
Skimmer: Rapid Scrolling of Relational Query Results

Manish Singh
University of Michigan

Ann Arbor, USA
singhmk@umich.edu

Arnab Nandi
The Ohio State University

Columbus, USA
arnab@cse.osu.edu

H.V. Jagadish
University of Michigan

Ann Arbor, USA
jag@umich.edu

ABSTRACT
A relational database often yields a large set of tuples as
the result of a query. Users browse this result set to find
the information they require. If the result set is large, there
may be many pages of data to browse. Since results comprise
tuples of alphanumeric values that have few visual markers,
it is hard to browse the data quickly, even if it is sorted.

In this paper, we describe the design of a system for brows-
ing relational data by scrolling through it at a high speed.
Rather than showing the user a fast-changing blur, the sys-
tem presents the user with a small number of representative
tuples. Representative tuples are selected to provide a“good
impression” of the query result. We show that the informa-
tion loss to the user is limited, even at high scrolling speeds,
and that our algorithms can pick good representatives fast
enough to provide for real-time, high-speed scrolling over
large datasets.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: User Interfaces

General Terms
Algorithms, Design, Performance

Keywords
Fast browsing, Tuple sampling, Scrolling history

1. INTRODUCTION
Database query results often comprise hundreds, and even

thousands, of tuples. Typically, these tuples are presented
to a user through a scrolling interface. Since these tuples,
typically, contain alphanumeric information and are devoid
of visual cues, the user is easily overwhelmed. It becomes
difficult for the user to perform meaningful tasks by scrolling
through a large result set. The goal of this paper is to make
the commonly used scrolling interface more usable for brows-
ing large relational result sets.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

It is often hard for users to specify precisely the query re-
sults of interest [8]. They are then faced with the problem of
having an empty answer or many answers [2, 9]. Empty an-
swers are returned when the query is too selective, whereas
a query that is not selective enough returns many answers.
Not surprisingly, user interface studies [14, 6, 8, 7] have
shown that users tend to browse quite often while searching
for information, in addition to querying. These studies show
that browsing is a rich and fundamental part of human infor-
mation seeking behavior, and that querying is not the only
mode of interaction with data. Users often formulate a more
precise query after they have attained an understanding of
the underlying data through quick exploratory browsing.

Let us consider an example task to better appreciate our
problem: A realtor database that has a single table with
attributes: (TID, Price, Bedrooms, Bathrooms, CrimeR-

ate, Zipcode, ...). Each tuple represents a property for
sale. Consider a user looking to buy a home who has a rough
idea of the desired price, neighborhood and home size.

In the example above, the user typically issues the query,
and is then presented with a tabular collection of results,
each tuple representing a property. While the users speci-
fications were well articulated, even within the parameters
specified, there are still several hundred homes. The user
has to browse through all the result tuples to find a few
homes of interest to see. This browsing is typically done by
scrolling through the large table of results, a daunting task.

To help the user quickly get a sense of large result sets,
various sophisticated data reduction techniques such as clus-
tering and faceting, are available (see Section 6 for details).
While there are situations in which such techniques can be
effective, they also have significant limitations. First, clus-
ters do not help the user unless they have labels (or other
means) that clearly identify what can be found inside each
cluster. Thus, a full scan is still required. For example,
if the user were looking to buy a home, she would proba-
bly insist on browsing the result set rather than relying on
some realtor’s clustering software. Secondly, it is important
to let the user control the rate of consumption of informa-
tion. For tabular data, the user can slow down or speed up
her reading speed by moving the scrollbar accordingly. In a
clustering-based system, one would need to allow the user to
dynamically vary the granularity of each cluster in an inter-
active fashion. Such a solution is not only computationally
challenging but is also unintuitive for quick browsing.

Where user preferences are well understood, results may
be scored and ranked. Information retrieval systems rou-
tinely present large result sets in this fashion. Users can

then focus on the few top-ranked results and skim, or even
ignore, the rest. However, in the database context there is
usually insufficient information to rank with confidence. A
common solution in the case of databases is to sort the re-
sult set on some attribute of importance: say Price, in our
realtor example. The user then has to scroll through this
large result, reading through each tuple. While the data is
sorted on the Price column, the user still has to focus on
reading the other columns, which may not correlate with
Price. Clearly, reading through each non-sort-key attribute
of each tuple in a entire large result set is a slow and ardu-
ous task. Therefore, our task becomes that of supporting
fast browsing (and more specifically, scrolling) over such a
sorted relational result set.

Humans browse all the time, for example with newspa-
pers and magazines. Visual cues in the layout assist users
in browsing data quickly. Relational data tuples tend to
comprise dense alphanumeric data, with few visual markers.
Thus, there is a rather low maximum rate at which a human
can skim tuples from a database. The only way to browse a
database faster than this rate is to have the human eye see
less than all the information.

To improve the usability of scrolling interfaces, we present
in this paper a variable-speed scrolling interface that can
automatically adjust the amount of information displayed
based on a user’s scrolling speed. Our interface displays only
a few selected tuples from each page, where the number of
tuples is determined by the user’s current scrolling speed.
If some results seem interesting to the user while scrolling
fast, the user can reduce the speed of scrolling, making the
system show more tuples from the currently-viewed section
of the data. In contrast to a typical sampling problem, our
goal is to identify tuples that provide the most information
with respect to the entire scrolling session, and not just the
page at hand.

While the specific sorting attribute is not material for our
algorithms, the fact that data is sorted/clustered in some
way is crucial. For fast browsing to work, we must have
“similar” records close together, for some user notion of sim-
ilarity. If we did not have this, then selecting any set of
representative tuples would permit only global conclusions,
but not local ones: there would be no reason to expect other
interesting entries in the vicinity of an interesting observed
sample. There are many ways interesting records could have
been placed together—for example, a clustering algorithm
could have been used. The algorithms in our paper will
work in such a scenario as well. We chose to focus on sorting
because this is so commonly used in database user interfaces.

Contributions: Our key contributions are as follows:

• Scrolling-aware browsing: We identify the problem of
deriving representative tuples in the context of scrolling
through sorted relational data.

• Information loss metric: We provide precise mathe-
matical definitions that quantify loss of information in-
curred while browsing just the representative tuples.

• Algorithms: We develop and compare five new scrolling-
based sampling algorithms that minimize information loss.

• Interaction constraints: Due to the interactive nature
of our use-case, the efficiency of our algorithms is a key
consideration. We provide efficiently computable algo-
rithms that satisfy this fast scrolling requirement.

Paper Layout: The rest of the paper is organized as fol-
lows. In Section 2, we formally define our problem. We
then describe the scrolling interface and define metrics for
information loss. In Section 3, we introduce two näıve algo-
rithms and propose five new algorithms to solve the problem
at hand. We present experimental results in Section 4 and
a user study in Section 5. Related work is discussed in Sec-
tion 6, followed by conclusions in Section 7.

2. SCROLLING INTERFACE
In this section, we describe our formal problem set up, user

interface, and metrics used to measure information quality.

2.1 Problem Definition
A user gives an ORDER BY SQL query Q, which is executed

on database D and it generates a result set R. The query
can be over a single table or joined over multiple tables. R
contains N tuples and it requires S pages for display, i.e.,
pages {P1, P2, · · · , PS}. All pages, except the last page PS ,
contain M tuples, where M is determined by the page and
tuple size. For the remainder of the paper we use the page
size to indicate the number of tuples per page (i.e., M).

Our preliminary user study experiments (not reported
here) showed that for alphanumeric, relational data, it is
easier for users to see information using intermittent page-
wise scrolling, as compared to continuous scrolling. In in-
termittent page-wise scrolling, the display contents are re-
freshed only when the scrollbar moves to adjacent pages.
We believe this is because it is harder for a user to read con-
tinuously moving tuples, as found in a continuous scrolling
interfaces. Based on this design, in our proposed scrolling
interface, a user goes through a much smaller result set
{D1, D2, · · · , DS}, where Di is the set of representative tu-
ples shown from page, Pi.

Our system computes the set Di, for page Pi, based on
user’s current browsing speed, i.e., in our implemented sys-
tem it is the average browsing speed at page Pi−2. Due to
computational constraints, the tuples are selected when the
user is currently browsing through page Pi−1. We compute
Ki, the size of Di, based on a straightforward inverse func-
tion of scrolling speed, discussed in Section 5.4. Our central
problem is to select Di that gives the user a good impres-
sion (defined later in Section 2.3) of page Pi, and at the same
time, avoids showing redundant information. Furthermore,
this selection has to be performed very fast, so that the user
is not hindered by our system even when browsing the data
set at high speed.

2.2 User Interface
It should be noted that designing a user interface is not

the primary aim of our work—rather, our goal is to design
algorithms that can identify representative tuples that pro-
vide high quality information to the user within the real-time
constraints of fast browsing.

A user can scroll through the result pages, {P1, P2, · · · , PS},
arbitrarily varying her scrolling speed. At a slow speed, all
the tuples are shown; whereas in the high speed case, only
a few selected tuples are shown. In Figure 1, we show a
page of tuples containing properties from a realtor database.
Through three tuples, our system is able to give a good over-
all impression of the full page. If the scroll speed changes
and a page is redisplayed with more tuples, the relative loca-
tion of the originally displayed tuples remains fixed, giving

!"#$%&#'()*+"(!(,-("#

!"#$%! $%&'(#)(*+#),-.+#

./(0$1(2334(2(/(

.5(6*7(8884(8(2(

.9(6*7(85/4(8(8(

Current Page

History

Remaining Tuples

Scroll Position
& Scroll Speed

Sorted Column

Representative
Tuples
(selected
 algorithmically)

Figure 1: User interface: Results are displayed in
a paginated interface, browsable using the scroll-
bar. The scroll position determines the currently
displayed page. Instead of overwhelming the user
with a full display where all tuples are shown, the
user is presented with a condensed display featur-
ing a set of representative tuples. These tuples are
selected from the current page based on contents of
the page itself, the history of pages seen so far, the
scroll position and the speed of scrolling.

the user a point of reference and allowing her to read infor-
mation that is stationary. In addition to the tuples, we show
the page number of currently displayed page.

In our interface, when a user scrolls backwards (i.e. scrolling
towards beginning of the result set), we display all the tu-
ples (full display), but when a user scrolls in forward direc-
tion (scrolling towards the end of result set), we display only
selected representative tuples. During the forward scroll, if
the user’s average scroll speed is below a threshold speed Vt,
then all the tuples will be shown. Thus, a user can see all
the tuples in page Pi, by either scrolling in forward direc-
tion below the threshold speed at page Pi−2, or scrolling in
backward direction at page Pi. The reason to maintain this
asymmetry is because users are expected to scroll forward
most of the time, but we want to give them a way to stop
suddenly when something catches their eye.

2.3 Goodness Measure
We address the issue of information overload encountered

during fast browsing by displaying only a select set of repre-
sentative tuples from each page, instead of showing all tuples
that satisfy the user’s query. In other words, we show the
user less information, which brings up the question of infor-
mation loss. Can we quantify the information we did not
show the user?

Entropy-based information loss measures are well studied
in the area of Information Theory. However, we were not
able to use these measures for our specific problem because
defining row wise entropy, or significance of an individual
tuple with respect to the whole result set, is hard, since all
values in a row are distinct. To the best of our knowledge,
there is no existing work that mathematically quantifies this
kind of information loss. In this section, we develop some
natural metrics for this purpose. To do so, we first define
two preliminary concepts: scroll log and history.

Scroll Log: A scroll log (SL) maintains the sequence in
which pages of a query result were visited by a user. It logs
three things: sequence number sid ; page number pid ; and a
list of tuple ids tupleList, of all displayed tuples from page
pid. Thus, the log has the form (sid, pid, tupleList), where
sequence id sid is incremented with every new page visit
during a forward scroll.

History: We call already displayed information as history
and denote it by H(sid). H(sid) contains the ids of all tu-
ples that have been shown to the user, prior to scrolling
in the sid page in sequence. The list of tuple ids shown
from this page is denoted as tupleList(sid). Thus H(sid) =⋃sid−1

i=1 tupleList(i). Note that with a succession of forward
and backward scrolls, the history of a page Pi could contain
information from pages after page Pi.

We now go on to define our metrics for information loss in
the context of browsing data: Tuplewise Information Loss,
Pagewise Information Loss and Cumulative Information Loss.

Definition 1. The Tuplewise Information Loss (TIL)
score of a non-displayed tuple tnd, from page Pi having se-
quence id ‘sid’ in scroll log, is the dissimilarity of tnd with
respect to the most similar tuple td, from history H(sid) and
tuples shown from page Pi. Thus,

TIL(tnd, sid) = V(tnd, td) (1)

Here, V gives the dissimilarity between tnd and td, where
td ∈ H(sid) ∪ tupleList(sid).

We can use any distance function V to measure dissimi-
larity. In the experiments reported in this paper, we use
simple Euclidian distance after scaling dimensions to com-
parable ranges. Intuitively, TIL(tnd, sid) gives a measure
of the most similar information with respect to tnd that has
been shown to the user from either already displayed tu-
ples H(sid) or tuples that has been shown from page Pi,
tupleList(sid).

Definition 2. The Pagewise Information Loss (PIL)
score for a page Pi, is defined as the sum of TIL scores of all
tuples from Pi. For pages which are not scrolled or visited,
PIL score is zero. Thus,

PIL(Pi, sid) =
∑

tp∈Pi

TIL(tp, sid) (2)

Since the TIL score of all displayed tuples is zero, the PIL
score of a page is the sum of the TIL score of all non-
displayed tuples.

To minimize information loss even during fast scrolling, we
need to ensure that we do not show redundant information,
i.e., information that is similar to what has already been
shown. For example, in our realtor application, if a user
has sorted the houses by the Price attribute, then it is not
desirable to show expensive houses that are very similar to
cheaper houses that have already been shown to the user
in previous pages. A buyer is willing to look for expensive
houses only if the expensive houses have features which are
significantly different from lower priced houses. To avoid
redundancy, while selecting tuples from any page Pi, we need

to take into consideration the information that has been
shown prior to display of Pi, which we maintain in the form
of history.

The relationship between history and PIL score can be
understood more clearly through Figure 2, where we have
shown the selected tuples (current representatives) from two
types of sampling algorithms—one that considers no his-
tory (local sampling) vs one that consider displayed his-
tory (history based sampling). All the circles represent tu-
ples in a page of a binary relation, and we have to select two
representative tuples from this page. Clearly by selecting
the two representative tuples as shown in Figure 2 (a), we
reduce the overall PIL score for the page. The problem with
local sampling can be understood by seeing the already dis-
played tuples (i.e., historical representative) in Figure 2 (b).
The two selected tuples in local sampling do not provide as
much additional information as compared to what the user
had already seen in the past. As shown in 2 (b), consid-
ering history enables us to provide new information that is
substantially different from previously shown information.

A

B

D

C

A

B

Current Representative Hist. Representative

(a) Local Sampling (b) History based Sampling

Figure 2: Local and Historical Sampling

Definition 3. The Cumulative Information Loss (CIL)
score for a scroll log ‘SL’ and result set R, is defined as the
sum of PIL score of all entries in ‘SL’. Thus,

CIL(SL,R) =

|SL|∑
sid=1

PIL(pid, sid) (3)

Thus, CIL score is the sum of PIL scores of all entries in
scroll log SL. Intuitively, given two sampling algorithms A
and B, one can say that algorithm A is better than B in
terms of minimizing information loss, if CILA(SL,R) <
CILB(SL,R), where CILX(SL,R) denotes the cumulative
information loss incurred by sampling according to algo-
rithm X, given the result set R and scroll log SL.

3. ALGORITHMS
In this section, we present two näıve and five novel sam-

pling algorithms that minimizes CIL score. Since CIL score
is sum of pagewise PIL scores, these algorithms minimize
individual pagewise PIL score. For the sake of simplicity,
we assume that we have a data page P , with associated his-
tory H, and that we have to select K representatives from
page P . The collection of selected representatives is called

the display set D. The sizes of the page P and history
H are denoted by M and |H|, respectively. Literature in
the clustering domain generally use the terminology object,
which is equivalent to our tuples. We use these two terms
interchangeably when describing our sampling algorithms.

3.1 Naïve Sampling Techniques
To the best our knowledge, there is no existing work that

supports variable-speed scrolling for relational data, and
thus we use two sampling techniques, namely random and
uniform sampling, as our näıve solutions to evaluate and
compare against. In these näıve solutions, we pick K ran-
dom or uniformly spaced tuples from page P . We refer to
these näıve sampling techniques as RS and US, respectively.
Since the data is sorted, we expected uniform sampling to
give a good overall impression because it will select tuples
at regular interval.

3.2 K-medoids based Sampling Techniques

3.2.1 Relationship between PIL Score and K-medoids
Minimizing the PIL score (i.e., Definition 2) is equiva-

lent to solving the standard K-medoids clustering algorithm,
with some modifications. K-medoids is a partitioning based
clustering algorithm that divides a given set of objects into
K partitions and returns an actual representative object
from each partition or cluster.

In K-medoids, we try to minimize the following absolute
error criterion:

EK-medoids(P) =

K∑
j=1

∑
p∈Cj

V(p, oj) (4)

Here, EK-medoids is the sum of absolute error for all objects
in the dataset P ; p is an object in cluster Cj , which is rep-
resented by object oj . V(p, oj) measures the error in repre-
senting object p by object oj . V could be any generic dis-
similarity function, including functions over objects having
categorical features.

Minimizing the PIL score of page P is equivalent to min-
imizing the following equation:

PIL(P) =

L∑
j=1

∑
p∈Cj

V(p, oj) (5)

where, L = |H| + K. While minimizing Equation 5, we
can only select K new representatives from page P , the |H|
representative objects shown in previous pages cannot be
changed.

The mathematical formulation for K-medoids and PIL
score looks quite similar, with the difference that in the PIL
score, we have fixed cluster centers from previous pages and
that we want to avoid picking new centers which are close
to the already displayed cluster centers, as discussed earlier
in Section 2.3.

3.2.2 Local K-medoids
In the Local K-medoids (LKMed) sampling algorithm,

we do not consider the effect of history while minimizing
Equation 5. We compute the representatives using the nor-
mal K-medoids formulation, i.e., Equation 4. Any standard
K-medoids algorithm can be used for selecting the K rep-
resentatives from page P , we use PAM (Partition Around
Medoids) [17]. For large datasets, more efficient algorithms

such as CLARA [17] and CLARANS [25] are generally used,
which use sampling and randomization, respectively, to re-
duce the computational cost of PAM. To get reasonable re-
sults, these algorithms still need at least several dozen points
after the sampling. Since we are clustering one page of tu-
ples at a time, we only have a few dozen tuples to cluster.
For these reasons, the extra machinery to handle large data
sets is not required and PAM is our preferred algorithm.

PAM is an iterative clustering algorithm that requires
O(K.(M −K)2) distance computations per iteration, where
M is dataset size. For typical values of M (say 50) and
K (say 10) in our application, this is still several thou-
sand computations that must be performed within time so
short (milliseconds) that the interface feels responsive to the
user. Since M is small enough that we can afford M2 stor-
age in memory, we improved the performance of PAM by
computing the distance between all tuples of a page once,
and then using it in all iterations. This avoids the need to
repeatedly compute distances between tuples, as required in
classic PAM [17].

3.2.3 Historical K-medoids
Historical K-medoid (HKMed) modifies LKMed by keep-

ing history H and modifying the PAM algorithm in light
of H. Samples in HKMed are computed according to Algo-
rithm 1. While HKMed seems to have additional computa-
tion steps as compared to LKMed because it takes history
into account, both our theoretical and experimental eval-
uation show that HKMed is better than LKMed, both in
terms of information quality and computation time (a more
detailed explanation is provided in the forthcoming para-
graphs).

Algorithm 1 Historical K-medoids

Input: K: size of display set
P : a data page
H: displayed history

Output: D: display set from page P
Method:

1: flag ← true
2: map NH ← NearestNeighbor(P, H)
3: map TD ← AllPairDistance(P)
4: D← K random objects from P as initial representatives
5: repeat
6: map NM ← NearestNeighbor(P \D, D)
7: map NC ←MergeNearestNeighbor(NH, NM)
8: for all pairs of objects om, op, where om ∈ D and

op ∈ P \D, compute TCmp ← SwapCost(om, op)
9: if (Min(TCmp) < 0) then

10: D ← (D \ om) ∪ {op}
11: else
12: flag ← false
13: end if
14: until (flag = true)
15: return D

Algorithm 1 differs from the basic PAM algorithm in the
addition of steps 2 and 7. In basic PAM, we perform step
4 to select the initial representatives and then keep repeat-
ing steps 6, 8-14 till convergence. In the above algorithm,
‘\’ refers to the set difference operator. In step 6, we com-
pute the nearest neighbor of all non-displayed objects (tu-

ples) from page P with respect to the currently selected
representatives D. In steps 8-14, the goal is to swap one
of the currently selected representative objects om with a
non-selected object op that gives the greatest reduction in
error cost. The best pair is one for which the TCmp value is
minimum and this value should be negative. We would refer
the readers to [17, 25] for more details of the basic PAM
algorithm. For both LKMed and HKMed algorithm, each
iteration involves computing SwapCost K.(M − K) times.
In the SwapCost algorithm, we need to consider the effect
of swap on all the (M −K) non-selected objects, and thus
the overall complexity is O(K.(M −K)2).

In step 2, we compute the nearest neighbor for all tuples
in page P with respect to history H. We keep both tuple id
and distance in the map NH. In step 4, to avoid repeated
distance computation between tuples in P , we pre-compute
and store the distance of all tuples from each other in the
map TD. Step 4 is useful even in basic PAM, as it can reduce
the cost for computing the nearest neighbor in step 6, and
second nearest neighbor in step 8, i.e., SwapCost algorithm.
In step 7, we merge the nearest neighbor from historically
displayed tuples H and the currently selected representative
tuples D. The SwapCost algorithm has the same four cases
as that of basic PAM algorithm [17, 25], with the exception
that only the representatives from D (and not H) can be
swapped with non-selected representatives from P \D. The
swap costs can be efficiently computed by using the infor-
mation in map NC of step 7 and map TD of step 4.

As we will see experimentally in Section 4.2, HKMed is
better than LKMed both in terms of information quality
and computation time. The better information quality is
because HKMed exactly minimizes the PIL score (LKMed
returns samples like Figure 2 (a), whereas HKMed returns
samples like Figure 2 (b)). While HKMed seems to have
two additional steps, i.e., step 2 and 7, it is computation-
ally faster than LKMed. HKMed is faster due to reduced
computation in SwapCost algorithm of step 8. In the Swap-
Cost algorithm, there are four cases to consider for each
non-selected object oj , when we replace an existing medoid
om by a new medoid op (see details in [17, 25]). For a non-
selected object (oj) that is in om’s cluster, we have to con-
sider cases 1 and 2, where we need to compute the second
nearest neighbor from D to compute the replacement cost.
In case oj is not in om’s cluster, we need to consider cases
3 and 4, which are faster to compute. In case of HKMed,
we have a number of fixed medoids from history H and thus
the number of times we need to consider cases 1 and 2 for
the selected medoids from P (i.e., D) would be many fewer
than for LKMed.

3.3 K-means Based Sampling
Each iteration of K-medoids based clustering algorithms

requires O(K.(M − K)2) distance computations, and thus
may not be suitable for very fast scrolling. The cost of K-
medoids based algorithms increase with an increase in page
size or sampling rate. To address these computational con-
straints, in this subsection, we present three K-means ap-
proximated to K-medoids based sampling algorithms, which
are computationally much faster, with O(K.M) distance
computations per iteration. One of these algorithms return
representatives that are almost as good as LKMed.

K-means is also a partition based clustering algorithm,
but it returns the mean of the objects in a cluster as clus-

ter representative, unlike K-medoids that returns an actual
object from the cluster. A cluster center obtained from K-
means may not be a real object in the cluster. To get a
K-medoids approximation, we return K-actual objects that
are nearest to each of these cluster centers. K-means is re-
stricted to Euclidean distance functions, whereas K-medoids
can support any distance function V. K-means minimizes
the following square-error criterion:

EK-means(P) =

K∑
j=1

∑
p∈Cj

|p−mi|2 (6)

Here, EK-means is the sum of square error of all objects in
the dataset P ; p is an object assigned to cluster Cj , and Cj

is represented by mj , i.e., mean of all the points in Cj .

3.3.1 Local K-means
Local K-means (LKMeans) is similar to LKMed, where we

do not consider the effect of history H. We compute K clus-
ter centers from page P using the basic K-means clustering
algorithm [24]. For each cluster center, we compute the near-
est neighbor from P and these tuples constitute the display
set D. This algorithm takes O(K.M) distance computations
per iterations and is suitable for very fast scrolling. Note
that for large datasets, more efficient K-means algorithms
are available, such as grid based optimizations proposed in
[21]. However, in our problem, since page-wise data is small,
basic K-means would be quite fast and give the best quality
result.

LKMeans has the same disadvantage as LKMed, discussed
in Section 2.3 Figure 2 (a); that it may display tuples which
are very similar to already shown tuples. To avoid redun-
dancy, we now present two K-means based algorithm that
take history in account.

3.3.2 Historical K-means
For Historical K-means (HKMeans), see Algorithm 2, we

make similar modifications to LKMeans, as we did from
LKMed to HKMed.

Algorithm 2 Historical K-means

Input: K: size of display set
P : a data page
H: displayed history

Output: D: display set from page P
Method:

1: D ← K random tuples from P as initial cluster centers
2: map NH ← NearestNeighbor(P,H)
3: repeat
4: re(assign) each tuple in P to its closest cluster center

in D ∪H
5: for all cluster centers d in D do
6: if d has empty assignments, split the largest cluster

assignment in D into two equal parts and assign
half of the tuples to d

7: end for
8: update cluster centers in D to the mean of its con-

stituent instances
9: until no change

10: D ← NearestNeighbor(D,P)
11: return D

Algorithm 2 is similar to basic K-means clustering algo-
rithm [24], with a difference in steps 2 and 4, where we need
to consider the effect of history H. In step 4, we assign
each tuple in P to the nearest cluster center in D ∪ H. If
computed, as in case of normal K-means, step 4 would re-
quire O((|H| + K).M) distance computation per iteration.
However, this can be computed more efficiently by using the
nearest neighbor map NH, computed in step 2. In step
4, we should compute the nearest neighbors of P with re-
spect to D only, and then see if these nearest neighbors are
closer than the nearest neighbor from history H (i.e., map
NH). Since the history is fixed, we do not need to repeat-
edly compute the nearest neighbor with respect to H. This
efficient computation will require O(K.M) distance compu-
tations per iteration in step 4, which is same as basic K-
means. For step 2, we would need an additional O(|H|.M)
distance computations for computing the nearest neighbors
of P with respect to H. In step 8, we update cluster centers
in D, by taking the mean of all the tuples assigned to each
cluster center in D. In step 10, to get a K-medoids approxi-
mation, we return K-actual tuples from P which are nearest
to each of the computed cluster centers in D.

To make the HKMeans algorithm terminate with desired
number of representatives, we need to address the empty
cluster assignment problem. In HKMeans, tuples whose
nearest neighbor from history H is closer than the near-
est neighbor in currently selected representatives D, do not
play any role in determining the new cluster centers D for
next iteration. Since the page size is generally small and
history may be large, the cluster assignments may often be-
come empty, causing the algorithm not to converge or to
terminate with desired number of representative tuples. In
order to solve this empty assignment problem, in steps 5-7,
if there is any empty cluster in D, then we split the largest
cluster in D into two equal parts and assign half of the tuples
to the empty cluster.

3.3.3 Two Phase K-means
In our empirical experiments, we were expecting HKMeans

to yield a lower CIL score as compared to LKMeans, but to
our surprise, the CIL score from HKMeans was quite high;
in fact it was quite close to random sampling. By observ-
ing individual page-wise PIL scores, we observed that even
though for most pages LKMeans and HKMeans were com-
parable in terms of PIL score, there were pages where the
PIL score of HKMeans was quite high as compared to LK-
Means. This apparently high PIL score was due to selection
of outliers as representative tuples, as shown in Figure 3 (a).

D

C

A

B

A

B

D

C

CB

Initial Representative Hist. RepresentativeCurrent Representative

(a) HKMeans (b) TPKMeans

Figure 3: Local and Historical Sampling

Figure 3 (a) shows the effect of initialization (step 1) on
Algorithm 2. In HKMeans tuples whose nearest neighbor
from history H are closer than the nearest neighbor in cur-
rently selected representatives D do not play any role in
determining the cluster center for next iteration. As shown
in Figure 3 (a), if we pick the initial representatives from
outliers (i.e., cluster A and B in Figure 3 (a)) and have
historical representatives as shown, then since most of the
tuples are closer to historical representatives, Algorithm 2
will converge with current representatives as mean of cluster
A and B. Clearly, the selected representatives from B do not
give a good overall impression as it is a cluster of outliers,
and the representative from A is very similar to already dis-
played center from D. Unlike HKMed where the algorithm
selects the medoids by computing the best possible swap
in each iteration, HKMeans does cluster assignment simply
based on nearest neighbor and thus may end up in a bad
local optimum solution. Since the fixed centers from the
history are not updated, and only a few tuples may play a
role in selecting the new cluster center, HKMeans returns
bad representatives quite often. This effect of initialization
increases with increase in size of history (i.e., high sampling
rate or size of truncated history L).

To address this problem of wrong initial cluster centers,
we present a Two Phase K-means (TPKMeans) algorithm,
which uses LKMeans in the first phase to compute proper
initial cluster centers, and then in the second phase uses HK-
Means algorithm to select final representative tuples. Fig-
ure 3 (b) shows that if we select proper initial cluster centers
and then run Algorithm 2 using these as initial cluster cen-
ter, we can avoid selecting outliers as representatives and
also avoid showing redundant information.

TPKMeans is expected to perform quite well, as is con-
firmed through our experiments, because it initially chooses
the centers from most dense locations and then moves to
those portions of the data where there is no historical repre-
sentative. The information quality from TPKMeans is quite
close to HKMed. Computational complexity of LKMeans is
O(t.K.M), HKMeans is O(t.K.M + |H|.M) and TPKMeans
is also O(t.K.M + |H|.M). Here t indicates the number of
iterations.

3.4 Limiting the History
Using the entire history to minimize information loss, as

discussed in Section 2.3, may not be practical from a system
design perspective. This is because the size of history goes
on increasing as the user continues to scroll. Ultimately,
the history could become as large as the entire result set.
Therefore, we consider using a truncated history that con-
tains only information that a user has seen recently.

The truncated history can be computed by using the scroll
log SL. For a page visit with sequence id sid, we scan
SL backwards starting from sid and take the union of all
tupleLists from the first L distinct pages that appear in a
backward scan. If a page appears multiple times while look-
ing for L distinct pages, we take the tupleList corresponding
to the most recent visit of that page in SL. Of course, in a
running system we do not need to go through this exercise
repeatedly—it is straightforward to incrementally maintain
the truncated history for the most recent L page visits, drop-
ping the oldest one when a new page is visited.

The size of this truncated history, L, is a system param-

eter. We show experimentally that, as long as the value of
L is not too small, having a large L does not lead to lower
information loss. Thus, we can truncate history without
hurting the quality of our results.

4. EXPERIMENTS
In this section, we report on the experimental evaluation

of our variable-speed scrolling interface. We implemented
the user interface and all sampling algorithms as described
in Section 2 and Section 3, respectively. We performed ex-
periments to compare the performance of all seven sampling
algorithms in terms of their computation time and informa-
tion quality. We also conducted a user study to measure
the usability of a traditional full display vs. our sampling-
based variable-speed scrolling interface, which we report in
the next section.

4.1 Experimental Setup
We implemented our system in Java using the MySQL

5.5 RDBMS. Experiments were run on a dual-core Pentium
2.5 GHz PC with 2 GB of RAM. We used three datasets—
Stock [18], Abalone [13] and ImageSegmentation [13]—
for our user studies.

The Stock dataset has 2150 tuples, where each tuple rep-
resents stock details of a company for a day during year 1994-
2003. It has 6 attributes, such as Date, Starting Price,
Max Price, Min Price, etc. The Abalone dataset is gen-
erally used for regression analysis, where one predicts the
age (age in years = number of rings + 1.5) of abalone from
physical measurements, such as, length, diameter, height
and different types of weights. This dataset has 4177 tu-
ples with 8 attributes. ImageSegmentation is generally
used for classification tasks. It has 2310 tuples from seven
outdoor images: grass, path, window, cement, foliage, sky
and brickface, where each tuple corresponds to a 3x3 region
with 19 attributes. Each of the seven types of images has
330 instances.

4.2 Performance
In this subsection, we present the performance comparisons—

both in terms of computation time and information quality—
of all seven sampling algorithms on the Abalone dataset.
While we conducted performance experiments on all datasets
with similar results, we present our performance only on one
dataset due to space constraints.

For our experiments, we assume a simple scrolling motion:
a one-pass, constant speed, forward scrolling action from
first to last page, with each page displaying a fixed number
of tuples.

For these experiments, we assume the whole Abalone
dataset as a sample query result. We present the effect of
parameters such as page size, number of dimensions, sam-
pling rate on the performance of these algorithms. Each of
these plots are based on average readings of 25 simulation,
where for each simulation we generate a different query re-
sult by selecting different random combination of attributes
and ordering it by one randomly chosen attribute. The de-
fault parameters in these experiments are page size = 40
tuples per page, number of dimensions = 4 and sampling
rate = 5 tuples per page. We have kept the size of trun-
cated history, L = 10.

4.2.1 Computational Comparison
Figures 4, 5 and 6, measure the computation time of all the

seven sampling algorithms with varying page size, number
of dimension and sampling rate, respectively. We plot the
average time for selecting tuples from each page, which is
equal to the total time for a single pass simulation divided
by the total number of pages. The average computation time
gives a measure of the maximum allowed scrolling speed that
a particular sampling algorithm can support.

Trends in Figures 4, 5 and 6 show that K-medoids based
sampling algorithms take considerably more time as com-
pared to the other five sampling algorithms. As discussed
earlier, the computational complexity of LKMed, HKMed,
LKMeans and HKMeans are O(t.K.(M−K)2), O(t.K.(M−
K)2 + |H|.M), O(t.K.M) and O(t.K.M + |H|.M), respec-
tively. Here, t is number of iterations and O(|H|.M) is the
complexity of computing nearest neighbors with respect to
history. HKMeans and TPKMeans have the same computa-
tional complexity. All three graphs show that the time taken
by LKMed is greater than HKMed, even though in terms
of computational complexity LKMed seems to be better
than HKMed. As we had discussed earlier in Section 3.2.3,
HKMed is faster than LKMed due to reduced amortized
cost of SwapCost algorithm, in step 8 of Algorithm 1. HK-
Means takes more time as compared to LKMeans because
HKMeans requires additional computation for computing
nearest neighbor in step 2 and during cluster assignment in
step 4 of Algorithm 2. TPKMeans has slightly more com-
putation time as compared to HKMeans because of the ad-
ditional run of LKMeans needed in TPKMeans to get the
initial cluster centers.

Figures 4 and 6 show that K-medoids based sampling al-
gorithms cannot support fast scrolling for large page sizes or
high sampling rates. K-means based sampling algorithms
are quite fast even for reasonably large page sizes and high
sampling rates. We will see later in Section 4.2.2 that the
information quality obtained from TPKMeans is quite close
to the K-medoids based sampling algorithms. Further, we
can conclude from the three computation graphs that TP-
KMeans is suitable for very fast scrolling in all practical
range of parameters.

Figure 6 shows that for both HKMeans and TPKMeans
sampling algorithms, the computation time increases rapidly
with an increase in sampling rate. This increase is due to
large size of history (truncated history) for which these al-
gorithms need to compute the nearest neighbors. Moreover,
in the presence of a large number of previous fixed centers,
these algorithms require more iterations to converge. When
the history is large, the cluster assignments do not converge
quickly because in each iteration, only a few tuples, which
are not near to any of the historical centers, are used to
compute the next step’s cluster centers.

4.2.2 Information Quality Comparison
The metric for the quality of information result presented

is the Cumulative Information Loss (CIL) defined in Sec-
tion 2. As we change the problem set up parameters, such as
page size or number of dimensions, the value of CIL changes
greatly. Furthermore, CIL is not scaled to anything—there
is no way to tell whether a given absolute value is good or
bad. What we can say, however, is that smaller values are
better. For these reasons, we define the notion of informa-

tion gain below. The information gain is what we plot in
our figures.

Definition 4. The Information Gain of an Algorithm
A with respect to another Algorithm B is defined as:

IG(A,B) =
CILB(SL,R)

CILA(SL,R)
(7)

Figures 7, 8 and 9, show the information gain of each of the
seven sampling algorithms with respect to random sampling,
i.e., IG(X,RS), where X represents a sampling algorithm.
These graphs are obtained by varying page size, number
of dimension and sampling rate, respectively. All the three
graphs show that HKMed gives the highest information gain
followed by TPKMeans and LKMed. In all the graphs, we
can also see that the information gain from HKMeans is
quite low and is very close to random sampling.

The large information gain difference between HKMeans
and TPKMeans in Figures 7, 8 and 9 clearly indicates the
effect of initial cluster centers on the history-based K-means
algorithm (see Section 3.3.3 for details). When the his-
tory is large and/or dataset (i.e. page size) is small, HK-
Means may end up choosing outliers as representative tu-
ples. This problem is due to a choice of wrong initial cluster
centers. Figure 7 shows that as the page size increases for
a fixed sampling rate, the performance of HKMeans and
TPKMeans seem to improve—this is because of reduced
history and a large dataset. When the page size is very
small, LKMed seems to become slightly better as compared
to TPKMeans—this is due to known problem that K-means
are effected by outliers more than K-medoid. By selecting
proper initial cluster centers in TPKMeans, we are able to
make its information gain quite close to the ideal HKMed
algorithm. From Figure 9 we can see that as the history
size increases with the increase in sampling rate, the per-
formance of TPKMeans worsens, as compared to both the
K-medoids based sampling algorithms. With a high sam-
pling rate, the history size becomes larger, and thus affects
the K-means based historical sampling algorithms.

Figure 8 shows that the information gain for all algorithms
decreases with the increase in number of dimensions. This
decrease is due to curse of dimensionality. As the number of
dimensions increases, all the tuples in a page become quite
far from each other and thus none of the clustering algo-
rithms are very effective in giving a good overall impression.
Even at a high dimension such as six, our sampling algo-
rithms can give an information gain of more than 2.

4.2.3 Effect of Truncated History
Figures 10 and 11 show the effect of truncated history’s

size on computational performance and information quality.
In these experiments, we kept the other parameters at the
default values and varied the size of truncated history L.

Figure 10 shows that when we have a very small history,
i.e., L = 1, the two K-medoids and the three K-means
based algorithms have similar computation time. As we
increase history, we see that computation time of HKMed
becomes better than LKMed, but as we increase L further,
the time to compute the nearest neighbor increases and the
computation time of both the algorithm seems to converge.
For HKMed, the dip in computation cost is due to a reduced
amortized cost of the SwapCost algorithm, as discussed ear-
lier. The computation time of history based K-means al-

0

5

10

15

20

25

30

35

20 30 40 50 60 70

Ti
m

e
Pe

r P
ag

e
(m

s)

Page Size (tuples per page)

Figure 4: Effect of Page Size

0
1
2
3
4
5
6
7
8
9

2 3 4 5 6

Ti
m

e
Pe

r P
ag

e
(m

s)

Number of Dimension

Figure 5: Effect of Dimension

0

5

10

15

20

25

2 4 6 8 10 12

Ti
m

e
Pe

r P
ag

e
(m

s)

Samples Per Page

RS

US

LKMeans

HKMeans

TPKMeans

LKMed

HKMed

Figure 6: Effect of Sampling Rate

0

0.5

1

1.5

2

2.5

3

3.5

4

20 30 40 50 60 70

In
fo

rm
at

io
n

G
ai

n

Page Size (tuples per page)

Figure 7: Effect of Page Size

0

2

4

6

8

10

12

14

2 3 4 5 6

In
fo

rm
at

io
n

G
ai

n

Number of Dimension

Figure 8: Effect of Dimension

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

2 4 6 8 10 12

In
fo

rm
at

io
n

G
ai

n

Samples Per Page

RS

US

LKMeans

HKMeans

TPKMeans

LKMed

HKMed

Figure 9: Effect of Sampling Rate

0
1
2
3
4
5
6
7
8
9

1 4 8 12 16 20 24

Ti
m

e
Pe

r P
ag

e
(m

s)

History Size

RS

US

LKMeans

HKMeans

TPKMeans

LKMed

HKMed

Figure 10: Computation Time

gorithm goes on increasing because of the nearest neighbor
computation.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

1 4 8 12 16 20 24

CI
L

Sc
or

e
(m

ill
io

ns
)

History Size

RS

US

LKMeans

HKMeans

TPKMeans

LKMed

HKMed

Figure 11: Information Quality

Figure 11, shows that the CIL score of all sampling algo-
rithms become stable for L greater than 10 (the information
gain also becomes constant because it is ratio of two CIL
scores). Based on this, we used L = 10 for all other ex-
periments. Note that we plotted the CIL score in Figure 11
rather than Information Gain. We did so to make clear that
the flattening of benefits with larger L is not just a flatten-
ing of relative benefits between the algorithms, but rather
an absolute flattening.

4.3 Summary Recommendations
K-medoids based sampling algorithms are fast enough to

support normal browsing in all parameter ranges. Studies
have shown that for a user interface to seem instantaneous

from a cognitive perspective, the system has a bound of
reacting within 100 ms [4]. Our own studies showed that
users often spend less than 100ms on a page when they are
browsing quickly. Some users spend as little as a few tens of
milliseconds on each page. We see from Figures 4, 5 and 6
that the computation time of all proposed sampling algo-
rithms is well within the 100 ms limit. The LKMed and
HKMed algorithms do start to take time that may become
noticeable when the page size is large and the sampling rate
is very high. In general, most display screens can show 20-40
tuples per page, and when a user scrolls quickly, our system
is expected to show only a few tuples per page (i.e a low
sampling rate).

In short, we should choose the sampling algorithm based
purely on information quality. In other words, HKMed can
be used for scrolling in most parameter ranges. If compu-
tation time becomes a concern, TPKMeans is the preferred
algorithm since it sacrifices slightly in information quality
compared to HKMed, but is much faster to compute.

5. USER STUDY
The goal of our user study is to measure the usability of a

full display vs. the sampling-based variable-speed scrolling
interface. Usability can be measured in terms of users’ ease-
of-use, efficiency and quality of response to a given task.

We requested 8 users from our university to participate
in sessions comprising two similar tasks on each of the three
datasets—Stock, Abalone and ImageSegmentation—once
using the condensed display and once using the full display.
To reduce the effect of learning, we created the following four
sequences of sessions that distribute and reorder the tasks,
datasets and user interfaces evenly. We asked two users to
perform each of the following session sequences:

• Set0: S1F, A2S, I1F, S2S, A1F, I2S

• Set1: S2S, A1F, I2S, S1F, A2S, I1F

• Set2: S2F, A1S, I2F, S1S, A2F, I1S

• Set3: S1S, A2F, I1S, S2F, A1S, I2F

For a session code ‘XYZ’, X indicates the dataset’s name i.e.,
S for Stock, A for Abalone, I for ImageSegmentation;
Y indicates task code, i.e, Task 1 or 2 from the dataset
X (two tasks were designed for each data set, as we explain
below); and Z indicates the display mode, i.e., F for full
display and S for condensed display. We indicate the users
as U0, U1, ..., U7. We gave user Ui the s session sequence
i%4. For each session we measured the time taken by the
user to finish the task, the quality of user’s response and
user’s scrolling pattern.

For the condensed display we used the HKMed sampling
algorithm. To measure the quality of our samples, we turned
off the full display mode while the users scrolled backward.
In our user studies, when the users scrolled backward, we
showed those tuples from a page that were shown in the
most recent forward scroll through that page. We performed
all user studies with page size = 30 tuples/page.

5.1 Interesting Patterns (Stock)
There are many applications where users are interested in

finding trends or patterns, such as increasing or decreasing
trends, periods with high and low data variance, cyclical
periods, etc., over time series data.

33

1 15

7

5

1

4

1

27
1

19
1

11
10

6

1

0

200

400

600

800

1000

1200

U1 U2 U3 U4 U5 U6 U7 U8

Ti
m

e
in

 S
ec

s (
Ra

nk
)

User ID

FD

CD

Figure 12: Max-Min Page Variance

We measured the usability of our system in identifying
interesting patterns through the Stock dataset. We asked
the users to scroll through the dataset, which was ordered
with respect to time, and identify pages with minimum and
maximum variance, defined as the difference between the
maximum value of Max Price column and minimum value
of Min Price column. Figure 12, shows the time taken by all
8 users using full display (FD) and condensed display (CD)
interface. To evaluate the user’s response quality, we com-
puted the actual variance of all the pages and then measured
the quality of user’s response with respect to the actual vari-
ance. For example, if user’s max variance page is 5th highest
in terms of actual max variance, then we say that quality is
5. At the top of each time bar, we have displayed the quality
of user’s response. The results show that even though the
user’s response quality is almost similar for both interfaces,
users are able to do tasks using our condensed display inter-
face twice as fast as compared to the full display interface.

5.2 Simple Regression Task (Abalone)
There are many applications where given certain feature

measurements, one is interested in finding the expected value
for a missing feature. For example, given descriptions of a
car or a house on sale, one would like to have an expected
guess of what should be a reasonable price.

We measured the usability of our system in assisting re-
gression tasks using the Abalone dataset. As compared
to general housing or automobile datasets, the abalone
dataset is less noisy and thus it is comparatively easy for

15 11

3 50 7

7
15

3

2

6
3 6

13

15

4

5

0

100

200

300

400

500

600

U1 U2 U3 U4 U5 U6 U7 U8

Ti
m

e
in

 S
ec

s (
Di

st
 *

 1
0-2

)

User ID

FD

CD

Figure 13: Predicting Missing Features

a user to manually perform the regression task. In this task,
we picked two instances as test data from the Abalone
dataset and removed their length and shell weight fea-
tures. We sorted the data according to length. We asked
each user to fill in these two missing features for one instance
using the full display interface and other using the condensed
display interface. For the user studies, we removed the di-

ameter feature from the dataset as this feature was very
closely correlated with length, and thus users could pre-
dict the length closely using this feature itself. Other fea-
tures were not that closely related with the length feature.
We measured each user’s response quality by computing the
Manhattan distance of user’s response for the two missing
features with respect to the actual values. The results are
shown in Figure 13. The bars show the time taken by each
user and the values on top of the bar indicates the Manhat-
tan distance of user’s response to the actual missing values.
For most users, both response quality and time are better
using the condensed display interface than the full display
interface.

Since this task involved a larger number of features and
comparatively larger dataset, this was very indicative of how
users struggle with large relational query results. In this
task, the tuples that were similar to task 1 appeared in the
first half of the ordered data, whereas for task 2, they ap-
peared in the second half. In the condensed display interface,
users were quick to appreciate a good overall impression of
each page through a few selected samples and compare with
the test data. We can see that when task 2 was given to
users U3,U4, U7 and U8 using the full display, they took
much more time as compared to users U1,U2, U5 and U6

who had done the same task using condensed display.

5.3 Discriminating Columns (ImageSegmn.)
In many applications, a user does not have a priori knowl-

edge of the underlying data. Thus, they try to figure out
columns which can help them make discriminating judge-
ments by browsing through the data, e.g. identifying fea-
tures that can help them the most in classifying houses, cars,
hotels etc., at different price ranges. Although each house,
car etc., can have a large number of features, one needs to
identify features that are important for making decisions, a
task that is often best done by visual inspection. By know-
ing good discriminating features and suitable ranges, a user
can either form a new, more precise query or easily predict
the class of a new data record.

We evaluated user performance on a task of identifying
good discriminating columns using the ImageSegmenta-
tion dataset. This data set has 19 columns, many of which
are rather technical in nature. 19 columns is too many for
use in a simple scroll without horizontal panning. There-
fore, we selected 7 out of 19 attributes that were easy for
non-expert users to understand. Specifically, we selected at-
tributes 10–16, i.e., Mean Intensity, Raw Red, Raw Blue,

4 2 3
1

1
1

4

1

1
1

1
1 1

1

1

1

0

100

200

300

400

500

600

700

U1 U2 U3 U4 U5 U6 U7 U8

Ti
m

e
in

 S
ec

s (
Ra

nk
)

User ID

FD

CD

Figure 14: Max Discriminating Column

Raw Green, Excess Red, Excess Blue and Excess Green.
The were 330 images in the dataset for each of seven differ-
ent types, such as brickface, sky, and grass. We asked users
to find the most discriminating columns for image types:
brickface and sky; and brickface and grass. We measured the
quality of a discriminating column using the Fischer Linear
discriminant.

J (Ck, i, j) =
|mik −mjk|2

sik2 + sjk2
(8)

Here, J (Ck, i, j) is a measure of column Ck’s discriminating
ability for class i and class j; mik and sik represents the
mean and standard deviation of class i in column Ck.

Figure 14 shows the user’s response time and quality of
answer at top of the time bar. The quality is measured in
terms of the true rank of the user’s response column using
the discriminating score defined in Equation 8. All users
were able to identify the best column using condensed dis-
play interface, but they made errors using the full display
because of noisy data and too much information. Further-
more, in terms of the user’s time-to-task, the condensed dis-
play interface is superior to the full display interface.

5.4 Relationship between Sampling Rate and
Scrolling Speed

0

4000

8000

12000

16000

20000

3 6 9 12 15

Av
er

ag
e

Ti
m

e
(m

s)

Tuples per Page

Figure 15: Scrolling Speed Vs. Sampling Rate

The results in this section shows how verbosity affects
users reading time. We conducted this study over 6 users.
Each user was asked to scroll through 5 pages of a relation,
where each page had 30 tuples and 5 columns, and each
cell of the relation was randomly assigned an integer value
between 0 and 999. Users were tasked to locate a predeter-
mined value on each page of the dataset (this forced the user
to read each page completely). In Figure 15, we plot the av-
erage time spent per page and standard error, while varying
the verbosity of our display from 3 to 15 tuples per page. In
addition to the linear, inverse relationship between reading
speed and tuples-per-page, we also observe that users take
approximately 1 second to read a tuple on average for our
dataset. When browsing quickly, users are often not looking
at all the data values—rather, they may focus on the sin-
gle sorted attribute. In such cases, they can browse much
faster, possibly spending less than 100 ms per tuple. From
Figure 15, one can see that as verbosity increases, the user
takes more time to read a page.

5.5 Users’ Feedback
Since it is hard to objectively measure the ease-of-use of

a system, we polled our test users for comments. All said
that it was much less stressful to use the condensed display
as compared to full display interface.

6. RELATED WORK
The need for fast browsing has been established through

numerous user interface studies [14, 6, 8, 7], done in the
area of Human Computer Interaction. A primary difference
between our work and a majority of previous work is that
existing systems do not take into consideration the user-
specific (attribute-wise) sort preference, which is a very typ-
ical browsing pattern in databases. Moreover, we will see
that the the related algorithms, discussed below, statically
determine their full result set. Due to their static nature,
even if a user varies her browsing speed at a certain page,
we cannot vary the results. Our interface provides best pos-
sible non-redundant, overall information of any page based
on user’s current browsing behavior. We show those tuples
that give the best overview, and not necessarily ranked tu-
ples.

Top-K Result Set: Evaluating top-K query has been an
important research aspect in all areas of information re-
trieval. Many results may satisfy a user’s query. But by
ranking the result set, these ranking algorithms enable a
user to quickly locate the desired information by just brows-
ing the top few results. For relational data, top-K ranking
algorithms have been proposed in [2, 9].

Top-K Diverse Set: It is hard to design an automatic
top-K ranking algorithm that can simultaneously satisfy the
information need of all users, because rankings change with
change in user preference. To satisfy most users, algorithms
for computing top-K diverse set has been proposed, for ex-
ample web queries [1] and SQL queries [10].

Data Summarization: Large data sets are often browsed
through data summarization techniques, such as clustering
and faceting. Different types of data mining algorithms, in-
cluding clustering, is very nicely presented in [15]. Faceted
search, or guided navigation, is very useful in enhancing
user’s browsing experience, in which users can browse the
data along various “facets” or attributes. Faceted search in-
terface [12, 11] were traditionally used for text and/or image
data. For relational data, Senjuti et al. [5] have proposed
algorithms for identifying important facets and the sequence
in which these facets should be presented to a user. Iden-
tifying important facets enable a user to quickly locate the
desired information.

Sampling: Sampling algorithms have been extensively used
in databases for various reasons, such as identifying impor-
tant statistical information [26], fast query processing [22],
or computing approximate query result [3]. In the context
of browsing, the precise problem formulation we require is
slightly different.

Information Visualization: There are many visualiza-
tion tools, such as tag clouds [20, 19], which enable a user
to quickly locate important information. These tools sig-
nal important information through distinct text properties,
such as font, color etc.

User Interfaces: For relational data there are fast brows-
ing interfaces, such as, MusiqLens [23] and DataScope [27].
These interfaces cluster the whole query result and then

present the result in a predetermined manner. In these,
the order in which information is presented does not change
with user’s dynamic browsing pattern. In our system, we
take into account the information that user has already seen
and the current scrolling rate, to determine how much and
which new information to show.

Our system has similar motivations as that of variable-
speed scrolling system, proposed by Igarashi et al. [16], for
browsing large text documents. While browsing text docu-
ments, our eyes follow visual hints, such as different font
sizes, section headings, graphics, knowledge of structural
outline etc. When a user scrolls too fast through a text
document even the prominent visual hints start getting dis-
torted and the user loses track of her position in the docu-
ment. In [16], the authors assume that there is a maximum
threshold scrolling speed beyond which things would start
getting distorted. When a user scrolls below the thresh-
old speed, their system shows full information, but when
the scroll speed is beyond the threshold speed, the system
starts showing only important markers and hides the finer
details. The markers are easy to identify in text documents
because of different font sizes, section headings etc. They
had also tried to use their technique for structured data,
such as dictionaries, but they found out that it was not use-
ful because everything was very homogenous and markers
were very hard to find.

7. CONCLUSIONS
In this paper, we demonstrated how the user’s browsing

of structured query results can be supported by providing
an interface mechanism to rapidly scroll through query re-
sults. We implemented a scrolling interface that varies the
verbosity of information based on the speed of scrolling. We
discussed several scrolling-aware algorithms that can select
representative tuples of a higher quality as compared to ran-
dom sampling. Our approach reduces the information load
of the user and provides a quick overview of the data through
few representatives. We formally quantified the metric of in-
formation loss while browsing structured data, and demon-
strated, through extensive user study and experimental eval-
uation, that our variable-speed scrolling interface provides a
better browsing experience.

Scrolling interfaces are very commonly used in hand-held
devices, such as cell phones etc., which have very small dis-
play unit and thus most users would select only 2-3 dimen-
sions. For such small form-factor displays, our sampling
algorithms, such as HKMed, are even more beneficial, pro-
viding 10–15 times information gain as compared to random
sampling.

Acknowledgement
This work is supported in part by NSF under grant IIS-
1017296. We would also like to thank Bin Liu and Honglak
Lee for their insightful comments on this work.

8. REFERENCES
[1] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong.

Diversifying search results. WSDM, 2009.

[2] S. Agrawal and S. Chaudhuri. Automated ranking of
database query results. CIDR, 2003.

[3] B. Babcock, S. Chaudhuri, and G. Das. Dynamic
sample selection for approximate query processing.
SIGMOD, 2003.

[4] B. Bailey et al. The Effects of Interruptions on Task
Performance in the User Interface. INTERACT, 2001.

[5] S. Basu Roy, H. Wang, G. Das, U. Nambiar, and
M. Mohania. Minimum-effort driven dynamic faceted
search in structured databases. CIKM, 2008.

[6] M. Bates. Subject access in online catalogs: A design
model. ASIS J., 1986.

[7] M. Bates. The design of browsing and berrypicking
techniques for the online search interface. Online
Information Review, 1989.

[8] N. Belkin, R. Oddy, and H. Brooks. Ask for
information retrieval. Journal of Documentation, 1982.

[9] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum.
Probabilistic ranking of database query results.
VLDB, 2004.

[10] Z. Chen and T. Li. Addressing diverse user preferences
in SQL-query-result navigation. SIGMOD, 2007.

[11] W. Dakka, P. Ipeirotis, and K. Wood. Automatic
construction of multifaceted browsing interfaces.
CIKM, 2005.

[12] J. English, M. Hearst, R. Sinha, K. Swearingen, and
K. Yee. Hierarchical faceted metadata in site search
interfaces. CHI, 2002.

[13] A. Frank and A. Asuncion. UCI Machine Learning
Repository, 2010.

[14] A. Goodchild. An evaluation scheme for trader user
interfaces. IFIP, 1995.

[15] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann, 2006.

[16] T. Igarashi and K. Hinckley. Speed-dependent
automatic zooming for browsing large documents.
UIST, 2000.

[17] L. Kaufman, P. Rousseeuw, and E. Corporation.
Finding groups in data: an introduction to cluster
analysis. John Wiley, 1990.

[18] E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana.
The UCR Time Series Homepage, 2006.

[19] G. Koutrika, Z. Zadeh, and H. Garcia-Molina. Data
clouds: summarizing keyword search results over
structured data. EDBT, 2009.

[20] B. Kuo, T. Hentrich, B. Good, et al. Tag clouds for
summarizing web search results. WWW, 2007.

[21] C. Li, M. Wang, L. Lim, H. Wang, and K. Chang.
Supporting ranking and clustering as generalized
order-by and group-by. SIGMOD, 2007.

[22] R. Lipton, J. Naughton, D. Schneider, and S. Seshadri.
Efficient sampling strategies for relational database
operations. Theoretical Computer Science, 1993.

[23] B. Liu and H. Jagadish. Using trees to depict a forest.
VLDB, 2009.

[24] J. MacQueen et al. Some methods for classification of
multivariate observations. BSMSP, 1967.

[25] R. Ng and J. Han. A method for clustering objects for
spatial data mining. TKDE, 2002.

[26] F. Olken and D. Rotem. Simple random sampling
from relational databases. VLDB, 1986.

[27] T. Wu, X. Li, D. Xin, J. Han, J. Lee, and R. Redder.
DataScope: viewing database contents in Google
Maps’ way. VLDB, 2007.

