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The life sciences provide a rich application 
domain for data management research, with a broad 
diversity of problems that can make a signifcant 
difference to progress in life sciences research. This 
article is an extract from the Report of the NSF 
Workshop on Data Management for Molecular and 
Cell Biology, edited by H. V. Jagadish and Frank 
Olken The workshop was held at the National Library 
of Medicine, Bethesda, MD, Feb. 2-3,2003. 

The Crisis in Data Management for Biological 
Sciences 

Over the past 15 years we have witnessed a 
dramatic transformation in the practice of molecular 
biology. What was once a cottage industry marked by 
scarce, expensive data obtained largely by the manual 
efforts of small groups of graduate students, post-docs, 
and a few technicians has become industrialized 
(routinely and robustly high throughput) and data-rich, 
marked by factory scale sequencing organizations (such 
as the Joint Genome Institute, Whitehead Institute, the 
Institute for Genomic Research). Such sequencing 
factories rely on extensive automation of both 
sequencing and sample preparation. Commencing with 
sequencing, such industrialization is being extended to 
high throughput proteomics, metabolomics, etc. 

While this industrialization of biological research is 
partly the result of technological improvements in 
sequencing instrumentation and automated sample 
preparation it is also driven by massive increases in 
public and private investment and dramatic changes in 
the social organization of molecular biology (e.g., the 
creation of highly specialized, factory scale organizations 
for mass genomic sequencing). Such industrialization 
and the accompanying growth in molecular biology data 
availability demand similar scale up and specialization in 
the data management systems that support and exploit 
this data gathering. To date, the bioinformatics 
community has largely made do with custom handcrafted 
data management software or with conventional DBMS 
(database management system) technology developed for 
accounting applications. 

The industrialization of molecular biology has been 
largely the province of pharmacological, government, 
and, to a lesser extent, academic molecular biology 
research. However, it is clear that we stand at the 
threshold of clinical application of many of these 
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technologies, e.g., as clinical laboratory tests for medical 
applications. Such clinical applications will entail great 
increases in the laboratory and data management 
activities to handle tens or hundreds of millions of assays 
annually in the U.S. Similarly, the approaches and data 
generation output from ever higher levels of biological 
complexity will be increasingly data intensive and high 
throughput. 

Instruments, data, and data management systems 
are complementary goods, i.e., their joint consumption is 
much more useful than consuming a single commodity at 
a time. It is trivial to see that data management systems 
are much more useful if they contain data. Consider also 
what how limited the utility of genomic sequence data 
would be if we could only publish it in books, and 
manually compare it. The availability of data 
management software that permits the rapid searching of 
large genomic sequence databases for similar sequences 
greatly enhances the utility of such sequence data. Quick 
sequence comparisons are not sufficient by themselves; 
the fact that many (most) of these sequences have been 
collected into a few databases (e.g., GenBank) greatly 
simplifies the comparison task. 

In a similar vein, we note that many instruments 
used in molecular biology and chemistry produce 
spectra, or spectra-like results, e.g., infrared 
spectrographs, gas andlor liquid chromatography, mass 
spectrometers. Such instruments must be complemented 
with large community databases of spectra, and data 
management systems that can store and quickly retrieve 
matching spectra, to provide greatest value to biology, 
biochemistry, forensics, and medicine. 

We expect that this explosive growth in the volume 
and diversity of biological and biochemical data will 
continue into the 21" century. Success in the life 
sciences will hinge critically on the availability of 
computational and data management tools to analyze, 
interpret, compare, and manage this abundance of data. 
Increasingly, much of biology is viewed as an 
information science, concerned with how cells, 
organisms, and ecological systems encode and process 
information in genetics, cellular control, organism 
development, environmental response, and evolution. 

For small data sets that are analyzed by a single 
user, it is often possible to side-step database 
management systems altogether. Indeed, simple home- 
grown programs, and Per1 scripts in particular, have 
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adequately served the needs of many a scientist. 
However, as the size of the data grows, the complexity of 
the analysis grows, and the diversity of the sources 
grows, these home-grown solutions do not scale easily. 
The value of developing cross-cutting technology for 
data management becomes more apparent. 

Requirements of Biological Data Management 
Database management systems researchers and 

vendors have often advertised that their products have 
universal applicability. In fact, data management 
technology development has been shaped by different 
applications over the past 30 years. Commercial 
(banking, payroll, and inventory) applications drove the 
development of relational DBMS, CAD (computer aided 
design) applications drove the development of object- 
oriented databases, management information systems 
have driven data warehousing and OLAP (Online 
Analytical Processing) data management technology, and 
web content and e-commerce technology have driven 
XML data management systems. Biological applications 
have their own requirements that will require further 
advances in data management technology. These 
include: 

1. A great diversity of data types: sequences, 
graphs, three dimensional structures, images, etc. 

2. Unconventional types of queries: similarity 
queries, e.g., sequence similarity, pattern matching 
queries, pattern finding queries, etc. 

3. Ubiquitous uncertainty (and sometimes even 
inconsistency) in the data 

4. Extensive requirements for data curation (data 
cleaning and annotation) 

5. A need to support detailed data provenance 
6. A need for large scale data integration 

(hundreds of databases) 
7. Extensive requirements for terminology 

management 
8. Support for rapid schema evolution 
9. A need to support temporal data 
10. A need to provide model management for a 

variety of mathematical and statistical models of 
organisms and biological systems 

These topics are discussed more extensively in the 
full technical report [I]. Here we briefly elaborate on 
only a few of these points. 

Diversity of Data Types and Queries 
A striking feature of biological data is the great 

diversity of data types: sequences, graphs, 3D structures, 
scalar and vector field data, etc. The queries posed 
against these data types are also diverse, and different 
from common commercial queries. Whereas 
conventional databases are dominated by exact match 
(equality) and range (inequality) queries, biological 
applications involve the pervasive use of similarity 

queries, e.g., classic sequence similarity queries, but also 
including subgraph isomorphism, pattern matching 
queries (e.g., regular expressions, Hidden ~ a r k o i  
models) and pattern identification queries. 

Sequences: The availability of sequence data, e.g., 
DNA, RNA, and amino-acid sequences (proteins), has 
grown explosively over the past decade with the 
development of automated sequencing machines and 
large scale sequencing projects such as the human and 
mouse genome sequencing projects. Sequences are 
presently often stored as text strings, but this 
representation is awkward when we want to annotate 
sequences, since text strings typically lack addressability 
at the level of individual letters (nucleotides, or amino 
acids). Often DNA sequences include not only 
individual nucleotides, but also gaps, usually with a 
length (or bounds on length) specification of the gap. 

Graphs: Many types of graphs occur in biological 
data, including a directed (or undirected) labeled graph, a 
nested graph, and a hyper-graph. Examples include 
various biopathways (metabolic pathways, signaling 
pathways, and gene regulatory networks), genetic maps 
(partial order graphs (i.e., directed acyclic graphs), 
taxonomies (either trees or DAGs), chemical structure 
graphs, contact graphs (for 3D protein structure), etc. 
Graphs are easily stored in existing DBMSs, e.g., 
relational DBMSs. However, many graph queries, e.g., 
subgraph isomorphism, subgraph homomorphism, and 
subgraph homeomorphism are difficult (or impossible) to 
pose and answer efficiently in existing relational 
DBMSs, which know nothing of graphs. 

High-Dimensional Data: It is not unusual for 
micro-array experiments of gene expression to involve 
thousands (or tens of thousands) of genes and hundreds 
(or thousands) of experimental conditions and samples. 
Generated datasets are arrays of spot intensities over the 
Cartesian product of genes and samples (e.g., 
experimental conditions). Often researchers are 
interested identifying clusters of genes which exhibit 
similar (or opposite) patterns of gene regulation. 
Specialized data structures and clustering algorithms are 
needed to support nearest neighbor, range searching, and 
clustering queries in high-dimensional spaces. 

Shapes: Three-dimensional molecular (protein, 
ligand, complex) structure data is another common data 
type. Such data includes both shape information (e.g., 
ball and stick models for protein backbones) and (more 
generally) scalar and vector field data of charge, 
hydrophobicity, and other chemical properties specified 
as functions over the volume (or surface) of a molecule 
or complex. 

Temporal Data: Temporal data must frequently be 
managed when studying the dynamics of biological 
systems. Examples include cellular response to 
environmental changes, pathway regulation, dynamics of 

SIGMOD Record, Vol. 33, No. 2, June 2004 



gene expression levels, protein structure dynamics, 
developmental biology, and evolutionary biology. 

Temporal data in biological settings can either be 
absolute or relative. Absolute time-stamping is common 
in administrative or long term ecological observational 
databases -- time is recorded relative to an absolute 
global temporal coordinates such as UTC date-time. 
Relative time-stamping records time relative to some 
event -- e.g., cell division, organism birth, oncogenesis, 
diagnosis, cold shock, etc. Most implementations of 
time in the database cornmunitv have focused on 
absolute time, whereas relative time is much more 
commonly used in most biological experiments. In 
complex settings such as disease progression, there may 
be multiple important events against which time is 
reckoned: 

Scalar and Vector Fields: Scalar and vector field 
data is normally thought of primarily in the context of 
spatio-temporal applications such as computational fluid 
dynamics, weather, climate, oceanography and 
combustion modeling. However, a number of 
participants of the workshop argued that such data is 
quite important for molecular and cell biology 
applications. Examples include modeling reactant and 
charge distribution across the volume of a cell, calcium 
fluxes across the cell surface or cell volume, reactant or 
protein fluxes across cell membranes, transport across 
cellular compartments, clinical response to drugs. 
Efforts in the visualization, computational fluid 
dynamics, and geographic information systems 
communities to deal with vector and scalar field data 
have focused on the development of fiber bundle or 
vector bundle data models. 

Mathematical Models: Much of modern biological 
data analysis is concerned with the specification, 
development, parameter estimation, and testing 
(statistical or simulation) of various mathematical and 
statistical models of biological systems and datasets. 
Thus far the database community has largely been 
concerned with storing and querying input data sets, 
estimated parameters sets, and simulation output 
datasets. Relatively little attention has been paid to 
systematic methods of representing, storing, and 
querying the mathematical and statistical models being 
used. One would like to have declarative specification of 
mathematical and statistical models, means of recording 
bindings of model variables to database contents, and 
some way of recording the statistical analysis method (or 
simulation method) used. 

Constraints: Historically, DBMSs have provided 
mechanisms to specify and enforce a variety of logical 
constraints on the contents or allowable updates of the 
database, e.g., referential integrity constraints. 
Biological databases require a variety of constraint 
specifications, both logical rules, and mathematical 
constraints (e.g., equations or inequalities) as first class 
data types in a biological data management system, with 

the ability to store, enforce, and query such constraints. 
In particular, traditional DBMSs typically have no 
mechanism to enforce non-local constraints. 

Examples of mathematical constraints include 
various conservation constraints such as mass, 
momentum and energy conservation. Thus individual 
chemical reactions in a bio-pathway database must 
satisfy mass balance for each element. Such constraints 
are local. In contrast, cycles of reactions in 
thermodynamic database must satisfy energy 
conservation constraints. These are non-local (global) 
constraints. Another example of non-local constraints 
are the prohibition of cycles in overlap graphs of DNA 
sequence reads for linear chromosomes, or in the 
directed graphs of conceptual or biological taxonomies 

Patterns: On the many data types described above, 
one would naturally expect similarity queries. These are 
clearly important. In addition, much effort has gone into 
specifying, characterizing, and finding patterns (a.k.a. 
motifs), e.g. in DNA, RNA, and protein sequences. 
These patterns are often represented as regular 
expressions or Hidden Markov Models (HMMs) or other 
types of grammars. Biologists are interested in 
collecting, storing, and querying these patterns. Patterns 
thus need to be considered as first class data types, with 
support for storage and querying. 

A second class of queries consists of pattern 
matching queries, i.e., queries which find instances of 
sequences, etc. which match a specific pattern. On 
strings these queries involve pattern specifications such 
as regular expressions, Hidden Markov Models, or chart 
grammars. Graph pattern queries might involve patterns 
specified by graph grammars, subgraph homomorphism 
queries, etc. 

One will also want to be able query collections of 
patterns (motifs). One such query would involve finding 
all patterns which match a sequence (the inverse of the 
customary query). Alternatively, one might ask for 
patterns which are similar to a specified pattern. Pattern 
similarity might be defined either structurally (akin to 
sequence similarity) or in terms of the overlap in the 
sequences matched by the two patterns from a specified 
database. 

This diversity of data and query types has two 
implications for data management technology. First, we 
need to develop specialized indexing and query 
processing techniques to deal with these specialized data 
and query types. Second, we need to develop more 
extensible data management systems. Current DBMSs 
have object-relational facilities that offer some 
extensibility features, which have been used to support 
geographic information systems and chemo-informatics 
systems. Most of the workshop participants believe that 
current extension facilities are too limited and 
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cumbersome to fully cope with the diversity of biological 
data and queries. 

Data Provenance 
Questions of data release policies for biological 

data are properly questions of public policy, not technical 
discussion. However, it has become increasingly clear 
that good data management infrastructure for recording 
and querying data provenance - the origin and 
processing history of data - is vital if we are to 
effectively encourage the sharing of biological and 
biomedical data. Data provenance issues have been 
largely neglected by the database research community 
except for a few researchers in statistical data 
management and data warehousing. This area clearly 
needs further work to support bioinformatics data 
sharing. The topic is also of increasing interest to the 
regulatory community (e.g., the Food and Drug 
Administration). 

The classic approach to sharing knowledge in the 
biology community has been to publish journal articles. 
Authors receive public acclaim and acknowledgement in 
exchange for publication of their knowledge. Individual 
articles and authors are acknowledged via bibliographic 
citations (or sometimes co-authorship), and systems have 
been developed to record the number of citations papers 
received. We believe that similar mechanisms are 
needed to acknowledge "publication" of datasets in 
shared databases, so as to encourage rapid, effective 
sharing of data. Data management support for tracking 
data provenance (origins) can provide the analog of 
citations. Usage tracking software can potentially 
provide analogs to bibliographic citation counts. Support 
for automatic tracking and querying of data provenance 
is fairly undeveloped in current DBMSs. 

There are other important motivations for recording 
and querying data provenance. Knowledge of the source 
and processing history of data items permits users to 
place the data in context and helps to assess its 
reliability. Data provenance histories also facilitate 
revision of derived data when the base data (or analysis 
codes) change. DBMS support is needed to facilitate the 
automated update of provenance information as the 
database is updated and the automatic propagation of 
provenance information wit query results. Experience in 
other settings, e.g., geographic information systems, 
indicates that unless metadata (e.g., data provenance) is 
automatically updated, it is likely to quickly become 
outdated. 

Uncertainty 
Biological data has a great deal of inherent 

uncertainty. Often, when a scientist says "A is a B they 
mean "A is probably a B, because there is some (possibly 
substantial) evidence suggesting that such is the case". 
For example: A protein sequence may be erroneously 
recorded in GenBank, because only a partial protein was 

reported; this error is propagated when another scientist 
runs a Blast search against sequences in GenBank and 
reports matches against such an erroneous sequence. 

For all of these reasons, it is important to recognize 
uncertainty (and possible inconsistency) of data recorded 
in biological databases. Standard database technology 
provides no support for uncertainty, since business- 
oriented commercial databases typically contain data that 
is certain. Individual investigators often resolve 
uncertainties and inconsistencies by manual inspection 
and editing of datasets - a process known as manual 
curation. In large scale database setting, explicit 
representation of uncertainty and automated tools for 
curation are needed. Difficulties in scaling up curation 
activities have been the bane of major public biological 
databases. 

Workflow Management 
Large scale molecular biology experiments and 

data analyses need workflow management systems to 
assist in orchestrating the work and recording the details 
of what was done to each sample andlor dataset. Both 
laboratory WFMS (known as LIMS - laboratory 
information management systems) and computational 
workflow management systems (sometimes called 
scientific workflow management) are needed for large 
projects. Explicit representation and recording of 
laboratory and computational protocols is useful in 
driving automated data analyses and subsequent retrieval 
of experiments on the basis of protocol features. 
Detailed records on experiments are useful for process 
yield analyses and process failure diagnosis. Biological 
workflows differ from conventional workflows in that 
pooling and splitting of samples is commonplace. 

Data Integration 
Many, if not most, applications of biological and 

biomedical databases require the ability to access data 
from many different databases (and datasets). There has 
been a veritable explosion in specialized biological 
databases. Many researchers regard these specialized 
databases as extremely valuable, in part due to the very 
detailed and carefil curation of the data by specialists in 
particular domains. However, no matter how good the 
data management technology for data integration, we do 
not foresee that it will be practical for data integration to 
succeed in a world of hundreds of biological databases 
unless the database providers provide extensive 
assistance in the form of publicly accessible, machine 
processable documentation concerning the database 
schemas, contents, query interfaces, query languages, 
etc. Adoption of such current technology by database 
providers was seen as a pressing issue. 

The current practice of only providing access to 
most specialized biological databases via web-based 
forms is not sufficient: query APIs and query languages 
are needed to facilitate data integration. The provision 
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of suitable data documentation and adoption of standard 
data exchange formats and query languages and APIs 
will have to be seen as a social obligation of 
investigators similar to careful description of 
experimental methods in publication. The efforts of the 
Micro-array Gene Expression Data Society, to develop 
standard schemas for micro-array data, represent an 
instance where significant steps have been taken in this 
direction. 

We note that the structural biology and genomics 
communities have also resorted to various social 
sanctions to encourage data sharing, e.g., requirements of 
depositing data in PDB or GenBank prior to acceptance 
of papers for publication, and requirements for data 
deposition as a condition of grant renewal and a criterion 
for funding of new grants. We anticipate that similar 
activism by federal research program managers and 
journal editors will continue to be required, both for data 
deposition and to assure adoption of best practices to 
facilitate data sharing, such as complete documentation, 
data exchange encoding, and support for query APIs 
(e.g., Web Services Description Language) and query 
languages (SQL, OQL, XQuery, et al.) 

In addition to the short-term needs of machine- 
readable descriptions, and the constructions of wrappers, 
there are deeper questions to be addressed with regard to 
model management. Mapping between different data 
models or data representations is an integral part of any 
biological database application. For example, there is 
often external information or archival data that must be 
imported to augment local computationally or 
experimentally derived data. Even within a single 
project, there can be the need for multiple models or 
representations for the same kind of information, as it 
moves through various stages, e.g., data entry, data 
query, data interchange, and data archiving. With 
Affymetrix gene expression data, for example, data entry 
may be what Affyrnetrix produces, data query may be a 
relational database with some local model, data 
interchange may use MAGE-ML, and data archive is 
what some consortium requires. 

Data sources evolve as knowledge changes and as 
new experimental techniques produce more data and 
different characterizations of the data. As a result, both 
the schemas that describe the data as well as applications 
and queries written specific to the original version of the 
schema must be updated. This is difficult to accomplish, 
particularly when the data types and structures are 
complex and when the analysis involves complex 
transformations or aggregations. Keeping up with 
evolution becomes significantly more difficult if there is 
a fundamental change in our understanding of the 
meaning or the characterization of the data. 

Interdisciplinary Research 
The past decade has seen the rise of 

bioinformaticists (a.k.a. bioinformaticians), a new group 

of researchers operating across the disciplines of biology, 
statistics, computer science, and mathematics. Their 
interdisciplinary activities now have their own 
professional society, conferences, and journals. 

Orchestrating fruitful interdisciplinary research 
across biology, bioinformatics, and data management is 
not easy. Even within the workshop, there was heated 
debate about the best strategy to accomplish this. Lack 
of sufficient interaction among biologists, 
bioinformaticists, and data management researchers can 
easily lead to attempts to reinvent well-known data 
management technologies by bioinformaticists, or sterile 
pursuits of insignificant or misunderstood problems by 
data management researchers. Also, the time scales of 
data management research and development are often 
incompatible with the production requirements of 
ongoing biological laboratories or public databases. 
Despite early plans and efforts (e.g., by DOE) the major 
human genome sequencing centers have generally not 
been major sources of innovative data management 
technology. The most intellectually fruitful endeavors 
have often come from data management or computer 
science research groups with looser collaborations with 
biologists. The time required to develop new database 
technologies often exceeds the time demands of most 
biologists or bioinformaticists, who must produce 
biologically relevant data to sustain funding. 

Recommendations 
A sustained program supported across the federal 

agencies at the frontier between biology and data 
management technology will allow us to share the 
database expertise of the IT (information technology) 
professionals with bioinformaticists and biological 
experimentalists supported across the federal agencies. 
There are needs for both research in database 
management technologies and innovative application of 
existing database technology to biological problems. 
Funding agencies will have to set up appropriately 
staffed review panels charged with suitable review 
criteria for supporting such interdisciplinary work. 

It is also valuable to define challenge problems that 
push the boundaries of data management technology, 
which, if successful, would enable major advances in 
biomedical science. Well-specified challenges can help 
direct data management researchers toward important 
bioinformatics problems. Creation of test data sets and 
benchmarks are also worthy endeavors in themselves, 
and should be supported as appropriate and possible. 
Much of this work must be done by life scientists. The 
availability of such test data sets and query benchmarks 
facilitates the comparison of new approaches to older 
ones. 

We expect, in the foreseeable future, that it will 
become important to have physicians and experimental 
biologists trained in computational methods, just as 
training in genetics has now become routine for 
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physicians. Biology is often an exercise in induction 
(generalization from many instances), whereas computer 
science is more often a deductive enterprise, because 
computer algorithrns/systems are usually designed, not 
evolved, artifacts. Solution to a specific biological data 
management problem is of less interest to a computer 
scientist than the generalization of this problem to a class 
of data management problems, all of which can be 
solved in one fell swoop through an appropriate 
computational advance. And rightly so, since this 
paradigm is significantly more cost-effective in the 
domains to which it is applicable. We note that 
experimental design and algorithmic design are often 
similar endeavors. 

Conclusions 
The development of high throughput methods 

and the establishment of commercial sources for even 
highly specialized biochemical reagents for research in 
molecular and cell biology over the past fifteen years has 
brought a huge increase in the volume and diversity of 
biological and biomedical data. Clinical use of these 
technologies has already begun and extensive, even 
routine, application is imminent. Full, efficient 
exploitation of these expensive investments in data 
collection will require complementary investments in 
data management technology. 

To date most efforts to manage this data have relied 
either on commercial off-the-shelf DBMSs developed for 
business data, or on homegrown systems that are neither 
flexible nor scalable. Better data management 
technology is needed to effectively address specific data 
management needs of the life sciences. Such needs 
include support for diverse data types (such as 
sequences, graphs, 3D structures, etc.) and queries (e.g., 
similarity based retrieval), data provenance tracking, and 
integration of numerous autonomous databases. 

Full Report 
This article is an extract from the full report, 

which is available online from the workshop web site 
[I]. This site also contains the position papers, the 
original workshop proposal, attendee lists, etc. Position 
papers from several attendees, and an interim summary 
report were published in the OMICS Journal[2]; these 
materials are also accessible via the workshop web site. 
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