1494

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 11,

NOVEMBER 2007

Evaluating Universal Quantification in XML

Shurug Al-Khalifa, Ben B. Liu, and H.V. Jagadish

Abstract—Queries posed to database systems often involve Universal Quantification. Such queries are typically expensive to
evaluate. Although they can be handled by basic access methods, for selection, grouping, and so forth, new access methods
specifically tailored to evaluate universal quantification can greatly decrease the computational cost. In this paper, we study the
efficient evaluation of universal quantification in an XML database. Specifically, we develop a small taxonomy of universal
quantification types and define a family of algorithms suitable for handling each. We experimentally demonstrate the performance

benefits of the new family of algorithms.

Index Terms—Query processing, XML.

1 INTRODUCTION

SERS often need to find the results for a query with

Universal Quantification. In English, such queries
typically involve the use of the word every. The following
is an example of a Universal Quantification query.

Example 1. “Retrieve books that have the affiliation of every
author equal to the University of Michigan.”

When evaluating such a query, all authors of a book
need to be checked for the affiliation with the University
of Michigan. Only when all authors of a book satisfy the
affiliation condition does this book become part of the
query result.

Evaluating a query with Universal Quantification can be
very costly. The straightforward way to evaluate the query
in Example 1 is to check the authors one by one for each
book. If the last author of each book is the one not affiliated
with the University of Michigan, then the book has to be
eliminated from the result after a great deal of work has
been performed. Our goal in this paper is to devise a more
efficient evaluation strategy for such queries.

In previous work, new algorithms have been proposed to
handle Universal Quantification in relational databases. In
the context of XML, some relational techniques can be used
and others cannot. The reasons for that are as follows:

e The difference between flat relational tuples and
structured XML trees. An XML document is a tree
and therefore requires tree-specific algorithms to
handle queries imposed on it.

e The nesting property that often occurs in XML
documents complicates matters even more. In XML,
an element of a specific type can be nested in another
element of the same type. This property requires

o S. Al-Khalifa is with King Saud University, Saudi Arabia.
E-mail: shurug@umich.edu.

e B.B. Liu and H.V. Jagadish are with the Department of Computer Science
and Engineering, University of Michigan, Ann Arbor, MI 48109.
E-mail: {binliu, jag/@umich.edu.

Manuscript received 10 May 2006; revised 9 June 2007; accepted 9 July 2007;

published online 31 July 2007.

For information on obtaining reprints of this article, please send e-mail to:

tkde@computer.org, and reference IEEECS Log Number TKDE-0243-0506.

Digital Object Identifier no. 10.1109/TKDE.2007.190643.

1041-4347/07/$25.00 © 2007 IEEE

recursion-aware access methods that can handle
nesting.

Our interest in this paper is on the universal quantifica-
tion queries on XML documents stored in a database. The
XQuery statement in Fig. 1 formally states the English
language query of Example 1. Given a query similar to this,
we would like to evaluate it efficiently. In Section 2, we
develop a small taxonomy of universal quantification. We
show that one type of universal quantification can readily be
handled by the suitable adaptation of well-known relational
techniques. Efficiently evaluating the other types will
occupy us for the bulk of this paper.

The rest of the paper is organized as follows: In Section 3,
we introduce our proposed algorithms for processing
different flavors of Universal Quantification. An analysis
of the proposed algorithms follows in Section 4. The
experiments we performed to evaluate our techniques are
described in Section 5. We follow that with an examination
of previous work done in evaluating Universal Quantifica-
tion in Section 6. Finally, we conclude this paper in Section 7.

In Fig. 2, we show a fraction of an XML document in tree
format on which we will base our examples throughout this

paper.

2 FLAVORS OF UNIVERSAL QUANTIFICATION

Queries with Universal Quantification differ depending on
where the word every occurs. There are four locations in a
Universal Quantification query where the word every can go:
after a predicate, before a simple predicate, before a complex
predicate, and before a correlational predicate. In this
section, we will discuss each flavor and introduce an
algorithm to handle one of them then we extend this
algorithm to handle the rest. In the following, we formally
define each flavor of Universal Quantification, each followed
by an example.

Definition 1: Simple predicate. A simple predicate is a
predicate of the form “A Operator C,” where A is a node,
Operator is one of {=,#,<,<,...}, and C is a constant. If
the Operator is equality or inequality, we have a Simple
Equality Predicate.

Example 1 belongs to this category of predicates.

Published by the IEEE Computer Society

AL-KHALIFA ET AL.: EVALUATING UNIVERSAL QUANTIFICATION IN XML

FOR $b IN document ("bib.xml") //book

WHERE EVERY $a IN S$b//author SATISFIES
Sa//affiliation = "University of Michigan"
RETURN S$b

Fig. 1. An XQuery statement that uses Universal Quantification.

Definition 2: Complex predicate. A complex predicate has the
same form as a simple predicate, except that C needs to be
computed instead of being a constant. We define Complex
Equality Predicate similar to Definition 1.

Example 2. “Retrieve books that have the affiliation of
every author equal to a university that has more than
25,000 students.”

Definition 3: Correlational predicate. A correlational pre-
dicate has the same form as a simple predicate, except that
C' has to be computed, and its value is a function of the
specific instance of left side node A. Correlational Equality
Predicate is defined similarly as in previous definitions.

Example 3. “Retrieve books that have the affiliation of every
author equal to the affiliation of his/her advisor.”

In all the above examples, every quantifies “//book/
author,” although we are retrieving “book” nodes.

2.1 After a Predicate

When the word every occurs after a predicate in a Universal
Quantification query, the query sounds like: Find all objectl
that are associated with every object2. The predicate is
underlined and the every is in italic (the same for all
remaining flavors). The predicate can be simple, complex,
or correlational.

Example 4. “Retrieve books that have an affiliation of an
author which is equal to every university in the state of
Michigan.”

When evaluating such a query, we need to first get the
set of all universities in the state of Michigan. Then, the
authors of a book need to be checked for the affiliation
with the established set. Only when at least one author of
a book satisfies the affiliation condition does this book
become part of the query result.

Affiliations

\é

w e £ O
Q. . = o €0 o — - c c o
229 <8850 I 5362 BB o2 ggse
S8 ge 823 E S0 E 8 E = 2= 2

S 2 <} S @ © ® S » 5

= 5 3 22 2 2 I

5o E S £ 3 £ E 8"

< ® © T ®© © © a
o [| | | "2
<5z I ®
T e c @ - o - c9 oG
5852980 £E38 2 32z £92Q 2-88
SAas+~ 802 A 5 © 6 — ®© O 0« © 9 9 <& o =298 ¢
SAa>F S 0> = 0> S 0> =1 =]

@

Fig. 2. A fraction of an XML document in tree format.

1495

Difference EquiValueloin
ifference TR coun !
/ \ / book \
)) \
Select(book) Select | \ GroupBy&Count GroupBy&Count
‘ author | book.author book,author
| ‘ I
\atfiaton 1= Vot / /o bk N\ 7 hook
[‘ \ Select | ‘ |
Select | . | /
| anihr | author /
\ \ /
\urﬁ]\ul\un = UUrM/

(a) (b)

Fig. 3. Two plans that can be used to evaluate Universal Quantification
query in Fig. 1. (a) A set difference plan, whereas (b) is a grouping by
and counting plan.

This case is handled efficiently by relational databases,
and the techniques used to evaluate it are discussed in [1],
in which multiple algorithms are compared against each
other. The winner is a hash-division algorithm that places
all universities into a hash table and uses a bitmap with
each author to find out whether or not the author is
affiliated with all universities. For this class of queries, the
relational technique carries over to XML in a straightfor-
ward way, and we have little new information to add.
Hence, we will not further discuss this type of universal
quantification or techniques used to evaluate it.

2.2 Before a Simple Predicate

When the word every occurs before a simple predicate in a
Universal Quantification query, the query sounds like: Find
all objectl that have every subobject?2 satisfying a simple
predicate. Example 1 discussed earlier belongs to this
category. We begin with a description of known relational
techniques.

2.2.1 Traditional Techniques

Logically, a Universal Quantification query can be con-
verted into a set difference with negated condition.
Continuing with Example 1, the query can be evaluated
by performing a set difference between all books and
books with at least one author not affiliated with the
University of Michigan. This is different from the original
query in that the Universal Quantification has been
converted into Existential Quantification, which is more
natural and easier to support using existing access
methods. Another way of evaluating Universal Quantifica-
tion is using aggregation and counting. The idea is to
count all the authors of a book (without considering their
affiliation) and compare the count with that of all authors
of the same book that have an affiliation with the
University of Michigan. If the two counts are equal, the
book is part of the query result. Fig. 3a shows the set
difference plan, whereas Fig. 3b shows the aggregation
and counting plan.

The set difference plan may be efficient if the number of
authors not affiliated with the University of Michigan is
very small compared to the total number of authors.
However, in our example, this is not likely to be the case.
We believe that most of the time, the Universal Quantifica-
tion query would have a condition that is very selective.
Therefore, the negation of that condition will be true for
most objects in the database, which renders the plan

1496

inefficient. The aggregation and counting plan is obviously
inefficient. In addition to performing two group by’s and
two pattern matches, it performs a value join to make sure
that the counts of the same book are equal.

Both techniques described above can be easily adjusted
to deal with XML (and, indeed, we do this to provide a
baseline for our experiments later on). However, some
characteristics of XML data make the problem more
challenging. For example, XML data is in a tree form with
complex relationships. In consequence, data materialization
costs are higher than for relational tuples, and computing
set difference becomes more expensive. Another issue
present in XML is the possibility of nesting, in which
elements can be nested in other elements of the same type.
For example, in XML, a department element may be nested
under another department element. This complicates
matters because we need to consider both (or may be
more) elements. As indicated in Section 5, performance of
the two techniques is usually not very good on XML data,
leaving us to seek a better method. We will discuss
proposed algorithms for this case in Section 3.2.

2.3 Before a Complex Predicate

When the word every occurs before a complex predicate in a
Universal Quantification query, the query sounds like: Find
all objectl that have every subobject2 satisfying complex
predicate involving object3. This predicate is considered
complex because of the association with another object in
the database. This object might be a result of another query.

We consider the example query 2, where every author of a
book has to be checked to see if he/she is affiliated with a
university that has the population subelement greater than
25,000. The university might be a result of another query that
finds the names of universities with more than 25,000 stu-
dents. Traditionally, this query, just like the previous flavor,
can be answered by either using set difference or grouping
and counting. The complex predicate in a query can be
reduced to a simple predicate through full materialization, a
prequery step.

To evaluate a query such as the one in Example 2, we can
materialize the set of universities with more than 25,000 stu-
dents and compare each author’s affiliation with the list. An
author with an affiliation belonging to this list passes.
Hashing can be used to speed up things. This becomes
similar to the second flavor, and the algorithm used there
can be easily extended to include a hash table instead of a
constant value. This will be discussed and evaluated in
more detail later in the paper. This step can be performed
either before the run of the query, where results are saved
somewhere (similar as in Section 3.3), or it can be performed
as the very first thing to be done when running the query
(similar as in Section 3.4). In this paper, we will deal only
with the case where the full materialization is done as the
first step of the query run. Details of proposed algorithms
for this flavor are presented in Sections 3.3 and 3.4.

2.4 Before a Correlational Predicate

When the word every occurs before a correlational predicate
in a Universal Quantification query, the query sounds like:
Find all objectl that have every subobject2 satisfying
correlational predicate involving object3. This predicate is

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 11,

NOVEMBER 2007

considered correlational because of the association with
another object in the database that cannot be precomputed.
It has to be figured out during the run of this query.

We now examine Example 3, where we need to find the
advisor of the author, then make sure that their affiliations
are equal. Again, this kind of query can be evaluated using
traditional plans that contain set difference or grouping and
counting. The plans are even more complicated and more
time consuming than the ones used to evaluate complex
predicate queries, because precomputation is no longer an
option. This kind of query has a multicondition value join
feel to it. The correlation condition has to be evaluated
afresh for every candidate. We discuss the proposed
algorithm for this flavor of universal quantification in
Section 3.5.

3 ALGORITHMS FOR UNIVERSAL QUANTIFICATION

In this section, we discuss various algorithms for different
flavors of Universal Quantification queries for XML data.
First, however, we introduce some necessary background
on XML query processing. In particular, we introduce how
to determine parent-child or ancestor-descendent contain-
ment relationships in an XML document.

3.1 Background on Node Labeling

In many XML database systems (for example, Niagara [2]
and Timber [3]), each node in the database is labeled with a
numeric start and end key (called “label” in Timber). This
pair of keys defines an interval, which strictly includes the
intervals of all descendants of the node. This enables
identification of ancestor-descendant relationship between
nodes. If every node is also labeled with its level, which
indicates the nested depth of the node in the document, we
can also find parent-child relationship. We can decide the
relationship between two nodes according to the following
formulas [4]:

e Ancestor-descendant relationship. A node
(S1,E1,Ly) is an ancestor of node (S, Fs, Lo) iff
S1 < Sy ANE; > Es.

e Parent-child relationship. A node (S, E1, L) is the
parent of node (S,, Es, Lo) iff

S1 < SoANEy >FEyNLy =Ly —1.

(S1 and S; are the start keys, £y and E; are end keys, and L,
and L, are level labels in the above formulas.)

3.2 The Basic Algorithm XML-Univ-Quant-Simple

In this section, we describe the algorithm to handle the
flavor where the every comes before a simple condition (that
is, queries similar to the one in Example 1). We also discuss
an improvement to it that involves a specialized index.

3.2.1 Description

To evaluate Universal Quantification, we devised a stack-
based algorithm that follows along the steps of the
structural joins introduced in [5]. In Fig. 4, we present the
pseudocode of this algorithm. It takes as inputs, a list of
nodes that are potentially query results, a chain pattern, a
condition, and a relationship. We use Example 1 to explain

AL-KHALIFA ET AL.: EVALUATING UNIVERSAL QUANTIFICATION IN XML

Algorithm XML-Univ-Quant-Simple (RList,P,C,rel)

/+ RList contains lists of nodes to be returned in
ascending startKey order from upstream iterators.

RList [0] is the list of nodes that are possible results.
RList [1]
patten.x/
/+* P is a chain pattern. Each node in P is numbered
sequentially starting from root. Root number is 1. Each
edge in P is labeled parent-child or ancs-desc. The root
of P is to satisfy the EVERY part. Number of nodes in P

is m.x/

/+ C is the universal quantification condition. This
condition is applied to the leaf node of P.x/

/* rel: an array storing relationship (either parent-child
or ancs-desc) between nodes in RList and root of P. rell[i]
is the relation between the i-th and (i+1)th node in P.x/
/+ min: the number of stack with smallest start-key.x/

(i=1 to m) are lists of nodes from the chain

1. no = RList[0].first
2. for i=1 tom
3. n; = List[i].next
4. while n, 7 NULL
5. min = i where n;.start-key is smallest and i=0..m
6. pop-stacks (min)
7. if min # m
8. if stack; is not empty for i=0..min-1 AND
! (rel[min] is parent-child AND
Dpin.level+l # level of top node in stackpint1)
9. stackpin - push (npin)
10. else
11. if satisfies-condition(min,C) AND
12. stack; is not empty for i=0..m-1 AND
! (rel[min] is parent-child AND
Dpin . level+l# level of top node in stackpinti)
13. mark all nodes in stacky, as potential output
14. else
15. pop-stacks (-1)
16. Npin = RList[min].next
17. if npin = NULL AND min # m AND stackp, is empty
18. exit loop
19. if n, # NULL
20. for each element e in stackg
21. if e is potential output
22. add e to result

Fig. 4. Algorithm for simple predicate queries.

the inputs. The list of nodes is the list of books in the
database. They could have passed some condition or
pattern or they were simply read from an index. The
pattern consists of two nodes, author and affiliation, where
author is the root, and affiliation is the leaf of the pattern.
The condition is that the value of affiliation is equal to
“University of Michigan.” Finally, the relationship between
book and author is ancestor descendant. Note that with the
iterator model [6], we actually pass iterators to lists of books,
authors, and affiliations as arguments, with which we can
fetch corresponding items in an ascending order of the start
key when necessary (all from index scans). Therefore,
essentially, the algorithm takes three lists of nodes as input.

The algorithm goes through each list of nodes and
compares the start key of the first node on each list. By
comparing the start and end keys, we can effectively
discover ancestor-descendant or parent-child relationships
between two nodes (as in Section 3.1). The node with the
smallest start key is put in the corresponding stack. If the
book has the smallest start key, it is placed in the book stack.
If the author or affiliation comes first, the algorithm gets the
next element from the list of the node with the smallest start
key. It checks again for smallest start key. Assume that the
author has the smallest start key now (and it does not pop
any element), the algorithm checks the book stack. If the
book stack has at least one element, the algorithm places the
author in the author stack. Otherwise, it gets the next author
since the current one is not a descendant of any book in the
list. It checks again which node has the smallest start key.
Assume that it is affiliation this time. The algorithm checks
first if it has the value “University of Michigan.” If it does, it
marks elements in the book stack as potential results.

1497
Procedure pop-stacks (num)
return void
{
1. if num = -1
2. for i=0 to m-1
3. stack; .reset
4. return
5. else
6. for i=0 to m-1
7. while (stack; is not empty AND
stack; . top.end-key < num.start-key)
8. popped-node = stack;.pop ()
9. if popped-node is potential output
10. add popped-node to result
¥

Fig. 5. Routine pop-stacks used in the algorithm in Fig. 4.

Otherwise, it has found an author with an affiliation that is
not the “University of Michigan,” and the algorithm
immediately ignores all nodes in all stacks because they
cannot be part of the output. In Fig. 4, the relation between
two nodes could be ancestor descendant or parent child,
and the relation is checked using the formula in Section 3.1.

In the algorithm in Fig. 4, we use a procedure pop-
stacks shown in Fig. 5. The procedure can pop all stacks
(given argument —1), or all nodes that are not an ancestor of
the node with the smallest start key. If popped nodes are
potential results (for example, book nodes that satisfy all
conditions so far), they are added to the result.

3.2.2 Improved Algorithm

The algorithm proposed can run more efficiently if we have
an index jointly built on the element tag and start key. The
index enables more efficient processing of input lists in the
sense that some nodes are skipped even before checking the
start key or putting in the stack. To be more specific, once
we decide that a book is not part of the result, we can skip
all authors and affiliations (from input lists) that belong to it
and start with authors and affiliations that actually belong
to the next book by using its start key as an input to the
index scan along with the author or affiliation tag. The
index has been originally proposed in [7] to speed up
structural joins. The use of such an index entails a slight
modification to the algorithm. In line 15, after the stack is
popped, a new node from RList is read and nodes read
from the pattern are skipped based on the start key of the
new node. Only nodes that are potential descendants of the
new node are read. We save here because we are not
reading all the input nodes in the pattern anymore. Instead,
we are reading only potential matches. Also, if a node is not
part of the output, we need not worry about reading its
descendants.

3.3 Full Materialization for Complex Predicates

We now turn to the case where we have the every before a
complex condition. The straightforward solution is to
materialize the set in the condition beforehand. To achieve
this, a few changes are required to the algorithm in Fig. 4.

1. C is no longer a simple condition consisting of an
operation (equal, less than, and so forth) and a
constant value. Instead, it is a subquery that will
return a set of nodes in the XML document. In
Example 2, C should be a query that returns
universities with more than 25,000 students.

1498

Procedure satisfies-condition(min, C, T)

return bool
/+* min is the node we want to make sure satisfies
condition Cx/
/+*+ C is a sub-query that results in a set of nodes
sorted by value to be compared to min in ascending
order.*/
/+* T is a hash table passed from original algorithm.
T is empty the first time this procedure is evoked.s/

{

1. if (T is empty)

2. curr = get next of C

/+ curr is a global variablex/

3. else

4. m = get first match of min from T
5. if (m != NULL) return true

6. while (curr != NULL AND min < curr)
7. insert curr in T

8. curr = get next of C

9. if (min == curr)

10. return true

11. else

12. return false

}

Fig. 6. Routine satisfies-condition used in the algorithm in Fig. 4.
This routine is used in the algorithm to evaluate the complex predicate.

2. Materialization is the first step, in which the
condition C is used to establish a set of nodes s.

3. The second step should be the hash of the set s
based on the value to be compared against. For
example, if we are checking for affiliation, then the
name of the organization is the value we hash on.
Note that this step can be merged with the previous
so we can hash as we get results. The result of this
step is a hash table T.

The first two steps are added before the first line
of the algorithm in Fig. 4.

4. In line 11, satisfies-condition routine should
take in an extra parameter T. Now, there are three
cases. In the first and usual case, the result of the
condition C is a set of nodes, and the universally
quantified relation is equality. In such a case,
hashing can be used to advantage. Instead of
checking min against a constant value in the
condition C, the hashing function is applied to min
to get matching entries in T. If a match is found,
satisfies-condition returns true. Otherwise, it
returns false. In the second case, the precomputed
condition just generates a single value and one could
check equality or inequality relation with this value
without using hashing. In the last case, the pre-
computed condition retrieves multiple values, and
the universally quantified relation is inequality.
Hashing cannot be used in this case, and we need
to compare with values from C until we find that the
relation is satisfied.

3.4 Progressive Evaluation for Complex Predicates

Sometimes, the size of the precomputed set of results of the
subquery may be too large for the precomputation
technique described above to be practical. In such a case
and also in the case of correlational predicates that we will
consider later, it is necessary to evaluate the complex
predicate as we go. To implement this, the function
satisfies-condition in the algorithm in Fig. 4 has to
be extended from a simple predicate check to the procedure
in Fig. 6.

Here, C is an independent subquery returning a set of
nodes from the XML document. In Example 2, C would be a

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 11,

NOVEMBER 2007

Procedure satisfies-condition (min,
return bool

/+ min is the node we want to make sure it

satisfies condition Cx/

/+ C is a sub-query that results in a set of nodes

related to min-ancsx/

/+ min-ancs is an ancestor of min that is referenced in

query of Cx/

C, min-ancs)

1. m = get first match of min-ancs from LT

/+* LT is a global hashing table mapping a min-ancs
to a true or false valuex/

2. if (m != NULL)

3. return m

4. pass min-ancs to C

5. curr = get next of C

/% curr is a local variablex/

6.
7.
8.

while (curr != NULL AND min != curr)
curr = get next of C
if (min == curr)
9. insert (min-ancs,true) in LT
10. return true
11. else
12. insert (min-ancs,false) in LT
13. return false
}

Fig. 7. Routine satisfies-condition used in the algorithm in Fig. 4.
This routine is used in the algorithm to evaluate correlational predicates.

query that returns universities with more than 25,000 stu-
dents. This is an independent query. Note that we require
the results of this query to be returned in an ascending
order of the value to be compared to min. Sorting is thus
necessary as a preprocessing step if the results do not satisfy
this condition. The first time the function satisfies-
condition is evoked, the first result of C is read. With the
iterator model, we only produce and read an item when
needed. Later runs check for matches of min in the hashing
table. If a match is found in the table, we are done, and min
satisfies the complex predicate. If no match is found, we
continue to produce and read results of the subquery C as
long as these results are smaller than min. Each of these
results is stored in the hash table to be compared against
future mins. Once a match is found, we return true. If we
reach a result that is greater than min, we stop and return
false. Next time, min will be checked against the hash table
first, then against curr, and so on. Compared to full
materialization, the progressive evaluation algorithm not
only saves temporary storage but also avoids computing
some results for the condition query. In Example 2, instead
of precomputing all universities with more than 25,000 stu-
dents and saving the results, we only fetch on-demand
universities with which the author of min is affiliated.

3.5 Evaluating Correlational Predicates

This extension is used to handle the cases where the every is
before a correlational condition. To implement this extension,
we redefine in Fig. 7 the function satisfies-condition.

Again, C is more complex than in the original algorithm. It
is still a subquery. However, in this extension, it is NOT an
independent query. C has a reference to a node in the
original query. In Example 3, C would be a query returning
affiliations of advisors of an author A. This author is part of
the original query. In the function in Fig. 7, this author is
min-ancs and his affiliation is min. The main idea in this
extension is to evaluate the subquery for a node at most once.
We do that by saving a hashing table LT that maps a node to
a bit identifying whether or not it satisfied the subquery. The
first step in this method is to check whether we encountered
this node before. If we have, then we get the result and exit. If

AL-KHALIFA ET AL.: EVALUATING UNIVERSAL QUANTIFICATION IN XML

this is the first time we encounter min-ancs, we submit it to
the query C and get the results of the query one by one. Once
we find a match to min, we insert min-ancs and true in LT.
If we do not find a match, we insert min-ancs and false.
Therefore, next time the same min-ancs comes, we need
not evaluate the potentially expensive query C. Instead, we
look it up in LT. min-ancs is passed from the original
algorithm by getting the member of the stack-holding nodes
that are referenced in the subquery. In our example, min-
ancs is the node in the stack-holding authors. Our
algorithm considers the case where there is no nesting in
the node referenced by the subquery. If there is nesting (for
example, there is another author nested under an author),
query results vary according to the specification of the
query. One could require all or some nested authors to
satisfy the subquery, and this gives totally different query
results. Suppose we have at most n nodes under a node, then
we could have O(n?) different specifications for query
results. Hence, we provide a base algorithm here and leave
the users to specify what the query should return.

3.6 Multiple Quantifiers

Up until now, we have been discussing techniques to deal
with one universal quantifier per query. In this section, we
consider what to do when there are multiple universal
quantifiers within a single query expression. There are two
cases that are handled in quite distinct ways: the first is
when one quantifier occurs “below” another, the second is
when this is not the case. We call the former a chain pattern
and the latter a fwig pattern.

3.6.1 Chain Pattern
We consider the following example.

Example 5. Find books that have every chapter have every
section have every paragraph contain the word “XML.”

Now, we need to make sure that for a section, all
paragraphs have the word “XML,” and then, for each
chapter, we need to make sure that all sections pass the
paragraph condition. Then, for each book, all chapters
should pass the section condition. This is easily accom-
plished by having three Universal Quantification access
methods placed right after each other in the query
evaluation plan.

Indeed, this simple chaining of access methods is
sufficient for such chain patterns of universal quantifiers.

However, there is scope for optimization, if the schema is
known. In the example here, suppose that the only way in
which a paragraph node can be a descendant node of a
book element is through chapter and section. In that case,
the chain can be collapsed to the last node. A single
universal quantification over paragraph descendants of
book is equivalent to the chain of quantifications specified.
Thus, we could write the example query as

Find books that have every paragraph contain the word “XML.”
This is a simple query with a single universal quantifica-
tion and can be evaluated using techniques previously
described.

3.6.2 Twig Pattern

The universal quantifiers may not occur in a nested chain
pattern. Instead, they could occur in “sibling” locations

1499

(possibly at different levels), creating a twig pattern. Here, is
an example:

Example 6. Find books with every author having first name
“John” and every chapter having five sections.

A way of dealing with this is to treat the two conditions
as two separate Universal Quantification operators and
then intersect the results. In other words, independently
find books satisfying the condition on author and books
satisfying the condition on chapter and then the return
books in common between these two lists. This sort of
computation strategy is reasonable for index-based selec-
tion conditions that are inexpensive to evaluate. However,
for expensive quantifier-based conditions, a great deal of
work in creating these two lists can be avoided if both
conditions were evaluated jointly.

This suggests modifying our algorithm in Fig. 4 to deal
with multiple every clauses breadthwise. Our algorithm
assumes that we do not have nested nodes (for example,
book/book) in the document and wild card (for example,
book/*/) in the query at the same time. The following is a
step-by-step explanation of how the modified algorithm
works.

1. Instead of having a chain of stacks, the algorithm
will have a chain of stacks followed by a branching
and multiple chains of stacks. This is needed to
accommodate the branching in the actual pattern.
We will use Example 6 to explain this point. The
main chain of stacks consists of one stack that holds
books. Then, a branching occurs and two parallel
chains of stacks are needed. One holds authors and
first names and the other holds chapters.

2. We keep reading in nodes from the lists and keep
them in their prospective stacks. Note that popping
a node from a stack in a branch does not affect the
stack in the other branch, but it may affect the stack
in the main chain. Popping a node from a main
chain stack does not make any branch empty its
stacks. To continue with our example, as we read in
nodes, if an author pops another author, the
chapter’s stack is not affected. If the author pops
nodes from the book stack, the chapter stack stays
intact. Nodes from a stack is popped through the
procedure pop-stacks.

3. If a leaf node is read, then it is checked against the
condition. If it returns true, the nodes in the root
stack are marked as potential output for this
particular branch. If it returns false, the root stack
is popped and nodes in it are not output. This
behavior is exactly like the behavior of the algorithm
in Fig. 4 except that in the original algorithm, we had
one flag. In the modified version, we have a flag for
each branch. Only if all the flags were true, then the
root node is considered output. In our example, if a
first name (it is a leaf) is encountered, it is checked to
see if it is equal to “John.” If it is not, then all the
books in the root stack are immediately discarded. If
it turns out that the first name is actually equal to

1500

Algorithm XML-Univ-Quant-Twig (NList,P,C,rel)

/+ NList contains lists of nodes to be returned in
ascending order of start-key from upstream iterators.
NList [1] [J] (i=0 to n, j=0 to L;) is the list of

nodes from the j-th node in chain patten i, where L; is
the length of chain pattern i. NList[n] [0] is the list

of
/*

/ *
/*

sequentially starting from root. Each edge in P[i]
labeled parent-child or ancs-desc. The root of P[i] 1is
to satisfy the EVERY part. Number of nodes in P[i
Li.

Condition C[i]
or ancs-desc)

rel[i] []]
node in P[i].

*/
Chain pattern. Each node in P[i] is numbered
is

nodes that are possible results.
P[i]:

is
*/

C: Array of universal quantification conditions.

is applied to the leaf node of P[i]. x/
rel: Array storing relationship (either parent-child
between nodes in NList and root of P[i].
is the relation between the j-th and (j+1)th

*/

/% X: index of chain pattern with smallest start-key. x/
/% Y: index of stack with smallest start-key in chain
pattern X. x/
/+ stack: stack[i] [j] is the stack for node j in chain
pattern i. stack[n] [0] is the root stack.=x/
1. for i = 0 to n,
2. for j = 0 to L;
3. ne = NList[i][j].next; k++
4. while npin 7 NULL
5. Npin is the node with smallest start-key in all
lists. Denote the list as NList [X] [Y]
6. pop-stacks [X, Y]
7. if Y # LIX] - 1
8. if stack[X][j] is not empty for j=0..Y-1 AND
! (rel[X] [Y] is parent-child AND
Dpin.level+l#level of top node in stack[X|[Y + 1])
9. stack[X][Y].push (npin)
10. else
11. if satisfies-condition (X, Y,C[X]) AND
stack[X][i] is not empty for i=0..Y-1 AND
I (rel([X] [Y] is parent-child AND
Duin. level+l#level of top node in stack[X][Y + 1])
12. turn on flag of stack[X][0
13. else
14. pop-stacks (-1, 0)
15. npin = next node with smallest start-key,
corresonding to NList [X] [Y]
16. if npin = NULL AND Y # LIX]-1
AND stack[X][Y] is empty
17. exit loop
18. if ngin # NULL
19. for each element e in stack[n][0]
20. if all flags are on for e
21. add e to result
Fig. 8. Algorithm for twig pattern queries.
“John,” then the author flag in all the books in the
root stack is turned on.
4. Just like in the original algorithm, when it is time to

pop the root stack, the flags of each node are
checked. If all are true, this node is part of the
output. Otherwise, the node is discarded. In our
example, when it is time to pop a specific book, the
author flag and the chapter flag are checked. If both
are true, this book is in the output. Otherwise, it is
not in the output.

The pseudocode of this algorithms is shown in Fig. 8.
Procedure pop-stacks is updated and shown in Fig. 9.

3.6.3 Complex Patterns

In general, in a large XQuery expression, there could be
several universal quantifiers, bearing various relationships
to one another. Any pair of quantifiers must either form a
chain pattern or twig pattern. Therefore, we can solve the
entire complex expression through this simple algorithm:

L.

Form a pattern tree from the quantifiers of the query.
This pattern tree should have at least one quantifier
in each of its paths.

Label each node as root, every, sec-every, or none.
Only the root of the pattern is labeled root. every is

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 11,

NOVEMBER 2007

Procedure pop-stacks (X, Y)

G W R e—

~N o0

if X =

else

return void

=3
reset all stacks

for all stacks stack[i] [j] (i=0..n-1, j=0..L[1i]-1)
while stack[i] [j] is not empty AND
stack[1i] [j] .top.end-key <
stack [X] [Y] .top.start-key
popped-node = stack[i] [§] .pop ()
while stack[n] [0] is not empty AND
stack [n] [0] .top.end-key <
stack [X] [Y] .top.start-key
popped-node = stack[n] [0] .pop ()
if all flags are on for stackl[k] [0],
0..n-1
add popped-node to result

where k =

Fig. 9. Routine pop-stacks used in the algorithm in Fig. 8.

the label given to the nodes in the pattern that are
preceded in the query by every. If we have two everys
in a row, the deeper one is labeled sec-every. The rest
of the nodes in the pattern are not labeled.

Apply the recursive algorithm in Fig. 10 to the
labeled pattern tree starting from its root. The
algorithm will build a universal quantification
evaluation tree that is a part of the evaluation tree
of the whole query. It starts from the root and
handles the pattern tree node by node in a left-to-
right depth-first manner. For each node, it checks to
see if it is a leaf, a node in a path, or a branching. If it
is a leaf (lines 2 and 3), the current node is returned.
If it is a node a path (lines 4-6), then it is one of four
cases; if it is the root of the whole tree, it is labeled
sec-every, it is labeled every, or it is not labeled. If it is
one of the two first cases (lines 5-6), then the
algorithm handles the child of this node and feeds
it to a chain quantifier (our proposed algorithm in
Section 3.2 or any of its extensions) that is added to
the plan. If it is one of the two last cases (lines 7 and
8), the algorithm handles the child (passes the child
to the algorithm) and returns the result. If the node is
a branching (lines 9-12), then the algorithm handles
each of the children (by passing them to the same
algorithm) and feeds the results to a twig quantifier
(proposed in the previous section).

Feed the output universal quantification evaluation
plan tree to the appropriate access method in the

function build-UQ-eval-plan (curr-node)

AU WN A

returns pointer to evaluation tree node

let n be number of children of curr-node
if (n == 0)
return curr-node
else if (n == 1)
if (curr-node.label == sec-every OR root)
return chain-univ-quant-node (curr-node,
build-UQ-eval-plan(child))
else
return build-UQ-eval-plan(child)
else
for each child 0..n-1
children[i] = build-UQ-eval-plan(child)
return twig-univ-quant (curr-node,children)

Fig.

10. Algorithm that builds a universal quantification evaluation tree

based on the multiple quantifiers in the query.

AL-KHALIFA ET AL.: EVALUATING UNIVERSAL QUANTIFICATION IN XML

twig-quantifier
>
@ = %N
& g %
chapter author appendix © ES
(every) (every) (every)
chain-quantifier first = “John textﬂ():(omzilns

section
sec-every)

#paragraphs
=5

6 s W i text contains
first = “John’ XML

section

#paragraphs = 5

(a) (b)

Fig. 11. (a) Labeled pattern tree of Example 7 and (b) the corresponding
evaluation plan tree.

original evaluation plan (that contains both quanti-
fiers and nonquantifiers).

To explain how the algorithm in Fig. 10 works, consider
the following query:

Example 7. Find books where every chapter that has every
section with at least five paragraphs and every author
has the first name “John.” These books should also have
every appendix’s text containing the word “XML.”

We first convert the quantifier part of our query into the
labeled pattern tree in Fig. 11a. Now, we start from book
node and feed it to the algorithm. It has three children. This
means that we pass each of them to the algorithm. After we
get their results, we pass them to a twig quantifier node in
our evaluation plan. We first pass, the first child, chapter. It
has one child, which is also labeled every. This means its
child, section, is passed to the algorithm. section is
labeled sec-every, and it has one child. This means that we
pass its child to the algorithm, and the result is fed into a
chain quantifier. The child is a leaf node and thus we return.
Now, we handle the second child of book and so on. The
resulting evaluation plan is in Fig. 11b. In this figure,
intermediate nodes of the evaluation tree are universal
quantifiers, tree edges are entities, and leaf nodes are
conditions.

4 ANALYSIS OF THE PROPOSED ALGORITHMS

In this section, we analytically study the performance of the
proposed algorithms. We begin with the analysis of the
XML-Univ-Quant-Simple.

4.1 Basic Algorithm

4.1.1 Time Complexity

Given as input lists of nodes sorted by their start key, the
algorithm examines each node from a list exactly once.
Denote cardinality of input and output as |InputLists| and
|OutputList|, respectively. Also denote the length of the
chain pattern as |P|. In the pseudocode in Fig. 4, each node
is put in the stack at most once and gets popped once and,
therefore, the cost of all nodes push and pop is
O(|InputLists| + |OutputList]). We now examine cost of
other operations. Finding min from multiple input lists
(line 5) can be done in constant time after the first time if
we keep the order of top nodes from each list. Checking
whether the stacks are empty (lines 8 and 12) needs at most
|P| units of time, and it is performed for O|InputLists|

1501

times in the worst case. Each line of the rest of the code
takes constant time, except line 13. If the nodes to be
returned (for example, books in Example 1) has no nesting
in the document, this line has constant complexity since
there is at most one node in stacky. If there is nesting, it
appears that the time complexity of line 13 depends on the
nesting and the selectivity of lines 11-12. A clever
implementation of line 13 operates stack, as an entity,
meaning that we mark the status of the whole stack instead
of individual nodes, which gives constant time complexity.
It is apparent from the pseudocode that this implementa-
tion does not change the algorithm. Thus, the worst-case
time complexity is O(|P| x [InputLists| + |OutputList|).

4.1.2 I/O Complexity

Each input list is read once, and the result is the output after
being computed. Similar as that in [5], it is reasonable to
assume that stacks fits in the memory at all times. The
expected 1/O cost is O(Lm2ulists] | ‘O”tp};t“s”'), where B is the

blocking factor.

4.2 Algorithms for Complex Predicates

The difference between algorithms for complex predicates
and simple predicates is the cost of computing and
preprocessing the results of the subquery. We assume the
time cost of computing query C to be T and the cardinality
of its result to be |C|. If the results are already sorted in the
required order (as in Section 3.3), the total time cost is
O(|P| x |InputLists| + |OutputList| + T¢). Otherwise, the
cost is

O(|P| x |InputLists| + |OutputList| + T + |C|log(|C])),

where the last item is the time for sorting (we assume in-
memory sorting for the sake of simplicity). Assume the I/O
cost of the subquery to be IO¢. The total I/O now is
O(lln" “Z;L"'Stsl + [Outp }';Lisﬂ +10¢), where B is the blocking
factor.

4.3 Algorithms for Correlational Predicates

The only difference with the basic algorithm is in the
function satisfies-condition, which no longer takes
constant time. Note that this function is called only for the
last node in the pattern chain (for example, “affiliation” in
Example 3). We continue to use the notations in Fig. 7 here.
In the worst case, we compute query C for every min-ancs
once. Denote the average time and I/O cost for this
computation as T¢ and Pg, respectively. If the cardinality
of node min-ancs is |min — ancs|, the additional time and
I/O cost compared to the basic algorithm is O(T¢ x
Imin — ancs|) and O(P¢ X |min — ancs|), respectively.

4.4 Algorithms for Multiple Quantifiers

4.4.1 Chain Pattern

It is easy to analyze the straightforward algorithm of
applying consecutive universal quantification operators.
For each operator, the cost is the same as the basic algorithm
(Section 4.1), except that we do not need to output
intermediate results.

1502

4.4.2 Twig Pattern

The difference between twig pattern and the simple
predicate is that now we have one main chain pattern
and multiple branch patterns to manage. The cost of
managing twig pattern can be analyzed in a similar way
as in the case of simple predicate. We denote the length of
the main chain pattern to be L4, and the cardinality of its
input lists as |InputListspqn|- We assume there are n
branches. For branch i(i=1,2,...,n), we denote its
pattern length to be L; and cardinality of its input lists to
be |InputLists;|. The total time complexity is thus the sum
of time cost for each individual chain and output. As shown
in Section 4.1, the worst-case time complexity for the simple
case is O(|P| x |InputLists| + |OutputList|). Adding the
cost for all branches, we have

n
O<Lmum X | Input ListSmain| + Z(L‘ X |InputLists,,-|)>
=1
+ |Output List|.

The 1I/O complexity is the same as the basic algorithm,
which is O(frrutlisti] y [Ouputlistly \vhere B is the blocking
factor.

5 EXPERIMENTAL EVALUATION

We experimentally evaluated the techniques that we
developed. We split the experiments into three groups:
simple predicate queries, complex predicate queries, and
correlational predicate queries. In each group, we ran
multiple queries and evaluated the new techniques versus
the two traditional ways of evaluating the query, namely,
set difference and counting (recall Section 2.2.1, where these
techniques were outlined).

5.1 Experimental Testbed and Workload

We ran the experiments using TIMBER [3]. Experiments
were run on a 1.6-GHz Centrino machine with 1 Gbyte of
RAM running WindowsXP. Coding was done using
Microsoft Visual C++ .NET. Each experiment was run five
times. The lowest and highest readings were ignored, and
the remaining three were averaged.

Our primary workload consisted of three data sets:

e Sigmod Record [8]. This XML file consists of a group
of issues. Each issue contains a bunch of articles
where each article has a title, page numbers, and a
list of authors. The size of the replicated XML file is
approximately 102 Mbytes. Loaded in Timber, the
data size was approximately 470 Mbytes.

e XMark [9]. This XML file consists, among other
things, of a group of items in an auction. Each item
has a list of categories and a list of descriptions. The
size of this XML file was approximately 113 Mbytes.
Loaded in Timber, the data size was approximately
360 Mbytes.

e Book. This is a synthetic data set, especially
generated for chain pattern queries. It contains nine
levels: collection, bookSet, book, chapter, section,
subSection, subSubSection, paragraph, and sentence.
Each sentence contains 15 words randomly drawn
from a dictionary. From the dictionary, we picked

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 11,

NOVEMBER 2007

TABLE 1
Simple Predicate Queries
query | Data Set Plan 1 | Plan 2 | New Alg. | Tag-ID
Ext.
S1 SIGMOD 153.21 | 155.88 70.46 55.64
S2 SIGMOD 150.97 | 153.80 65.98 58.50
S3 SIGMOD 150.76 | 151.70 62.40 50.75
S4 XMark g 17.21 19.03 8.35 6.45
S4 XMark 36.15 38.34 16.08 14.00
S4 XMark, 55.28 58.11 25.16 22.31
S4 XMark g 70.14 81.33 34.46 29.53
S5 XMark 44.81 47.64 23.89 19.09
S6 XMark 43.41 48.19 0.39 0.36
S7 XMark 46.91 48.95 0.46 0.45

10 words (for example, “ACM”) that are much more
likely to be chosen and, thus, our queries can return
some results. This data set is 131 Mbytes on disk and
245 Mbytes loaded in Timber.

In order to test the scalability of our proposed algo-
rithms, we used three additional XMark data sets: XMarkg
(the data file is 58 Mbytes; 170 Mbytes loaded in Timber),
XMark; (174 Mbytes file size; 523 Mbytes loaded in
Timber), and XMarkg (233 Mbytes file size; 708 Mbytes
loaded in Timber). We selectively ran some queries on these
two data sets to show that our algorithms scale gracefully
with file size.

The groups of queries we ran are presented in the
Appendix.

5.2 Simple Predicate Queries

We compared the two traditional approaches to the new
algorithm we developed, XML-Univ-Quant-Simple. Plan 1
represents the set difference approach, whereas Plan 2
represents the grouping by and counting approach. We also
compared the new algorithm to the extension that uses a
tag-ID index. We present the results in Table 1, where we
show time (in seconds) measuring the performance of the
new algorithm (XML-Univ-Quant-Simple) versus using set
difference (Plan 1) versus using group by and counting
(Plan 2). Also, the Tag-ID extension time is measured.

We ran seven simple predicate queries on the two
primary data sets mentioned above. Query 54 is also run on
the two additional XMark data sets for scalability test. The
queries were written to cover a range of (intermediate and
final result) selectivities.

Generally, the new algorithm savings are between
47 percent and 59 percent over the two traditional plans
(the two traditional plans had very similar performance,
with the counting-based plan consistently worse than the
set difference plan, but by a very small amount). The first
three queries have three different selectivities. S1 returns
around 5 percent of the total articles in the database,
whereas S2 and S3 return 2 percent and 0.1 percent,
respectively. Given that the universal quantification queries
are selective by nature and the structure of the SIGMOD
data set, S1 is considered of low selectivity, S2 is of medium
selectivity, and S3 is considered of high selectivity. As the

AL-KHALIFA ET AL.: EVALUATING UNIVERSAL QUANTIFICATION IN XML

TABLE 2
Complex Predicate Queries

Query | Data Set || Plan 1 | Plan 2 Full Prog.
Mater. | Eval.

C1 XMark 403.62 | 45793 | 83.16 | 77.57
Cc2 XMark 578.81 | 599.25 | 85.50 | 78.19
C3 XMark 256.14 | 373.59 | 40.00 | 29.70
C4 XMark 204.68 | 249.96 | 53.67 | 51.82
C5 XMark 164.49 | 19935 | 39.13 | 29.23

query becomes more selective (returns less results), the
savings of universal quantification plan steadily increase.

Even though query S4 has a low selectivity at 30 percent
and S5 has a high selectivity at 0.6 percent, we notice that
unlike the behavior of the first three queries, S5 performs
slightly worse than S4. The reason for this is the long chain
in query S5 (look for the exact query in the Appendix). S5
specifies a long path of three nodes that needs to be
evaluated, whereas 54 has a single node path. For queries S6
and S7, the new algorithm performs around 100 times better
than the two traditional approaches. The reason for this is
the small size of the output and large size of the input. S6
and S7 are extremely selective at 0.03 percent and
0.3 percent, respectively. Plans 1 and 2 perform all the
work and produce the small result, whereas the new
algorithm skips lots of intermediate results once they are
known to be not part of the final result.

The last column in the table shows the performance of
the Universal Quantification using the tag-ID index. This
index will allow the algorithm to even skip scanning
intermediate results once we know that they are not part of
the result (the original XML-Univ-Quant-Simple needs to
scan and discard the intermediate results to reach the
following set of results, whereas the tag-ID index allows
direct access to the following set of results). The savings of
the tag-ID extension over the new algorithm (XML-Univ-
Quant-Simple) range between 11 percent and 21 percent (in
the last two queries, S6 and S7, the runtime is too small (less
than half a second total) for these savings to be appa-
rent—constant time overheads probably dominate).

The performance on query S4 over data sets of different
sizes shows that our algorithm scales up and down
gracefully.

5.3 Complex Predicate Queries

To evaluate the two extensions developed to handle
complex predicate queries, we ran a set of five queries on
the XMark data set, as listed in the Appendix. The SIGMOD
data set has too simple a schema to admit believable
complex predicate queries and, hence, was not used in
these experiments. In Table 2, we show the time (in
seconds) measuring the performance of the two approaches
to handling complex predicate queries (Full Materialization
and Progressive Evaluation) versus using set difference
(Plan 1) versus using group by and counting (Plan 2). In
general, the full materialization plan performs better than
Plans 1 and 2 by 73 percent to 89 percent. The reason for
these big savings is that the new technique not only speeds
up the structural join part of the query (by skipping

1503

TABLE 3
Correlational Predicate Queries
Query | Data Set || Plan I | Plan 2 | Co-Rel
Ext.
R1 XMark 625.89 | 641.28 | 375.05
R2 XMark 591.52 | 604.20 | 388.81
R3 XMark 413.15 | 423.81 | 291.18

unnecessary intermediate results) but also speeds up the
value join part (where a join is performed between the
Universal Quantification part and the complex predicate
part of the query). The progressive evaluation plan speeds
up things even more. The reason for this is that the later
results of the right query side may be skipped by this plan
and, therefore, it performs slightly better than the full
materialization (it evaluates the whole right side). The
savings of the progressive evaluation approach range
between 3 percent and 26 percent over the full materializa-
tion. Although the savings of the same approach over
Plans 1 and 2 range between 75 percent to 92 percent. In
these five queries, we covered a wide range of selectivities.
The first two queries, C1 and C2, asked for items, whereas
the last three queries asked for open auctions. C1 has a
selectivity of around 9 percent, whereas C2 has a selectivity
of 1 percent. The reason for C2 to be performing worse than
C1 even though it produces less results is that C2 searches
for the word “condition” under all text elements under
category elements. C1, on the other hand, searches for the
word “good” under a single text element under description
of a category. C3, C4, and C5 have selectivities of 60 percent,
35 percent, and 11 percent, respectively. In general, C3, C4,
and C5 perform better than C1 and C2 because the total
number of open auctions is about half the total number of
items.

5.4 Correlational Predicate Queries

To evaluate the extension developed to handle correlational
predicate queries, we ran three queries on the XMark data
set. We could not run more because the data set would not
support more Universal Quantification correlational pre-
dicate queries. Moreover, again, the SIGMOD data set does
not provide enough structure to run such queries. We
compared the performance of the extension against the two
traditional techniques, set difference (Plan 1) and grouping
by and counting (Plan 2), and show the results in Table 3.
The correlational extension plan performs better than
Plans 1 and 2 by 30 percent to 42 percent. The reasons for
these savings are the skipping of the nodes that have one
false and the avoidance of redundant evaluation of the
right-side query by keeping track of whether or not a node
has previously passed the condition. Selectivities of R1, R2,
and R3 are 2.6 percent, 0.5 percent, and 0.03 percent.
Because of the nature of the correlational predicate queries,
these selectivities are considered low, medium, and high,
respectively.

5.5 Twig Pattern Queries

We run three queries (T1, T2, and T3) on the XMark data set
for Twig pattern queries. T2 is run on XMarkg and XMark;,
data sets for scalability test. The results are shown in

1504

TABLE 4
Twig Pattern Queries

I Query I Data Set ” Plan 1 I Plan 2 | Twig |
T1 XMark 68.23 70.52 22.21
T2 XMark 62.43 66.12 20.33
T2 XMarkg 33.25 35.44 11.49
T2 XMarky, 94.38 98.42 32.37
T3 XMark 829.32 | 842.51 | 412.30
T4 XMark 801.16 | 822.45 | 395.40

Table 4. Query T2 has a lower selectivity than T1. T3
contains a twig pattern and a correlational predicate. Our
proposed algorithms achieve much better time performance
than the other two plans. Table 4 shows our algorithm is
both efficient and scalable.

5.6 Chain Pattern Queries

We run four chain pattern queries (P1, P2, P3, and P4) on the
Book data set with increasing pattern length (see Table 5).
All queries try to find books with every paragraphs having
the word “ACM.” All four queries in fact return the same set
of results. P1 is the most efficient way to query the database
if one knows the schema. P2, P3, and P4 each added
universal quantification to upper levels of the document
tree. As suggested in Section 4.4, we could directly push
down the quantification to the lowest level (“paragraph” in
this case) if we are aware of the schema. We consider this
optimization future work, since there is much room to
develop. Here, we use the simple approach of cascading the
quantifiers and show the performance. We could see that
time cost increases with the length of the chain, and indeed,
there is much room to improve. Nonetheless, our algorithm
still performs better than the baselines.

6 RELATED WORK

In relational databases, the problem of evaluating Universal
Quantification has been addressed. The earliest work done
in this field is probably proposed in [10]. In this paper, the
problem is addressed indirectly through optimizing general
relational expressions. A naive algorithm that uses Carte-
sian product is proposed. Then, Carlis [11] proposes a
relational algebra extension to evaluate Universal Quanti-
fication but does not discuss how the query engine would
handle it. Rantzau et al. [12] surveys related algorithms and
introduced methods for classifying input data and identify-
ing the most efficient algorithm for such data. SQL
extensions to express Universal Quantification are pro-
posed in [13], [14].

For evaluating universally quantified queries in object-
oriented and object-relational databases, Claussen et al. [15]
adopt various evaluation plans from relational databases,
including division, set difference, grouping with count
aggregation, and antisemijoin. Antisemijoin, which is not
discussed in this paper, is similar to set difference, but it
requires that the attribute(s) in the universally quantified
condition to be a (super) key of the object to be returned. In
an object-oriented database (OODB) context, this is satisfied
when the attribute(s) constitutes the object identifier. In
general, this is often not true and, hence, we do not consider

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 11,

NOVEMBER 2007

TABLE 5
Chain Pattern Queries

| Query | Data Set “ Plan 1 | Plan 2 | Chain - Cascade

Pl Book 36.38 38.12 19.41
P2 Book 60.21 64.28 3533
P3 Book 92.55 98.32 46.43
P4 Book 111.19 | 117.52 55.17
this plan. For relational databases, Bry [16] proposes

rewriting rules for relational algebra to better evaluate
quantified queries. Graefe and Cole [1] gives an overview of
all techniques proposed to evaluate Universal Quantifica-
tion and compares them to each other. The techniques used
in [1] range from a naive sort-based algorithm to the use of
aggregation (both hash-based and sorting-based) and
counting to a more efficient hash-division algorithm. Our
work differs from previous papers since we need different
techniques and algorithms to efficiently handle the tree
structure of XML documents.

7 CONCLUSION

In this paper, we proposed a family of algorithms to handle
time-consuming Universal Quantification queries. The
algorithm XML-Univ-Quant-Simple is tailored to evaluate
Universal Quantification queries with simple predicates
imposed on XML documents. It uses stacks to keep track of
structure. The proposed algorithm saves time by skipping
intermediate results that would be otherwise computed if
traditional access methods were used. We developed two
extensions to the XML-Univ-Quant-Simple to handle Uni-
versal Quantification queries with complex predicates. One
of these extensions materializes the complex condition
result, and the other evaluates it as it goes. Both use hash
tables to keep right side results. We developed a third
extension to deal with Universal Quantification queries
with correlational predicate. In this extension, we kept track
of previous results to avoid redundant evaluations.

We also discussed different combinations of multiple
every clauses in the query. We developed an algorithm to
deal with multiple quantifiers breadthwise in a query. Also,
to deal with multiple quantifiers in one query, we presented
an algorithm to produce a partial evaluation plan that
incorporates different chain and twig quantifiers.

We compared the performance of the proposed algo-
rithms against that of previous proposals and found that the
new algorithms out perform the old techniques by up to
100 times.

APPENDIX A
In this Appendix, we list the wording and the XQuery
expressions of all the queries we ran in Section 5.

A.1 Simple Predicate Queries

e S1. Find articles with every author’s name starting
with “M.”
FOR $al IN document (“sigmod.xml”)//
article
WHERE EVERY $a2 IN $al//author SATISFIES

AL-KHALIFA ET AL.: EVALUATING UNIVERSAL QUANTIFICATION IN XML

starts-with ($a2//name,”M”)

RETURN Sal

§2. Find articles with every author’s name starting
with “C.”

FOR $al IN document (“sigmod.xml”)//
article

WHERE EVERY $a2 IN $al//author SATISFIES
starts-with ($a2//name,”C”)

RETURN Sal

S3. Find articles with every author’s name starting
with “Q.”

FOR $al IN document (“sigmod.xml”)//
article

WHERE EVERY $a2 IN $al//author SATISFIES
starts-with ($a2//name,”Q”)

RETURN s$al

S4. Find items with every incategory’s id larger than
“category400.”

FOR $1 IN document (“auction.xml”)//item
WHERE EVERY $c IN $i//incategory
SATISFIES

$c/@category> “category400”

RETURN S$i

S5. Find items with every parlist//listitem’s text
containing the word “sold.”

FOR $1i IN document (“auction.xml”)//item
WHERE EVERY $p IN $i//parlist SATISFIES
contains ($p//listitem/text,”sold”)
RETURN S$i

S6. Find open auctions with every bidder’s id larger
than “person25000.”

FOR $o0 IN document (“auction.xml”)//
open_auction

WHERE EVERY $b IN $So//bidder SATISFIES
$b/@id> “personll1000”

RETURN S$So

S7. Find categories where the description has every
keyword starting with “1.”

FOR $c IN document (“auction.xml”)//
category

WHERE EVERY $d IN $c//description//
keyword SATISFIES

starts-with ($4,”1”)

RETURN Sc

A.2 Complex Predicate Queries

C1. Find items with every in category having the
word “good” in its description/text.

FOR $1i IN document (“auction.xml”)//item
FOR $c IN document (“auction.xml”)//
category

WHERE EVERY $ic IN $i//incategory
SATISFIES

Sic/@category = Sc/@id AND

contains ($c//description/text,”good”)
RETURN $i

C2. Find items with every in category having the
word “condition” in their text.

FOR $i IN document (“auction.xml”)//item
FOR $c IN document (“auction.xml”)//

1505

category

WHERE EVERY $ic IN $i//incategory
SATISFIES

Sic/@category = Sc/@id AND

contains ($c//text,“condition”)

RETURN $i

C3. Find open auctions with every bidder’s name
starting with “S.”

FOR $o0 IN document (“auction.xml”)//
open_auction

FOR $p IN document (“auction.xml”)//person
WHERE EVERY $b IN $o//bidder SATISFIES
Sb/personref/@person = Sp/@id AND
starts-with ($p/name,”S”)

RETURN S$So

C4. Find open auctions with every bidder’s gender
being “female.”

FOR $0 IN document (“auction.xml”)//
open_auction

FOR $p IN document (“auction.xml”)//person
WHERE EVERY $b IN $o//bidder SATISFIES
Sb/personref/@person = $p/@id AND
$p/gender = “female”

RETURN $o

C5. Find open auctions with every bidder’s city
starting with “L.”

FOR $o IN document (“auction.xml”)//
open_auction

FOR $p IN document(“auction.xml”)//person
WHERE EVERY $b IN $o//bidder SATISFIES
Sb/personref/@person = $Sp/@id AND
starts-with ($p/address/city,”L”)

RETURN $o

A.3 Correlational Predicate Queries

R1. Find open auctions with every bidder having the
same gender as the seller of the auction.

FOR $0 IN document (“auction.xml”)/
open_auction

FOR $pl IN document (“auction.xml”)//
person

FOR $p2 IN document (“auction.xml”)//
person

WHERE EVERY $b IN $o//bidder SATISFIES
Sb/personref/@person = Spl/@id AND
$o//seller/@person = $p2/@id AND
Spl/profile/gender = $p2/profile/gender
RETURN So

R2. Find open auctions with every bidder living in
the same city as the seller of the auction.

FOR $0 IN document (“auction.xml”)//
open_auction

FOR $pl IN document (“auction.xml”)//
person

FOR $p2 IN document (“auction.xml”)//
person

WHERE EVERY $b IN $So//bidder SATISFIES
Sb/personref/@person = $pl/@id AND
$o//seller/@person = $p2/@id AND
Spl/address/city = $p2/address/city

1506

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 11,

RETURN $o

R3. Find open auctions with every bidder at the
same age as the seller of the auction.

FOR $o IN document (“auction.xml”)//
open_auction

FOR $pl IN document (“auction.xml”)//
person

FOR $p2 IN document (“auction.xml”)//
person

WHERE EVERY $b IN $o//bidder SATISFIES
Sb/personref/@person = Spl/@id AND
So//seller/@person = $p2/@id AND
Spl/profile/age = Sp2/profile/age
RETURN S$o

A.4 Twig Pattern Queries

T1. Find items with every parlist//listitem’s text
containing the word “sold” and every in-category’s
ID larger than “category400.”

FOR $i IN document (“auction.xml”)//item
WHERE EVERY $c IN $i//incategory, $p IN
$i//parlist SATISFIES

Sc/@category> “category400” AND

contains ($p//listitem/text,”sold”)
RETURN $i

T2. Find items with every parlist//listitem’s text
containing the word “sold” and every in-category’s
ID larger than “category900.”

FOR $1i IN document (“auction.xml”)//item
WHERE EVERY $c IN $i//incategory, $p IN
$i//parlist SATISFIES

Sc/@category> “category900” AND

contains ($p//listitem/text,”sold”)
RETURN S$i

T3. Find open auctions with every bidder having the
same gender as the seller of the auction and every
keyword in annotation description starting with “1.”
FOR $o IN document (“auction.xml”)//
open_auction

FOR $pl IN document (“auction.xml”)//
person

FOR $p2 IN document (“auction.xml”)//
person

WHERE EVERY $b IN $o//bidder, $d IN $o//
parlist//keyword SATISFIES
Sb/personref/@person = $pl/@id AND
$o//seller/@person = Sp2/@id AND
Spl/profile/gender = $p2/profile/gender
AND

starts-with ($4,”1”)

RETURN So

T4. Find open auctions with every bidder living in
the same city as the seller of the auction and every
keyword in annotation description starting with “1.”
FOR $0 IN document (“auction.xml”)//
open_auction

FOR $pl IN document (“auction.xml”)//
person

FOR $p2 IN document (“auction.xml”)//
person

NOVEMBER 2007

WHERE EVERY $b IN $o//bidder, $d IN $o//
parlist//keyword SATISFIES
Sb/personref/@person = $Spl/@id AND
$o//seller/@person = $Sp2/@id AND
Spl/address/city = $p2/address/city AND
starts-with ($4,”1”)

RETURN $o

A.5 Chain Pattern Queries

P1. Find books that have every paragraph contain
the word “ACM.”

FOR $b IN document (“book.xml”)//book
WHERE EVERY $p IN $b//paragraph SATISFIES
contains ($p, “ACM”)

RETURN S$b

P2. Find books that have every subSubsection and
every paragraph contain the word “ACM.”

FOR $b IN document (“book.xml1”)//book
WHERE EVERY $sSS IN $b//subSubSection, $p
IN $b//paragraph SATISFIES

contains ($sSS, “ACM”) AND

contains ($p, “ACM”)

RETURN S$b

P3. Find books that have every subsection, every
subSubsection, and every paragraph containing the
word “ACM.”

FOR $b IN document (“book.xml”)//book
WHERE EVERY $sS IN $b//subsection, $sSS IN
$b//subSubSection,

$p IN $b//paragraph SATISFIES

contains ($sS, “ACM”) AND

contains ($sSS, “ACM”) AND

contains ($p, “ACM”)

RETURN S$b

P4. Find books that have every section, every
subsection, every subSubsection, and every para-
graph containing the word “ACM.”

FOR $b IN document (“book.xml”)//book
WHERE EVERY $s IN

$b section, $sS in $b//subsection,

$sSS IN $b//subSubSection, $p IN
$b//paragraph SATISFIES

contains ($s, “ACM”) AND

contains ($sS, “ACM”) AND

contains ($sSS, “ACM”) AND

contains ($p, “ACM”)

RETURN Sb

ACKNOWLEDGMENTS

This study was supported in part by US National Science
Foundation Grant 1IS-0219513.

REFERENCES

(1]

(2]
(3]

G. Graefe and R.L. Cole, “Fast Algorithms for Universal
Quantification in Large Databases,” ACM Trans. Database Systems,
vol. 20, no. 2, pp. 187-236, 1995.

Univ. of Wisconsin, The Niagara System, http://www.cs.wisc.
edu/niagara/, 2006.

Univ. of Michigan, The Timber System, http:/ /www.eecs.umich.
edu/db/timber/, 2006.

AL-KHALIFA ET AL.: EVALUATING UNIVERSAL QUANTIFICATION IN XML

(4

(5]

o]
(]

(8]
]
(10]

[11]

(12]

(13]

(14]

[15]

(16]

H.V.Jagadish, S. Al-Khalifa, A. Chapman, L.V.S. Lakshmanan, A.
Nierman, S. Paparizos,]. M. Patel, D. Srivastava, N. Wiwatwatta-
na, Y. Wu, and C. Yu, “Timber: A Native XML Database,”
VLDB]., vol. 11, no. 4, pp. 274-291, 2002.

S. Al-Khalifa, H. Jagadish, N. Koudas, J. Patel, and D. Srivastava,
“Structural Joins: A Primitive for Efficient XML Query Pattern
Matching,” Proc. Int’l Conf. Data Eng., p. 141, 2002.

G. Graefe, “Query Evaluation Techniques for Large Databases,”
ACM Computing Surveys, vol. 25, no. 2, pp. 73-169, 1993.

S. Chien, Z. Vagena, D. Zhang, V. Tsotras, and C. Zaniolo,
“Efficient Structural Joins on Indexed XML Documents,” Proc. Int’]
Conf. Very Large Data Bases, vol. 2, pp. 263-274, 2002.

Sigmod Record—XML Version, http://www.dia.uniroma3.it/
Araneus/Sigmod/Record /HomePage/index.xml, 2005.

The XML Benchmark Project, http://www.xml-benchmark.org,
2006.

J.M. Smith and P.Y.-T. Chang, “Optimizing the Performance of a
Relational Algebra Database Interface,” Comm. ACM, vol. 18,
no. 10, pp. 568-579, 1975.

J.V. Carlis, “HAS, a Relational Algebra Operator or Divide Is Not
Enough to Conquer,” Proc. Int’l Conf. Data Eng., pp. 254-261, 1986.
R. Rantzau, L. Shapiro, B. Mitschang, and Q. Wang, “Universal
Quantification in Relational Databases: A Classification of Data
and Algorithms,” Proc. Int'l Conf. Extending Database Technology,
pp- 445-463, 2002.

K.-Y. Whang, A. Malhotra, G.H. Sockut, and L.M. Burns,
“Supporting Universal Quantification in a Two-Dimensional
Database Query Language,” Proc. Int’l Conf. Data Eng., pp. 68-75,
1990.

P.-Y. Hsu and]. Douglas Stott Parker, “Improving SQL with
Generalized Quantifiers” Proc. Int’l Conf. Data Eng., pp. 298-305,
1995.

J. Claussen, A. Kemper, G. Moerkotte, and K. Peithner, “Optimiz-
ing Queries with Universal Quantification in Object-Oriented and
Object-Relational Databases,” Proc. Int’l Conf. Very Large Data
Bases, pp. 286-295, 1997.

F. Bry, “Logical Rewritings for Improving the Evaluation of
Quantified Queries,” Proc. Symp. Math. Fundamentals of Database
Systems, pp. 100-116, 1989.

1507

Shurug Al-Khalifa received the PhD degree in
computer science from the University of Michi-
gan, Ann Arbor, in 2005, where she was a
founding member of the Timber native XML
database project. She is an assistant professor
at King Saud University, Saudi Arabia. Her
research interests include database systems
and XML query processing.

Ben B. Liu received the BEng (first class
honors) degree in computer engineering and
the MPhil degree in computer science from
the Hong Kong University of Science and
Technology in 2002 and 2005, respectively.
He is currently working toward the PhD
degree in the Computer Science and Engi-
neering Division, University of Michigan, Ann
Arbor, which is affiliated with the Database
Group. His research interests include data
integration and database usability.

ATy

- | H.V. Jagadish received the PhD degree from
- Stanford University in 1985. He is a professor of
computer science and engineering at the Uni-
versity of Michigan, Ann Arbor. He spent more
than a decade at AT&T Bell Laboratories,
Murray Hill, New Jersey, eventually becoming
the head of the AT&T Labs Database Research
Department, Shannon Laboratory. He is well
known for his broad-ranging research on data-
bases and has more than 80 major papers and 20 patents. He is a fellow
of the ACM, a trustee of Very Large Databases (VLDB). Among many
professional positions that he has held, he has previously been an
associate editor of the Transactions on Database Systems from 1992 to
1995, the program chair of the ACM SIGMOD Annual Conference in
1996, and the program chair of the International Conference on
Intelligent Systems for Molecular Biology (ISMB) in 2005.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

