and Christopher W.V. Hogue. BIND:
the biomolecule interaction network database.Nucleic Acids
Research, 31(1):248–250, 2003.

[3] Roger S. Barga and Luciano A. Digiampietri. Automatic
capture and efficient storage of escience experiment
provenance. InConcurrency and Computation: Practice and
Experience, 2007.

[4] Omar Benjelloun, Anish Das Sarma, Alon Halevy, and
Jennifer Widom. ULDBs: Databases with uncertainty and
lineage. InVLDB Seoul, Korea, pages 953–964, 2006.

[5] Deepavali Bhagwat et al. An annotation management system
for relational databases. InVLDB, pages 900–911, 2004.

[6] Shawn Bowers, Timothy McPhillips, Martin Wu, and
Bertram Ludäscher. Project histories: Managing data
provenance across collection-oriented scientific workflow
runs. InDILS, pages 27–29, 2007.

[7] Peter Buneman, Adriane Chapman, and James Cheney.
Provenance management in curated databases. InACM
SIGMOD, pages 539–550, June 2006.

[8] Peter Buneman, Sanjeev Khanna, Keishi Tajima, and
Wang-Chiew Tan. Archiving scientific data. InACM
SIGMOD, pages 1–12, June 2002.

[9] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan.
Why and Where: A characterization of data provenance. In
ICDT, pages 316–330, 2001.

[10] John Cocke. Global common subexpression elimination. In
Proceedings of a symposium on Compiler optimization,
pages 20–24, 1970.

[11] Shirley Cohen, Sarah Cohen Boulakia, and Susan Davidson.
Towards a model of scientific workflows and user views. In
DILS, pages 264–279, 2006.

[12] Yingwei Cui and Jennifer Widom. Lineage tracing for
general data warehouse transformations. InProceedings of
the 27th VLDB Conference, Roma, Italy, pages 41–58, 2001.

[13] Jens Ernst, William Evans, Christopher Fraser, Steven
Lucco, and Todd Proebsting. Code compression. InACM
SIGPLAN, pages 358–365, 1997.

[14] Ian Foster, Jens Vockler, Michael Eilde, and Yong Zhao.
Chimera: A virtual data system for representing, querying,
and automating data derivation. InInternational Conference
on Scientific and Statistical Database Management, pages
37–46, July 2002.

[15] Ian Foster, Jens Vockler, M Wilde, and Yong Zhao. The
virtual data grid: a new model and architecture for
data-intensive collaboration. InCIDR, 2003.

[16] James Frew and R Bose. Earth system science workbench: A
data management infrastructure for earth science products. In
SSDBM, pages 180–189, 2001.

[17] Yolanda Gil, Ewa Deelman, Mark Ellisman, Thomas
Fahringer, Geoffrey Fox, Dennis Gannon, Carole Goble,

Miron Livny, Luc Moreau, and Jim Myers. Examining the
challenges of scientific workflows.IEEE Computer,
40(12):26–34, 2007.

[18] Roberto Grossi. On finding common subtrees.Theor.
Comput. Sci., 108(2):345–356, 1993.

[19] Paul Groth et al. Recording and using provenance in a
protein compressibility experiment. InHPDC, 2005.

[20] Paul Groth, Simon Miles, and Luc Moreau. PReServ:
Provenance recording for services. InProceedings of the UK
OST e-Science second All Hands Meeting 2005 (AHM’05),
2005.

[21] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, et al.
Timber: A native XML database.The VLDB Journal,
11(4):274–291, 2002.

[22] Magesh Jayapandian, Adriane Chapman, V.Glenn Tarcea,
Cong Yu, Aaron Elkiss, Angela Ianni, Bin Liu, Arnab Nandi,
Carlos Santos, Philip Andrews, Brian Athey, David States,
and H.V. Jagadish. Michigan Molecular Interactions (MiMI):
Putting the jigsaw puzzle together.Nucleic Acids Research,
pages D566–D571, Jan 2007.

[23] Hartmut Liefke and Dan Suciu. XMill: An efficient
compressor for XML data. InACM Sigmod International
Conference on Management of Data, 2000.

[24] Luc Moreau, Bertram Ludäscher, et al. The First Provenance
Challenge.Concurrency and Computation: Practice and
Experience, 2007.
http://twiki.ipaw.info/bin/view/Challenge/SecondProvenanceChallenge.

[25] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri
Braun, and Margo I. Seltzer. Provenance-aware storage
systems. InUSENIX Annual Technical Conference, pages
43–56, 2006.

[26] Open provenance model.
http://twiki.ipaw.info/bin/view/Challenge/OPM, 2008.

[27] Carmen Pancerella, John Hewson, Wendy Koegler, et al.
Metadata in the collaboratory for multi-scale chemical
science. InDublin Core Conference, 2003.

[28] S Peri et al. Development of human protein reference
database as an initial platform for approaching systems
biology in humans.Genome Research, 13:2363–2371, 2003.

[29] Carlos Eduardo Scheidegger, Huy T. Vo, David Koop,
Juliana Freire, and Cláudio T. Silva. Querying and creating
visualizations by analogy.IEEE Transactions on
Visualization and Computer Graphics, 13(6):1560–1567,
2007.

[30] Amit Sheth. Metadata storage in the active semantic
electronic medical record system (ASEMR) deployed at the
athens heart center. personal communication, Oct 2006.

[31] Yogesh Simmhan, Beth Plale, and Dennis Gannon. A
framework for collecting provenance in data-centric
scientific workflows. InICWS, 2006.

[32] Pankaj M. Tolani and Jayant R. Haritsa. XGRIND: A
query-friendly XML compressor. InICDE, pages 225–234,
2002.

[33] Wil van der Aalst, Ton Weijters, and Laura Maruster.
Workflow mining: Discovering process models from event
logs.IEEE Transactions on Knowledge and Data
Engineering, 16(9):1128–1142, 2004.

[34] Allison Woodruff and Michael Stonebraker. Supporting
fine-grained data lineage in a database visualization
environment. InInternational Conference of Data
Engineering, pages 97–102, 1997.

