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ABSTRACT
Forms-based query interfaces are widely used to access databases
today. The design of a forms-based interface is often a key step
in the deployment of a database. Each form in such an interface
is capable of expressing only a very limited range of queries. Ide-
ally, the set of forms as a whole must be able to express all pos-
sible queries that any user may have. Creating an interface that
approaches this ideal is surprisingly hard. In this paper, we seek to
maximize the ability of a forms-based interface to support queries
a user may ask, while bounding both the number of forms and the
complexity of any one form. Given a database schema and con-
tent we present an automated technique to generate a good set of
forms that meet the above desiderata. While a careful analysis of
real or expected query workloads are useful in designing the inter-
face, these query sets are often unavailable or hard to obtain prior
to the database even being deployed. Hence generating a good set
of forms just using the database itself is a challenging yet impor-
tant problem. Our experimental analysis shows that our techniques
can create a reasonable set of forms, one that can express 60–90%
of user queries, without any input from the database administrator.
Human experts, without support from software such as ours, are
often unable to support as high a fraction of user queries.

1. INTRODUCTION
A form is a simple and intuitive query interface frequently used

to provide easy database access. It requires no knowledge, on the
part of the user, of how the data is organized in storage and no ex-
pertise in query languages. For these reasons, forms are a popular
choice for most of today’s databases. However, while easy to use,
forms provide the user a constrained view of the underlying data. If
a user requires some information that is present in the database but
inaccessible via the available forms, he or she is helpless without a
querying alternative. While in some cases certain query types are
intentionally disallowed for security, performance or other reasons,
it is often the case that a query isn’t supported simply because the
demand for it wasn’t anticipated by the interface developer. On the
other hand, it is not practical to support all possible queries, particu-
larly if the schema of the database is complex: the interface would
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need far too many forms and each form would be too complex,
overwhelming users and negating the benefits of a forms-based in-
terface. Hence a trade-off needs to be made between expressivity
and complexity while designing forms. This trade-off is critical
to interface usability and is non-trivial due to the potentially wide
range of querying needs of intended users.

Creating a forms-based interface for an existing database requires
careful analysis of its data content and user requirements. To de-
sign structured forms, an interface developer must have a clear un-
derstanding of what data is available, its structure and semantics,
in addition to predicting user needs. Our goal in this paper is to
automate the task of form generation in an attempt to significantly
reduce, if not eliminate, the developer’s role in the process. We do
so by developing an automated procedure, based on a set of heuris-
tics, to analyze the database – its schema as well as its content – to
identify zones of potential interest. We then generate a set of forms
that highlight those parts of the data and support as many and as di-
verse queries as possible to those areas. While a real user query log
can help produce an even better set of forms, such queries are not
typically easy to acquire before the database is even publicly acces-
sible. Hence, being able to generate a reasonably good starting set
of forms without the benefit of user queries is important. Thresh-
olds on form complexity and form set size are input parameters to
this procedure. An interface that has too many forms or numerous
parameters per form could overwhelm users. The complexity and
size thresholds guard against this. Our problem statement thus be-
comes:Design a form interface that maximizes expressivity while
respecting specified upper-bounds on interface complexity. We de-
fine expressivity of an interface as the range of queries that can be
expressed using it. Interface complexity, as defined above, is lim-
ited through thresholds on size and individual form complexity.

1.1 Motivation
The effectiveness of a manually designed forms-based interface

largely depends on the developer’s understanding and estimation
of its users’ needs. This is evident from observable differences be-
tween two or more interfaces designed to serve the same purpose
but by different UI designers. For example, consider the task of
buying a used car. There are several database-backed websites that
help users buy used vehicles and several of them provide forms-
based interfaces to help a user find exactly the type of car he or she
is looking for. While the task is common to all these websites, the
interfaces they provide are quite different. Specifically, the set of
queries that they allow users to ask about the desired car are not the
same. This can make some more desirable for a specific informa-
tion need even if the data is the same in all of them. We analyzed
the interfaces provided by five such websites: Car.com, Cars.com,
AutoTrader.com, CarsDirect and eBay Motors. Only sections con-
cerning used cars were considered. Table 1 provides a summary.



Website # Forms # Fields in each form

W1 AutoTrader.com 1 30
W2 Car.com 3 5, 7, 8
W3 Cars.com 5 2, 5, 11, 11, 12
W4 CarsDirect 4 3, 3, 5, 13
W5 eBay Motors 2 3, 16

Table 1: Comparison of Websites selling Used Cars

While all of these websites serve the same purpose (helping a
user find and buy a used car) and have the same underlying data
(used car listings) with more or less the same set of attributes for
each listing, the ways in which their query forms are structured and
presented to users are quite different. These differences are not
only in the number of forms and how they are positioned relative
to each other, but also in the content and layout of each form. The
content of a form directly impacts the range of queries that a user
can issue using it. Consider the following queries:

Q1. Find a certified pre-owned Acura that comes with side airbags.
Q2. Show all 2005 Chrysler Sebrings listed in the past two weeks.
Q3. List all Mazda Proteges with fewer than 50,000 miles on them
that are selling for under $20,000.
Q4. Show minivans available for a monthly payment below $200.
Q5. Find a car that has a 600hp V12 engine.

We found that even though results matching all five queries were
available in all five websites, not all of these queries could be is-
sued using the forms provided. QueryQ1 could only be asked in
two of the five websites (W1 andW5). Q2 was supported only by
the forms provided inW3 while Q4 was only issuable usingW2.
All sites exceptW2 allowedQ3 to be asked. QueryQ5 could not
be expressed using any of the five query interfaces. It bears repeat-
ing that, for the unsatisfactory websites, the data attributes used
in these queries wereavailable in the databases but notqueriable
using the interfaces. This heterogeneity shows that finding a uni-
versally satisfying solution to any form design task is hard, and that
even if done manually by human experts, they can have limitations
that lead to unsatisfied users1.

Just in case used car sales were an anomaly, we analyzed the
forms-based query interfaces of 12 additional web databases. This
set included 3 scientific databases (including NCBI BLAST Search
and the Human Protein Reference Database), 3 commercial (in-
cluding Northwest Airlines and Realtor.com), 3 statistical (such as
CricInfo’s Stats Guru) and 3 informational databases (the Internet
Movie Database, Yahoo! Movies and AllRecipes.com). A sum-
mary of our analysis is shown in Table 2. We used the forms and
the query results to infer the schema used by each database. Since
the schemas were inferred, and not known explicitly, several rows
have been marked “(estimate)”. On average (median), each data-
base schema had about 5 entities and each entity had about 5 at-

1It is conceivable that some of these websites intentionally decided
not to support some queries for business or performance reasons.
However, we were not able to imagine a plausible explanation to
cover the cases we observed. Moreover, for many of these queries,
it is possible to answer them by issuing a more general query first
and then visually inspecting its results and sifting through them
manually to find the relevant results while ignoring irrelevant re-
sults. For example, forQ2 on W1, a user can ask for all 2005
Chrysler Sebrings and then manually look through these to find the
ones listed recently, in the past two weeks. Surely, there is no per-
formance advantage in forcing the user to perform this query in
such an awkward way.

Min. Max. Avg. Med.
# Entities per Database (estimate) 1 36 7.08 5
# Attributes per Entity (estimate) 1 101 12.21 5

# Forms per Database 2 102 20.42 10
# Fields per Form 1 64 6.23 5

# Entities per Form (estimate) 1 6 1.01 2
# Entity-Relationships per Form (estimate) 0 5 0.32 0

# Queriable Attributes per Entity (est.) 1 64 6.94 3
# Non-queriable Attributes per Entity (est.)0 37 5.26 2

Table 2: Statistics of 12 Form Interfaces on the Web

tributes. About 10 forms were created for each database for users
to issue their queries. Forms are typically not complex, each with
only 5 form fields on average (these may correspond to multiple
entities). The limitations of forms that we showed above through
anecdotal evidence can be seen in the observation that of the 5 at-
tributes per entity, only 3 are queriable via a form. The remaining
2 attributes (which can be viewed on the result page) cannot have
conditions specified on them at form-submission time. An example
of such an attribute in the used car example islisting date, which
is shown to users in the result but cannot be used while querying in
4 of the 5 car databases mentioned in Table 1.

To recap, many databases use forms-based interfaces but design-
ing a good forms-based interface is hard. We see a wide range of
limitations on the expressive power of forms even in popular de-
ployed databases. Our goal in this paper is to enable the design
of an expressive forms-based interface while keeping the interface
simple. Keeping it simple means limiting the number of forms and
also the number of elements on a form – we set thresholds on both.

1.2 Our Approach
The ideal metric for the expressive power of an interface is the

fraction of user queries satisfied in a representative user query log.
But obtaining such a log is non-trivial. In fact, it is impossible
for a new database deployed for the first time. Thus our challenge
is to design a good set of forms without having an actual query
log at hand. Based solely on the schema and data content of a
database, we must advise a designer what forms to create. Given
the large variety of queries that could potentially be posed against
any database, this barrier appears to be insurmountable – how can
we select a small number of queries to support using a few simple
forms from this large set of possibilities?

To gain an intuition for how schema and content of the data-
base can provide a reasonable starting point to estimate user query
needs, consider a movie database. It is likely to have movies as
the most important and highest populated entity. Users accessing
such a database will most likely look for information about movies
(as opposed to information about producers, distributors, direc-
tors, writers, actors, etc. which are important but less frequently
queried). Hence a form that focuses on movie-related informa-
tion is likely to be used extensively and satisfy a significant frac-
tion of user queries. Of course, this is a very simplistic example.
A slightly more complex schema that many database researchers
are familiar with is the XMark benchmark [5, 24]. In its schema,
the primary entities areopen auction, closed auction, item and
person. Intuitively these are the entities of most interest to users
whose queries may involve one or more of these entities. Most cur-
rent databases, however, have much more complex schemas with
numerous entities, attributes and relationships. Many of these data-
bases are normalized to a large extent which increases the number



of entities needed to capture the data of interest. In most cases the
schema complexity is simply due to the richness of the data. This
complexity is reflected in the queries to the database, many with
more than one entity of interest. In this paper, we describe our ap-
proach to determine exactly that. We can break the forms interface
design problem down into three challenges discussed below.

The first challenge to address is determining the schema frag-
ment(s) most likely to be of interest to a querying user. Schemas
can be extremely complex in real-world databases, but actual queries
issued to a database typically focus on a small subset of its schema
(as we have observed and believe). In Sec. 2, we introduce a metric,
calledqueriability, to measure the likelihood of various elements of
a schema being queried. We develop techniques to estimate queri-
ability based solely on the database schema and content, and use it
to discard schema elements that are less likely to be queried.

The second challenge in automated form design is to partition the
filtered collection of schema elements into groups (not necessarily
distinct) such that the entities, attributes and relationships present
in a single group can meaningfully interrelate on a form to express
user queries. A random collection of highly queriable schema el-
ements may not make sense together in a single form. We present
our approach in Sec. 3.

A very large number of queries can potentially be composed
from a given set of related schema elements. Not all of these
queries can be supported by a single form. The third challenge
in our form generation process is to convert each of these groups
of schema elements into a form that a user can employ to express a
desired query. We address this challenge in Sec. 4.

Since we are predicting likely user queries based solely on schema
and data, our techniques cannot have associated analytic guaran-
tees. As such, a careful performance evaluation is essential. We
evaluate the performance of our system with the help of real data-
base queries and present our results and observations in Sec. 5. Our
main result is that, using only the schema and the data, it is possible
to create a small set (e.g.< 4) of simple forms (e.g.< 12 fields
each) that can express most queries users ask (e.g.> 80%).

2. DATABASE ANALYSIS
Any form that can express a query of interest must include one

or more entities, attributes of those entities and optionally one or
more relationships between the entities. To build a forms-based
interface we must select which entities to employ and in what com-
binations in order to cover all queries of interest to users. This
problem may have a deterministic solution if the queries are known
a priori. Since that is not typically the case, the best we can do is
to use heuristics for entity selection. We define a set of postulates
that we use to compute the queriabilities based on observations of
the schema and the data. In this section we describe the database
analysis we perform to obtain this queriability score. In the next
section we show how we can use this score to construct forms.

2.1 Schema Analysis
The schema of a database defines its structure. It is a set of enti-

ties along with their attributes and the relationships they have with
one another. These relationships may be structural links or referen-
tial links between the respective entities. A schema is thus a graph
whose nodes denote entities and attributes and whose edges repre-
sent links between them. An entity in our data model corresponds
to an entity set in the ER Model. Our notion of an attribute in-
cludes not only simple and multi-valued attributes (as defined in
the ER Model), but also complex-typed attributes (which are mod-
eled as entities in the ER Model). Also unlike the ER Model, our
data model does not support relationship attributes nor does it dis-

tinguish between strong and weak entities. Classes in a class hier-
archy are all viewed as separate entities. A formal definition of a
schema in our data model is as follows.

DEFINITION 1. (SCHEMA)Theschemaof a database is a di-
rected graph〈E, A, L〉,where:
– E is a finite set ofentities;
– A is a finite set ofattributes, each belonging to a single entity;
– L is a finite set oflinks between nodes(entities or attributes) in
the graph, i.e.,L is a subset of(E ∪A)× (E ∪A).

Entities differ from one another structurally in terms of the num-
ber of attributes they possess and how well connected they are in
the schema. We exploit these differences to identify the ones more
likely to be queried by a user. A starting point is the definition of
schema element importance [28] used to choose entities to summa-
rize a schema. But in addition, we also need to analyze attributes
and relationships, which are not of much significance in schema
summarization. This brings us to the first of the postulates on which
our form generation approach is based.

POSTULATE 1. The query relevance of an entity depends on
how well-connected it is to other parts of the schema.

By connectednesswe mean the number of attributes and other en-
tities to which this entity is connected via structural or referential
links. In the next subsection, we assign a strength to each connec-
tion based on how often it occurs in the data. Connectedness of an
entity depends on its neighborhood in the schema. In a sense, it is
a measure of an entity’s centrality to the database.

2.2 Data Analysis
If the given database is populated and its content is available at

interface design time, we can analyze how the data is distributed
to infer the relative importance of each schema entity, attribute and
relationship. Specifically, we at for the number of times each node
in the schema graph (element or attribute) is instantiated in the data.
We call this itsabsolute cardinality. The higher the number of
occurrences of an entity node, the higher the probability that it is
an entity that a user may be interested in. For instance, a movie
database is likely to have many movie entities in it, but very few
production companies. This brings us to the second postulate we
use to estimate entity importance.

POSTULATE 2. The query relevance of an entity depends on
how many instances (records) of it occur in the database.

Absolute cardinality, as a measure of entity importance, may not
always tell the whole story. For instance, a movie database typ-
ically has more actors than movies. This does not mean that they
are more important either to the data provider or the database users.
To avoid ranking actors ahead of movies while designing an inter-
face for such a database, we need to look at a second property of an
entity, itsrelative cardinalitywith respect to its neighboring nodes
(via structural or referential links) [28]. This is a measure of its
connectedness as observed in the data rather than in the schema. It
measures the relative importance of all nodes in the schema.

FORMULA 1. (RELATIVE CARDINALITY) The relative car-
dinality of a node with respect to a neighboring node is computed
as the cardinality of the link instances between them (in the data),
normalized by the absolute cardinality of the node.

RC(ni → n) =
C(ni → n)

C(n)

Here,C(ni → n) denotes the link cardinality between the nodes
ni andn in the database, whileC(n) is theabsolute cardinality
of noden.



2.3 Queriability
Given a database, our goal is to determine which entities, entity

collections and attributes are likely to be queried most often. We
do this by computing theirqueriability, an estimate of their likeli-
hood of being used in a query. We compute a probabilistic estimate
for every entity, entity collection or attribute and call this its queri-
ability. If an entity has a queriability of 1, we expect it to occur in
every single query to the database (this is, in fact, possible if it is
the only entity in the schema). A queriability of 0 means that it is
unlikely any query to the database will include this entity (which is
possible if, for example, the entity is deprecated and/or has no data
instances).

2.3.1 Queriability of Entities
The queriability of an entity depends on its schema connected-

ness and its data cardinality. While connectedness of an entity is
independent of the connectedness of other entities, an entity ought
to be more queriable if it is connected to other highly queriable enti-
ties than if it were connected to the same number of lowly queriable
entities2. Hence we use a recursive formula to compute queriabil-
ity making use of postulates P1 and P2 (like how schema element
importance was computed in [28]).

FORMULA 2. (ENTITY QUERIABILITY) The queriability of
an entitye ∈ E is computed in two steps. First we perform an
iterative computation of theimportance I of each noden (entity
or attribute) in the schema graph until convergence3 is reached.

Ir
n = p ∗ Ir−1

n + (1− p) ∗
X

i

Wni→n ∗ Ir−1
ni

where Wni→n =
RC(ni → n)P
k RC(ni → nk)

, (ni → n) ∈ L

Here,p is a tuning parameter that takes values between 0 and 1,r
is the iteration counter andRC denotes therelative cardinality of
a node with another node.W , which we call theneighbor weight,
weighs the importance contribution of each neighbor node (i.e., a
node that is linked to this node in the schema graph) by its relative
cardinality with this node. The initial importance of any node (I0

n)
is simply itsabsolute cardinality in the data. After the values con-
verge, we normalize the final importance of each entity by the sum
of theabsolute cardinalitiesof all nodes in the schema and assign
the resulting value to the queriability of the entity.

Q(e) =
Ic

eP
i Cni

Here, Ic
e denotes the importance of entitye at convergenceand

Cni is theabsolute cardinality of nodeni.

In the above formula, schema connectedness is factored in by the
summation over all neighbor nodes and the data cardinality is cap-
tured by the neighbor weightsW of these nodes. Due to the in-
terdependence of a node’s importance on the importance of other
nodes, a recursive formula is necessary. The contribution of one
node to the importance of another is weighted by the strength of
the link between them, measured by their relative cardinality.

2.3.2 Queriability of Related Entities
Entities in a schema can have relationships with one another and

related entities are often the focus of queries to the database. Forms
2This heuristic is inspired by the approach taken by several search
engines to rank web documents. A document is considered “im-
portant” if it is connected (linked) to other “important” documents.
3Proof of convergence can be seen in an analogous problem in [19].

querying a single entity can be limiting. On the other hand, creating
forms for all pairs, triples, etc. of queriable entities can lead to too
many forms that do not make sense. What we need is a measure
of queriability of related entities indicating how likely a pair (and
eventually, a collection) of entities will be queried together.

POSTULATE 3. The queriability of a collection of related enti-
ties depends on the individual queriabilities of entities in it.

POSTULATE 4. The queriability of a collection of related enti-
ties depends on the data cardinality of all pair-wise relationships
between the entities in it.

We posit that the queriability of a collection of related entities
is directly proportional to their individual queriabilities and is also
proportional to the strength of the relationship (measured by its data
cardinality). If multiple relationships exist between two entities,
each relationship contributes to the queriability of the collection.

FORMULA 3. (RELATED ENTITIES QUERIABILITY) We cal-
culate the queriability of two related entitiese1, e2 ∈ E as the
product of their individual queriabilities weighted by the average
of their ratios of participation in the relationship between them.

Q(e1 ∧ e2) = Q(e1) ∗Q(e2) ∗
�

R(e1 → e2) + R(e2 → e1)

2

�

where R(ei → ej) =
N(ei → ej)

C(ei)

HereR(ei → ej) denotes theparticipation ratio of ei in the re-
lationship betweenei and ej . N(ei → ej) is the number of in-
stances of entityei connected to some instance of entityej while
C(ei) refers to theabsolute cardinality of entityei in the data4.
The participation ratio of an entity in a relationship is 0 if no in-
stance of that entity participates in the relationship, and it is 1 if
every instance of the entity is related to at least one instance of the
other entity via the relationship.

An example of related entity queriability can be seen in Fig. 1
where theclosed auction entity is related to theperson entity (a
closed auction has a seller who is aperson). Since its participa-
tion in the relationship is total, (every closed auction has a seller),
the queriability of the related entity pair is simply the product of
queriabilities of the two entities.

Q(closed auction ∧ person) = Q(closed auction)Q(person)

= 0.0128 ∗ 0.0372 = 0.0005

If there are three or more related entities, the formula changes
slightly. We start by enumerating all possible permutations of these
entities. If there arem related entities, the number of permuta-
tions will be Nπ(e1, .., em) = m! provided there is at most one
relationship between any two entities. But if there are multiple re-
lationships between any two entities, each additional relationship
will create additional permutations. The total number of permuta-
tions then becomes

Nπ(e1, .., em) = m! ∗
Y

ei,ej∈E

Nr(ei → ej)

4Note the subtle difference betweenparticipation ratioandrelative
cardinality. If a link exists between entitiesei andej in the schema,
relative cardinality measures the average number ofei instances
per instance ofej . Participation ratio, on the other hand, is the
fraction of ei instances connected to at least one instance ofej .
While participation ratio lies between 0 and 1, relative cardinality
has no upper bound.



whereNr(ei → ej) is the number of different relationships be-
tween entityei and entityej . For each permutation we first com-
pute the participation ratio of the first and second entities, then the
second and third entities, and so on until the last two entities in
the permutation. We find the product of these (m− 1) ratios, each
between 0 and 1, and compute the average of this product across
all permutations(note that if the participation ratio of any two en-
tities in the permutation is zero, then that permutation has a zero
product). Finally, this average is multiplied by the queriability of
each entity. Ifm = 3, for example, related entity queriability is
computed as follows.

Q(e1 ∧ e2 ∧ e3) = Q(e1) ∗Q(e2) ∗Q(e3) ∗ 1

Nπ(e1, e2, e3)
∗

0
@P

i,j,k∈[1,3]
i6=j 6=k

u,v

R(ei
u−−→ ej) ∗R(ej

v−−→ ek)

1
A

Form ≥ 3 entities, the general formula is:

Q(e1 ∧ e2 ∧ ... ∧ em) = Q(e1) ∗Q(e2) ∗ ... ∗Q(em)∗
P

a,b,...,z∈[1,m]
a6=b6=...6=z

u,v

R(ea
u−−→ eb) ∗R(eb

v−−→ ec) ∗ ... ∗R(ey → ez)

Nπ(ea, .., ez)

Hereu andv iterate over all relationships between the entities.

2.3.3 Queriability of Attributes
An attribute is a property of an entity and it is represented in

the schema graph by a node connected to its parent entity node.
In relational databases, attributes are stored as columns in a table
or as separate tables (complex attributes). In XML, attributes can
either be XML attributes or non-repeatable sub-elements. Unlike
entities, which are meaningful by themselves, attributes are of lit-
tle use without the entities they describe. Very few queries request
an attribute without referencing its parent entity. While entities are
ranked relative to other entities in the database (based on queriabil-
ity), attributes are only compared locally (with other attributes of
that entity), not globally. In this paper, we only consider attributes
of entities. Attributes of relationship can be incorporated as a sim-
ple extension but are beyond the scope of this paper.

POSTULATE 5. The queriability of an attribute depends on its
necessity, i.e., how frequently it appears in the data relative to its
parent entity.

Necessityof an attribute is a measure of its importance to the entity
it describes. We define it as follows.

FORMULA 4. (ATTRIBUTE NECESSITY)The necessity of an
attribute is defined as the number of times it is instantiated in the
data for each occurrence of its parent entity. The necessity of an
attributea of an entitye is computed as follows.

N(a) =
C(e → a)

C(e)

HereC(e) is theabsolute cardinality of the entitye, i.e., the num-
ber of times it occurs in the database, andC(e → a) is the number
of instances ofe with at least one non-null instance of attributea.

If an attribute appears at least once for every occurrence of the en-
tity, it’s necessitywill be 1. Required attributes thus have higher (or
equal) necessity that optional attributes. In the relational context,
a null value in a column is treated as the absence of that attribute.
We define an attribute’s queriability to just be its necessity.

Q(a) = N(a)

3. FORM COMPOSITION
Having computed the queriabilities of entities, collections of re-

lated entities, and attributes, we then select the most queriable of
them to compose forms. When we consider these three types of
schema components in turn, we see that they are not co-equal: they
do not relate to one another in a symmetric way. For example, we
will often find it useful to query an entity even with no related en-
tities included in the form. In contrast, querying a collection of re-
lated entities always means querying the constituent entities. Sim-
ilarly, attributes can be present in forms only as constituent com-
ponents of their parent entities. This leads us naturally to a three
step selection process to compose forms. First, we select an entity
and create a form for it. Next we choose other entities related to it
and create additional forms, one for each unique relationship and
its participating entities. Finally we select attributes for each entity
and place them in each form containing that entity.

CHOOSING FORM COMPONENTS

We first sort the entities in decreasing order of queriability and se-
lect the top-ke of them to compose forms.ke is a pre-specified
threshold chosen by the interface designer to control the size of
interface generated by the system. Each of the selected (top-ke)
entities will be the query-focus of one form in the generated inter-
face. Next, we take into consideration related entities. We compute
the queriability of every collection of entities (related by a schema-
defined relationship) containing at least one entity ranked in the
top-ke most queriable. We then consider each of the top-ke enti-
ties, rank its related entity collections by queriability (Formula 3)
and select its top-kr collections. kr is a threshold that serves as
an upper bound on the number of forms created for related entity
collections. We then create a new form for each collection. In
practice, however, we only consider direct binary relationships and
indirect binary relationships, i.e., relationships in which the two
entities are not related directly but are both related a common third
entity. Binary relationships between entities that are distantly re-
lated, i.e., connected by a path of length greater than two in the
schema graph, as well as ternary and higher arity relationships are
not considered because they incur considerably higher enumeration
and computation costs without a high likelihood of reaping com-
mensurate benefits—the queriabilities of these related entity pairs
are hard to predict even with heuristics and incorporating them can
lead to forms of little interest to users. Finally, we consider the
attributes of each entity to place in these forms. We compute the
queriability of each attribute and rank them by queriability. We then
select the top-ka attributes of each entity for inclusion in each form
containing that entity.ka is a pre-specified system threshold that
controls the complexity of each individual form. In Fig. 1, we show
the result of our queriability computations for the XMark schema.
The XMark dataset we used was generated using the benchmark
by setting the scaling factor to 1. The thresholds were set at 5 enti-
ties (ke), 10 attributes per entity (ka) and 5 related entity pairs per
entity (kr).

4. FORM QUERY DEFINITION
Entities, attributes and relationships together form the skeleton

of any form that we generate. But forms at this stage are not yet
complete. We still need to select query operations that can be per-
formed on these schema elements. These operations ultimately
decide what queries a form can express. Our system generates
forms that can support a large fraction of queries expressible us-
ing a declarative query language. These include select-project-join
queries with sorting as well as aggregation. To control computa-



Figure 1: XML Schema Definition of the XMark Dataset showing the most queriable entities and attributes highlighted (entities and
attributes are inferred from the XSD during schema analysis). The most queriable related entity pairs are shown with dark arrows.

tion costs, the system only allows one join or a single nested sub-
query. The most common query operation that forms support is
selection. Filling in a text field in a form enables a user to issue a
filtering condition (selection) on the database resulting in only the
desired rows. However, there are various other operations that we
should also support. For instance, one could create a default form
that has joins capturing the relationships between the form’s enti-
ties, selection predicates applied to all attributes and projections to
return all attributes of those entities. Such a form may be unneces-
sarily complex. But choosing which operation(s) to associate with
each attribute is non-trivial. In this section we present the notion of
operator-specific attribute queriabilitywhich quantifies the likeli-
hood that an attribute in the context of a specific query operation
being desirable to a user. Our basic idea is to start with a more
complex form that permits not just selection on each attribute, but
also projection (allowing each attribute to be retained in the result),
aggregation (enabling grouping and aggregate computation on any
attribute), and sorting (based on attribute values). We then prune
this more complex form using this notion of operator-specific at-
tribute queriability.

FORMULA 5. (OPERATOR-SPECIFIC ATTRIBUTE QUERI-
ABILITY ) The operator-specific queriability of an attribute is de-
fined as the queriability of the attribute when coupled with a query
operation. It is computed as the product of the attribute’s necessity
and an operation-dependent function of the attribute.

Qq(a) = wq(a) ∗N(a)

Here,q denotes the query-operation,wq(a) is a function specific to
the query operation (which we introduce in this section) andN(a)
is necessity of the attribute.

4.1 Operator-Specific Queriability of Attributes
We now define the operator-specific functionwq for some impor-

tant operators, to compute operator-specific attribute queriability.

Selection: To determine which attributes are suited for selection
conditions we consider their range of values in the database.

POSTULATE 6. The more an attribute distinguishes its parent
entity from other entities, the more likely it is to be used as a filter.
In other words, since users tend to ask very selective queries, the
wider the range of attribute values, the higher the likelihood that
attribute is used in a selection predicate.

Continuing with the movie database example, a user looking for
information about a specific movie would most likely query the
database using its title which is highly selective and distinguishes
the movie from most if not all other movies in the database. Users
are less likely to search for a movie by year of release, which is less
selective since several movies are released in a single year.

FORMULA 6. (SELECTION-ATTRIBUTE QUERIABILITY)The
queriability of an attribute for selection depends on both its selec-
tivity and its necessity to its parent entity.

Qσ(a) = wσ(a) ∗N(a)

�
wσ(a) =

ra

C(a)

�

Here e refers to the parent entity of attributea, N(a) is thene-
cessityof a and wσ(a) is theselectivity of attributea computed
as the range ofa (number of unique valuesa can take) normalized
by C(a), the number of occurrences ofa in the database (i.e., its
absolute cardinality).



Projection: Attributes that are projected compose the output of a
query. It is difficult to estimate which attributes of the entity (or
entities) involved with the query would be of most interest to users.
Usingnecessityas a metric to choose the most desirable attribute(s)
may be the best we can do. But sometimes entities have complex
attributes, i.e., attributes that are not simple single-valued fields.
These include repeatable sub-elements in XML and dependent en-
tities in relational databases. If present, these attributes should be
given higher priority than simpler fields because they convey more
information.

POSTULATE 7. Complex attributes are more queriable than sim-
ple attributes.

We propose a measure calledattribute sizethat counts the number
of non-null text-fields in an attribute. This is averaged over all its
data instances. Theattribute sizeof single-valued attributes is 1.

FORMULA 7. (PROJECTION-ATTRIBUTE QUERIABILITY)
The queriability of an attribute for projection depends on its neces-
sity and its size measured as the number of text-fields it contains.

Qπ(a) = wπ(a) ∗N(a)

"
wπ(a) =

C(a → f)P
e→ai

C(ai → fi)

#

Here,wπ(a) refers to the size of attributea (number of text-fields,
f ) normalized by the sum of sizes of all attributes of the entity,e.

Sort: “Order-by” attributes have an output role and determine the
display order of the query’s result. Query results can be sorted
by different field types, such as numeric, alphanumeric or purely
textual. But these must be simple and preferably required (not null).

POSTULATE 8. Single-valued and mandatory attributes are more
often used to order query results than optional or complex attributes.

We measure their queriability using the following formula.

FORMULA 8. (SORT-ATTRIBUTE QUERIABILITY)The que-
riability of an attribute for sorting is its necessity multiplied by an
indicator function denoting whether the attribute is both single-
valued and a required attribute or not.

Qψ(a) = wψ(a)∗N(a)

2
4wψ(a) =

8
<
:

1 a is single-valued
and required;

0 otherwise.

3
5

Aggregation: While any attribute in a schema can be aggre-
gated as the result of a grouping, aggregation on numeric-valued
attributes (for e.g., to find a sum, an average, a maximum value,
etc.) is more common than others. Also, repeatable attributes are
more likely to be aggregated. For example, the number of authors
of a book, the number of available seats in an airline, etc. In re-
lational schemas, repeatable attributes are represented as separate
tables with a 1-to-many or a many-to-many relationship with the
entity tables. These notions are captured in the following postulate.

POSTULATE 9. Repeatable and numeric attributes have a greater
likelihood of being aggregated in a query than other types of at-
tributes.

FORMULA 9. (AGGREGATION-ATTRIBUTE QUERIABILITY)
The queriability of an attribute for aggregation is its necessity mul-
tiplied by an indicator function denoting whether or not the at-
tribute is both numeric and repeatable.

Qγ(a) = wγ(a)∗N(a)

2
4wγ(a) =

8
<
:

1 a is numeric and
repeatable;

0 otherwise.

3
5

Algorithm 1 : Algorithm GenerateForms

Input : A DatabaseD with a schemaS
Input : Complexity thresholds:ke (for entities),ka (for

attributes),kσ, kπ, kψ, kγ (for operator-specific
attributes) andkr (for related entity collections)

Output : A set of formsF
G = AnalyzeSchema( D, S) ;
F = AssignSchemaCompntsToForms( G, ke, ka, kr) ;
F = CreateFormComponents( F , kσ, kπ, kψ, kγ) ;

4.2 Choosing Form Fields
Using the modified measures of attribute queriability, we can de-

termine which form-fields (for each entity) to place on each form
to maximize the likelihood that it is desirable to a user. We start by
creating all possible form fields for each of theka most queriable
attributes that were chosen in the third step of our form genera-
tion process. These include selection, projection, aggregation and
sort fields. Note that join fields are determined by the relationships
between pairs of related entities chosen in the second step. We
now compute the operator-specific queriabilities of each operator-
attribute pair, i.e., each attribute paired up with a query operator
(selection, projection, etc.) and for each operator type, we use this
score to rank all fields of that type.

Next we need to determine how many fields of each type to in-
clude in the final form. We define a thresholdkf on the total num-
ber of fields (of any type) per entity in a form. Such a threshold
ensures that no form is too complex. While increasing the number
of form-fields also increases the range of queries a form can sup-
port, it also increases form complexity. We usekf to choose how
many form fields to keep. We next have to dividekf among the var-
ious operators. We define operator-specific thresholds:kσ, kπ, kψ

andkγ (which sum tokf ) to limit the number of fields of each type.
These thresholds again are system thresholds, but may be specified
relatively (as fractions ofkq) rather than in absolute terms. Each
form is thus composed of the top-kf fields (operator-specific at-
tributes) of any top-ke entity and may also include the top-kf fields
of one of its top-kr related entities. A summary of the three-step
form generation process is provided in Algorithms 1 through 4. A
sample form (created for the Geoquery schema [1]) can be seen at
http://www.eecs.umich.edu/˜mjayapan/vldb2008/
GeoqueryForm.html .

QUERY GENERATION

The purpose of a form is to convey a user-specified query to the un-
derlying database for execution. However, unlike human-designed
forms, our forms cannot have machine-readable queries (in SQL or
XQuery, for example) hard-coded in them. Since form generation
is automatic, query generation must also be automatic. Further-
more, since the number of different queries that a single form can
produce is exponential in the number of fields it contains, instead
of generating these queries at form-creation time, we generate them
at runtime, i.e., after any user has specified exactly which fields he
or she requires. We have a translation mechanism in place that can
convert a filled form into a query in a standard declarative language
that any standard database system can use to evaluate queries.

5. EVALUATION
We implemented our system on top of theTIMBER [17] database

system which uses the XML data model. Schemas are defined as
XML Schema Definitions (XSD) and queries are represented using
XQuery. To evaluate our system on a particular dataset, we need



Algorithm 2 : Algorithm AnalyzeSchema

Input : A DatabaseD with a schemaS
Output : An annotated schema graphG
Create an empty graphG;
foreachnodens ∈ S do

// ns : element/attribute/table/column
Create a corresponding noden in G;

foreachedgees ∈ S do
Create a corresponding edgee in G;

foreach relationshiprs ∈ S do
// rs : key-keyref/PK-FK
Create an edge connecting the nodes participating inrs;
Recordrs in each of the nodes inG that participate in it;

Identify which nodes inG are entities and which are attributes;
foreachnoden ∈ D do

if n represents an entitye then
Find its nodene in G and increment its cardinality;

else ifn represents an attributea then
Find its nodena in G and increment its cardinality;
Annotatena and its entity nodene with each other’s
cardinality;
if a is a simple attributethen

Add its current value to its value range;
if a is part of a relationship specificationr then

Increment the cardinality ofr and record it inne;
Compute the attribute-size ofa and annotatena;

foreachnoden ∈ G do
if n represents an entitye then

Compute its queriabilityQ(e);
foreachentityer related toe do

Compute the queriabilityQ(e ∧ er);

else ifn represents an attributea then
Compute its operator-specific queriabilityQ(a) for all
operators (selection, projection, sort and aggregation);

its schema, data and query log. Since query logs are not readily
available for many XML databases, we had to work hard to find
a diverse collection of data sets to work with. Note that while we
described relationships between entities that could be n-ary, our
current implementation only allows binary relationships.

5.1 Experimental Methodology
In this paper, we propose a new technique to generate user inter-

faces to databases. The best way to evaluate a user interface is to
measure how useful it is (or can be) in satisfying the needs of real
users. In this section, we suggest a way to quantify theusefulness
of a forms-based interface which we then use to demonstrate the ef-
fectiveness of our proposed techniques. We obtained three datasets
(two publicly available and one in-house) for which we also had
access to real user queries. For each of these databases, we gener-
ated forms automatically using their schema and content. We then
used the accompanying queries to evaluate the forms generated for
each dataset. We defineusefulnessas the fraction of queries in each
query set that can be expressed using the forms we create. In ad-
dition, for one of the datasets, we compared the forms generated
by our system with forms created by a human expert for a data-
base in the same domain. We present our results and observations
in this section. To understand interface usefulness better, we also
evaluated the effect system thresholds have on form query support.
Experiments were also conducted to evaluate the effects of our de-
sign heuristics, both individually and collectively. The usefulness
experiments serve to judge our form generation techniques while

Algorithm 3 : AlgorithmAssignSchemaCompntsToForms

Input : An annotated schema graphG
Input : Complexity thresholds:ke, ka andkr

Output : A set of formsF
Rank schema entities inG by queriability and put the top-ke

in the setE;
foreachschema entitye ∈ E do

Rank attributes ofe and put the top-ka in the setAe;
Rank entity collections thate is a part of and put the
top-kr in the setRe;
Create a blank formf and assign entitye to it;
Include the attributes inAe in f ;
Add f to F ;
foreachentity collectionr ∈ Re do

Create a blank formfr and assignr to it;
Assign all entities inr to fr;
Include the top-ka attributes of each entity inr in fr;
Add fr to F ;

the threshold variation experiments serve to help data providers de-
velop an intuition for good threshold values for their own databases.

5.2 Data Sets and Query Workloads
The system was evaluated using three datasets: a real-world data-

base, MiMI [3], and two natural language querying benchmarks,
Geoquery [1, 26] and Jobsquery [2, 9, 26]. These datasets dif-
fer from each other in terms of schema-size, schema-complexity,
data-size and data-organization. Our goal in choosing these diverse
sources is to understand the usefulness of our form generator in dif-
ferent real world environments. A description of each dataset and
its accompanying query set can be found in Appendix A. In this
section, we show how our system performs in each environment.

5.3 Form Usefulness
We evaluated the query support of our system for three different

datasets with respect to their respective query sets.
MiMI: We set thresholds to ensure that the system selected no
more than 2 entities, 10 attributes per entity and 1 related entity
per entity. Given these constraints, a total of 4 forms were built us-
ing the schema and content of the MiMI database. Testing each of
the 3,844 valid queries against each form generated we found that
as many as 3,150 of them were supported by a form in the automat-
ically created interface (about 82%). When the number of entities
allowed (ke) was raised to 3, an additional 578 queries (15%) were
satisfied by the 2 new forms generated (in total 97% of the queries
were expressible using 6 forms).
Geoquery: We observed a substantial number of highly complex
queries in the query set (see Appendix A.2 for details). Unfortu-
nately, our system only considers SPJ queries with sorting and ag-
gregation containing one join or nested sub-query5. Hence queries
that have multiple levels of nesting that also require multiple joins
are not supported by the forms we generate. This results in per-
formance not as good as the other two sets we present in this pa-
per. Even so, the forms generated can still satisfy a majority of the
queries posed. If we ignore these complex queries that involve two
or more join conditions we find a much higher fraction of queries

5Support for nested sub-queries is important because in XQuery,
unlike SQL, an aggregation query involving two related entities
may not be possible without a nested sub-query. For such an ag-
gregation, XQuery requires that the aggregated entity either be a
sub-element (in the schema) of the first entity (in which case no
value-join is necessary), or it must be bound to a set variable after
the join. The latter case requires the user of a nested sub-query.



Algorithm 4 : Algorithm CreateFormComponents

Input : A set of formsF
Input : Complexity thresholds:kσ, kπ, kψ, kγ

Output : A set of formsF
foreach formf ∈ F do

if f has one assigned entitythen
Let e be the assigned entity;
Create a panelp in f ;
foreachattributea of e do

Create a selection form fieldsf for a;
Create a projection form fieldpf for a;
Create a sort form fieldtf for a;
Create an aggregation form fieldaf for a;
Add sf , pf , tf andaf to the panelp;

Prune out all but the top-kσ selection form fields, the
top-kπ projection form fields, the top-kψ sort form
fields and the top-kγ aggregation form fields;

else iff has a collection of entities assigned to itthen
Let Ef be the set of entities inf ;
Let Rf be the set of relationships between them;
foreache ∈ Ef do

Create a panelpe in f ;
foreachattributea of e do

Create a selection form fieldsf for a;
Create a projection form fieldpf for a;
Create a sort form fieldtf for a;
Create an aggregation form fieldaf for a;
Add sf , pf , tf andaf to the panelp;

Prune out all but the top-kσ selection form fields,
the top-kπ projection form fields, the top-kψ sort
form fields and the top-kγ aggregation form fields;

Build a join form fieldjf for each pair-wise
relationshipr ∈ Rf ;
Create a panelpr onf and add eachjf to it;

being supported. For example, if we restricted the interface size to
13 forms and only 7 attributes per entity, we could answer 61% of
all user queries, and as many as 91% of the non-complex queries.
Jobsquery: Our system generated a single form for this dataset
since it only contained one entity,job. Moreover, the schema does
not define any relationship between attributes or between multiple
instances of the same entity. The single form generated contains
fields for the 14 most queriable attributes ofjob. We found that this
form was enough to satisfy 80% of all queries that its users desired.

COMPARISON WITH HUMAN -GENERATED FORMS 6

In Sec. 1.1 we used a real example to show the limitations of manu-
ally designed forms. In this section we attempt to measure their per-
formance and compare them with automatically generated forms
for a given schema. We use the Jobsquery query set and a real jobs
database with a schema similar. The database chosen for this com-
parison is the popular employment website, Monster.com. While
the exact schema this database conforms to is not known, the data
it presents in response to user queries contains all the attributes
used by the Jobsquery schema. Hence queries in the Jobsquery
query set are all answerable by the Monster.com database. We re-
produced the “Advanced form” provided on the website and mea-
sured the fraction of queries from the query set that it can express.
We observed that the form, which contains 12 fields, supports 202
of the 640 queries in the set, or 31.56%. In contrast, recall that a
machine-generated form using our procedure containing 14 fields

6More information about the results of this experiment can be
found in Appendix B.

Number of Entities (k   )                                e

1 2 3

%
 S

up
po

rt
ed

  0%

 20%

 40%

 60%

 80%

100%

76.3%
82.0%

97.0%

33.3%

66.7%

100.0%

N
um

be
r 

of
 F

or
m

s

0

5

10

15

20

2

4

6

Queries Supported

Entities Supported

Number of Forms

k     =10,  k   = 1 a            r    

Figure 2: Effect of Entity Threshold in MiMI ( ke)

Number of Attributes per Entity (k   )                                                     a

2 4 6 8 10
%

 S
up

po
rt

ed

  0%

 20%

 40%

 60%

 80%

100%

42.1%

52.2%

94.6% 94.9% 97.0%

12.2%

21.9%

41.5%
46.3%

53.7%

F
or

m
 C

om
pl

ex
ity

0

3

6

9

12

15

3.0

6.0

9.0

11.3

13.7

Queries Supported

Attributes Supported

Number of Attributes per Form

k     =3,  k   = 1 e           r    

Figure 3: Effect of Attribute Threshold in MiMI ( ka)

supports 80% of the query set. Even if we restrict it to 12 fields
(not a good choice as evident from Fig. 9), the automatically gen-
erated form still supports 52% of the query set. If allowed just 18
fields, the automated procedure supports 100%! To compensate,
the form at Monster.com does provide a keyword search box, so a
free text search could be performed in addition to fielded search.
Thus any of the 438 unsupported queries could still be asked, just
not precisely and not directly in one easy step. Our form generation
technique can greatly reduce the need to resort to this backup plan.

5.4 Effect of Thresholding
Next, we sought to analyze how system performance depended

on the thresholds that controlled the number of forms and the struc-
ture and content of each form (using the same three datasets).

5.4.1 MiMI
We varied the entity-threshold (ke) and observed its effect on the

number of user queries supported by the interface. The number
of forms created for related entities,kr, was fixed at 1, while the
number of attributes made queriable for each selected entity,ka

was kept constant at 10. Our observations are shown in Fig. 2. We
can see a clear bias in the queries towards the most queriable entity
(which happened to bemolecule) which accounted for 76% of all
queries in the workload. An additional 218 queries (6%) involved
the next most queriable entity (interaction) and finally, the third
entity (organism) was found in 578 queries posed to the database.

Next, we varied the attribute-threshold (ka) and observed the ef-
fect this had on the number of issued queries that were supported
by the generated interface. Our results are shown in Fig. 3. Here we
see that except for a very low limit on the number of attributes (per
entity), a significant fraction of user queries were expressible using
the interface generated automatically. We also observe that forka
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Figure 6: Effect of Postulates P3 and P4

> 6, the increase in query support is low even as more and more
attributes are made queriable to users. This is because the threshold
of 6 includes the most important attributes of each entity, and sub-
sequent increases only add attributes that were less frequently used.
We also show in the figure the actual fraction of unique attributes
queried by users that our forms actually include. Considering the
complexity of the database, it is noteworthy that 54% of queried at-
tributes are ranked in the top 10 by our algorithm. These accounted
for 97% of all queries posed to the database.

5.4.2 Geoquery
We altered the system thresholdske, ka andkr one at time, while

keeping the other two constant (generating a fresh form set for each
combination). We show the fractions of queries supported with and
without the multiway join queries (non-complex and complex re-
spectively) in Fig. 4. We observe that if the number of entities for
which forms are generated is varied from 1 to 8 (the total number of
entities in the schema) the fraction of queries supported increases
for each form set. The rate of increase is high initially but reduces
thereafter. This shows that for any givenke the system generates
forms for the most queriable entities within that threshold. This is
a desirable property that ensures that the interface does not need to
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be large to support a large portion of actual queries. The ranking
mechanism is simply based on postulates which may not always
match the actual queriability of each entity, attribute or related en-
tity pair. As we can see in Fig. 4(b), ifka = 1, i.e, if the system
allows only 1 attribute per entity on the form, it does not find the
most queriable attribute for each entity. This is evident from the
increase in query support being higher fromka = 2 toka = 3 than
from ka = 1 to ka = 2. However, the figure also shows that the
system achieves more or less the desired behavior fromka = 3 on-
wards. The effect of thresholdkr, which sets the number of related
entity pairs per entity, can be seen in Fig. 4(c). It is observed to
have less impact than the other thresholds.

EFFECTIVENESS OF POSTULATES

First, we compared the usefulness of the ranking mechanism with
that of random selection (of entities, attributes and related entity
pairs) using Monte Carlo simulation. We observed that for 100 ran-
dom trials, thep-value is 0.11 if only one entity must be selected
(ke = 1) whereas for greater values of the entity threshold (up to
ke = 8) thep-value is less than10−2. This means the ranking of
entities that performed best, i.e. supported the most user queries,
could not have been arrived at by chance. Further, we conducted



trials in which selected postulates were turned on in isolation (all
others were turned off) to evaluate the individual effectiveness of
these postulates. First, since only postulates P1 and P2 are used
for entity selection, we generated forms, first using both, then only
using P1, next only using P2 and finally using neither (random se-
lection, without using queriability). We measured query support in
each case for different entity thresholds and compared them (Fig. 5)
observing that using both provided the greatest query support while
using neither provided the least. Related entity selection is based
on the use of postulates P3 and P4. We examined their effectiveness
for different values of thresholdkr. Our results are shown in Fig. 6.
Finally, we evaluated the effectiveness of postulates P5 through P7
which are captured in Figures 7 and 8. We found that not all pos-
tulates in isolation produced an improvement in query support for
all values ofke, ka, kr andkf . But when these threshold values
are increased to typical levels each postulate is useful.

5.4.3 Jobsquery
Since this dataset only has one entity and no relationships, we did

not analyze the effect ofke or kr. We only variedka and each time
evaluated the form created using the query set. As in the previous
experiments, the number of queries satisfied increases sharply for
lower values ofka (> 4), but flattens out towards the end, demon-
strating a good initial choice of attributes by the system.

5.5 Discussion
Our evaluation shows that our form generation system can in-

deed produce forms, of manageable number and complexity, that
are capable of posing a majority of user queries to a given database,
using just its schema and its data content. Notably, our automated
form for Jobsquery supported more than twice as many queries as
the form for a major commercial website, Monster.com. However,
as we saw in the Geoquery experiment, the system does not sat-
isfy the most complex of queries which can be of interest to users.
We have seen that a majority of the queries in any workload are
not as complex. Secondly, some datasets have attributes that are
not intended to be queried by users, such as metadata or private
information. Without expert assistance, the system cannot recog-
nize these and may rank such attributes to be highly queriable (e.g.
file loc in Jobsquery).

NUMBER OF FORMS

The greater the number of distinct forms, the higher the expressiv-
ity of the interface. However, having a large number of forms can
be a disadvantage if they make it difficult for a user to find the one
he or she wants to use. The number of forms we generate is depen-
dent on the size and complexity of the schema as well as the pre-
specified thresholds:ke andkr. Many of today’s databases have
very complex schema necessitating the creation of a large num-
ber of forms to obtain a sufficiently expressive interface. As we
showed in Table 2, many current database-backed websites employ
over 10 different forms, some as many as 102 [4]. Ideally, our sys-
tem should be appropriately tuned to generate interfaces with 5-15
forms to balance query expressivity with interface size. One might
argue that greater query expressivity makes the case for a more
expressible querying mechanism, such as a declarative language.
However, this is not a good option for the vast majority of database
users who are programming-averse.

Even if a large number of forms is unavoidable, an automatically
generated interface can still be made usable. Instead of reducing the
size of the form set, we can try to solve the problem ofform selec-
tion, i.e., choosing the right form from a large set of forms without
having to scan many of them. Since each form concentrates on one
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Figure 9: Effect of ka on Query/Attribute Support (Jobsquery)

or more entities, we can identify forms by the names of their cor-
responding entities. For instance, a form used to find a movie can
be named ‘movie’, while a form that queries both movies and ac-
tors can be called ‘movie–actor’. If two entities can be related in
more than one way, the names of the attributes corresponding to the
each relationship can be included in a form’s name. We could then
build a two-level menu bar that presents users with the available
form choices. The first (top-level) menu, which is always visible,
lists the names of the top-ke entities from left to right in decreasing
order of queriability. Once the user selects one of them, a second
menu bar appears below (or to the right of) the first and displays
the names of its top-kr related entities. If the user is only interested
in querying the first entity, the search stops here. If he or she is
interested in querying two entities simultaneously, a second entity
selection is required, this time from the second menu bar. In either
case, the appropriate form is pulled up from the form repository
and presented to the user. Using this selection mechanism, a user
needs to look at no more thanke form names for single entity forms
and (ke + kr) names for two-entity forms. In the latter case, a scan
of the interface could require browsing as many as (ke * kr) forms.
A third or fourth level menu can also be added if higher arity rela-
tionships are captured in the forms generated.

SELECTION OF THRESHOLDS

Our evaluation also shows that the effectiveness of our form gen-
erator is reliant on the choice of thresholdske, ka, kr andkf . But
how does one set these when the interface is first created (without
the benefit of hindsight)? Ideally the interface has at least one form
for each entity by itself. If the schema has more than 10 entities,
this already results in too many forms. Hence the entity threshold
ke ought to be less than this upper bound. Some entities may be
left out, but these should be the less important ones. Within a form
it is acceptable, and in fact typical, to have up to 20 specifiable con-
ditions. Butka is a threshold on the number of attributes per entity,
not per form. Our experiments show that a majority of user queries
involve no more than two entities. This suggests that it is prudent
to setka between 5-10.kf can be set to 20. Finally the choice
of kr depends on how entities are connected to each other within
the database. A setting of 1-2 is advisable from our observations.
In the worst case, these settings will result in 30 forms being gen-
erated (ifke = 10 andkr = 2 and the 10 most queriable schema
entities are each related to 2 other entities). But typically not all
thresholds are “maxed out” in every combination. These settings
generate approximately 5-15 forms.

6. RELATED WORK
While we have seen little work that automatically determines the



correct set of forms for a database, there has been a great deal of
work in simplifying the form specification task for interface de-
velopers. Even with standard form building tools like Cold Fu-
sion [12], Visual Basic [14], CGI [13], ASP, JSP, business tools like
InfoPath, XAML, Ariba, SAP, SAS, Access, Visual Web Devel-
oper and user-friendly solutions like WUFOO, WyaWorks, ZOHO
Creator and Coghead having come a long way, the task of form
creation is still largely manual. An exception is [16] in which
forms are generated dynamically based on metadata embedded in
relational tables. This system however, only creates survey forms
whose purpose is data-entry rather than data-retrieval. They essen-
tially support only a single insertion query and are orthogonal to
our work, which supports a wide range of retrieval queries. Other
systems include powerful tools like the QURSED Form and Report
Editor [22, 23] which enables developers to create form-based in-
terfaces in fewer simpler steps. This editor uses the schema of the
database as a starting point (like our system does) but it is up to
the developer to select the desired schema elements and attributes
to use in forms. It allows developers to annotate the schema be-
forehand so that every time an element is selected for use, the right
set of form-controls and the right query-fragment (for translation to
declarative queries) are automatically put in place. Earlier work in
UI design includes DRIVE [20], a runtime user-interface develop-
ment environment for object-oriented databases. This system used
the NOODL data model enabling context-sensitive interface edit-
ing. [27] proposed the use of XML to represent forms rather than
HTML, making forms more reusable, scalable, machine-readable
and easier to standardize. Our system too has a textual human-
readable form representation, but we still render forms in HTML.
FoXQ [6] and EquiX [11] are examples of work done to hide from
users the intricacies of a declarative language (XQuery). Both are
systems where users build queries incrementally by navigating through
layers of forms. Visual querying began as early as in 1975 with
QBE [29]. Since then, there have been several graphical query
languages designed to make declarative querying more intuitive.
Some examples of these are XQBE [8], VISIONARY [7], Kalei-
doquery [21], QBT (Query By Templates) [25], Marmotta [10] and
GRIP [15]. IBM distributes a query builder called Visual XQuery
Builder with its DB2 Developer Workbench. These help users cre-
ate declarative language queries instead of using forms with pre-
embedded declarative queries.

7. CONCLUSION
A forms-based interface is the gateway to many a database and

it ultimately determines the availability and usefulness of the data.
Designing a good set of forms is hard. Insufficiently expressive
forms can frustrate a user. In this paper, we have developed a mech-
anism to generate a forms-based interface with nothing more than
the database itself. In the absence of real user queries to guide in-
terface design prior to database deployment, this is a challenging
problem, but one of practical importance. We introduced metrics
to estimate the usefulness of various schema components from a
querying angle based on an analysis of the schema and the content
of the database. We presented our approach to form building us-
ing an XML implementation. However, in principle, our concepts
are equally applicable to relational databases. We evaluated our
system’s performance on two public benchmark datasets and query
sets. We also conducted experiments on an in-house compiled data-
base available to the public. We observed that the interfaces we
generate satisfy a large fraction (60-90%) of actual queries. In com-
parison, our analysis of deployed databases shows that this level of
coverage is difficult to achieve today, even with expert design.
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APPENDIX

A. DATASETS AND QUERY SETS
We provide a detailed description of the datasets and query sets used in

our experiments (Sec. 5) in this section.

A.1 MiMI
MiMI (Michigan Molecular Interactions) [3] is a real-world molecular

interactions database used by biologists and bioinformaticians. MiMI has a
complex schema with close to 100 XML elements. This schema was used
to hand-generate the initial set of forms which were built for the key enti-
ties includingmolecule (e.g. proteins, genes, DNA, etc.),interaction (e.g.
protein-protein interactions) andorganism (species of origin for molecules,
interactions, etc.) and key relationships between these entities. The web-
interface to the MiMI database allows query specification using either a
form, direct XQuery or by a special querying tool that allows users to nav-
igate the schema, click on the entities and attributes of interest and specify
query parameters in a form that is generated dynamically based on their
selections [18].

A.1.1 Query Workload
We obtained a log of queries posed against the MiMI database by real

users (many from the biology and bioinformatics domains) using any of the
above methods. Each query was logged as an XQuery statement regardless
of which querying method was actually used. The query log comprised a
total of 3,856 queries of varying complexities ranging from simple single-
attribute selection queries to complex nested queries with aggregation. A
few of the queries in the trace were erroneous, either due to XQuery syntax
errors or due to incorrect references to schema entities and/or attributes. We
detected and removed 12 such queries leaving 3,844 valid queries in the log.

A.2 Geoquery
The Geoquery database [1] contains geographical information about the

United States including states, cities, roads, rivers, etc. (schema shown in
Fig. 10). This information was compiled and stored as Prolog assertions
(close to 900 assertions) primarily to test a natural language query inter-
face. In order to use this dataset for our experiments, we translated the data
into XML and extracted a schema definition in XSD. The query set con-
sists of 880 natural language questions posed by real users of the database’s
publicly accessible web interface and also by undergraduate students in the
Computer Science department at the University of Texas (Austin). With
the help of the deduced schema, we translated these English queries into
XQuery which we then use to evaluate the effectiveness of our system.

A.2.1 Query Workload
The Geoquery query set consists of 880 declarative queries. Although the

queries in their original form (natural language) were unique, upon trans-
formation, the resulting set had 301 repeated queries (34%). The queries
are of a wide range of complexity, with some queries as simple as“How
high is Mount Mckinley?”and some as complex as“How many states have
a higher point than the highest point of the state with the largest capital city
in the US?”. While the former is a single-attribute selection query, the latter
has two nested sub-queries each with an associated aggregation operation
and as many as five join conditions.

A.3 Jobsquery
The Jobsquery database [2, 9] consists of a set of 1000 computer-related

job postings from the USENET newsgroupaustin.jobs. Information from
these job postings were extracted to create a database which contains spe-
cific information about each position available (including job title, company
location, salary offered, required skills, experience, etc.). The schema of
this dataset is fairly simple and flat. It only has one entity (job) with 18 at-
tributes includingtitle, salary, required experience anddesired degree.
The query set [2] of this benchmark consists of 640 queries, 240 of which
were posed by real users and the remaining 400 generated artificially using
a simple grammar that generates certain obvious types of questions people
may ask.

A.3.1 Query Workload
Here again, we needed to translate the data from Prolog to XML and

deduce an XML schema. The queries had to be converged to XQuery and
we performed this translation manually. While the natural language queries
were all unique, only 338 of the 640 queries were distinct (about 53% of
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Figure 10: Geoquery Schema

the total). These queries include a wide range of selection queries includ-
ing simple, conjunctive, disjunctive, quantified and negated selection con-
ditions.

B. COMPARISON WITH HUMAN-DESIGNED
FORMS

In Sec. 5.3, we presented the overall results of an experiment comparing
an automatically generated form with a form designed for a popular pub-
licly accessible website (Monster.com) in the same domain (job listings).
Here we shed some light onto why the usefulness of the two forms (by our
evaluation metric) differed so widely. First we show what the two forms
look like: Fig. 13 shows the automatically generated form while Fig. 11
shows the human generated form.

As one can see, there are some differences in the form fields provided
by the two interfaces and these differences essentially dictate the difference
in the number of queries of the Jobsquery query log supported by either
interface. For instance, fields likedesired experience andsalary are not
queriable using the form provided by Monster.com even though these fields
occur in the result page (Fig. 12). Moreover, the human generated form
does not support negation or other non-equality conditions (e.g.city ! =
“austin”) unlike the automatically generated form.

Here are some example of queries from the query set thatare supported
by the human generated from:

1. what systems analyst jobs are there in austin ?

2. find all network administration jobs in austin ?

3. show me the job application for ic design engineer ?

4. show me programmer jobs in tulsa ?

5. show me all of the software qa jobs in austin ?

6. show me positions in web programming ?

7. show me jobs in texas ?

8. show me all job that are available ?

9. are there any project manager positions open ?

10. could a senior consulting engineer find work in boston ?

On the other hand, here is a list of sample queries (also from the query set)
that couldnotbe expressed with just the human generated form:

1. which system administrator jobs in dallas require 2 years experience
and pay 50000 ?

2. what jobs as a senior software developer are available in houston but
not san antonio ?

3. show me the jobs with 30000 salary ?



Figure 11: Monster.com Query Form (Advanced)

Figure 12: Sample Monster.com Query Result

4. show the jobs with the title systems analyst requiring 2 years of ex-
perience ?

5. show jobs in austin that require a bscs ?

6. what are the jobs in washington that require at least 5 years of expe-
rience ?

7. can i find a job making more than 40000 a year without a degree ?

8. i want a job that doesnt use windows ?

9. are there any jobs for people in austin that want to program in lisp but
do not have a degree ?

10. what jobs require a bscs and no experience ?

For queries that aren’t supported, a user could always issue a more gen-
eral query that leaves out one or more constraints that cannot be specified, or
even put the constraint value in the all-purpose keyword search field, submit
the form and then inspect all the results to find the desired result (by ignor-
ing the results that do not satisfy the condition(s) not explicitly specified).
However, there is a cost associated with filtering out results manually, often
mentally, which some users must pay to overcome the restrictions of the
form. Moreover, this is an error-prone task which could have been avoided
had the form included the missing attribute fields (or had the form designers
made alternate arrangements for these kinds of queries).

C. COST OF FORM GENERATION
The steps taken in generating forms automatically were outlined in Al-

gorithms 1 - 4. We can express the total cost of form generation as the
sum of costs of these individual steps. First we construct the schema graph
which has a node for every entity or attribute in the schema and an edge for
every link between nodes. If the number entities in the schema isne, the
maximum number of attributes per entity isnae and the maximum number
of relationships per entity isnre (represented either by a parent-child link
to another entity node in the graph or a link between attribute nodes of the
two entities), the cost complexity of graph construction is given by:

Cgc ∈ O(ne + ne ∗ nae + ne ∗ nre )

∈ O(n + e)

wheren is the total number of nodes in the schema graph (representing en-
tities and attributes) ande is the number of edges (for both attributes and
relationships).

The next step is to annotate the schema graph using the content of the data-
base. This involves examining each instance of every node and edge in the
schema. Ifde represents the maximum number of instances of any entity,
dae denotes the maximum number of instances of any attribute of an entity

Figure 13: Form automatically generated for Jobsquery

in the data anddre is the maximum number of instances of any relationship
in which an entity participates, the cost complexity of graph annotation is
given by:

Cga ∈ O(ne ∗ de + ne ∗ nae ∗ dae + ne ∗ nre ∗ dre )

⇒ Cga ∈ O(ne(de + nae ∗ dae + nre ∗ dre ))

The third step in schema analysis is to compute the importance of each node
followed by the queriability of each entity, attribute and collection of related
entities. The cost of importance computation is quadratic in the number of
graph nodes (n) in the worst case, i.e., if the graph is complete7. Queri-
ability computation, on the other hand, is linear in the number of entities,
attributes and relationships since it is done only after the importance values
converge.

Cqc ∈ O(n2 + ne(1 + nae + nre ))

∈ O(n2 + n + e)

Next, we sort the entities by queriability and select the top-ke most queri-
able entities for which to design forms. The cost of entity selection is thus
given by:

Ces ∈ O(ne log ne + ke)

For each top-ke entity, we sort its attributes and related entities (by queri-
ability) and select the top-ka and top-kr of them respectively.

Cas ∈ O(ke ∗ (nea log nea + ka))

Crs ∈ O(ke ∗ (ner log ner + kr))

If nq denotes the number of query operators considered while computing
operator-specific attribute queriabilities for each of the top-ka attributes (for

7Database schemas are typically not complete graphs and so in-
stead ofn2, the importance computation is typically (in practice)
bounded bynf wheref is the maximum fan-out of any node.



each top-ke entity), the cost of this computation and selecting the top-kf

operator-specific attributes for each entity is given by:

Cos ∈ O(ke(nqka + kf ))

For example, if selection, projection, sort and aggregation are the operators
considered, thennq = 4 andkf = kσ + kπ + kψ + kγ .

Finally, we generate forms for each selected entity and pair of related
entities such that each form containskf form-elements per entity. The cost
of this form design step is given by:

Cfd ∈ O(kekf + kekrkf )

⇒ Cfd ∈ O(kekf (1 + kr))

The total cost of form generation is the sum-total of all the above costs.
Sinceke, ka andkr are by definition less thanne, nea andner respec-
tively, the cost of form generation is asymptotically bounded by:

Cfg ∈ O(n2 + ne(de + naedae + nredre )

+ke(nea log nea + ner log ner ))

D. EXTENSIONS
The completely automated form generation process we described can

be improved through expert guidance. It may be useful to allow a human
expert, such as the database administrator, to provide hints to the system that
drive the form generation process. Such a person would not be expected to
design actual forms, but use domain knowledge to guide the system in the
right general direction. This is a one-time effort and is provided at interface
creation time. We outline how this can improve the effectiveness of a forms-
based interface with minimal effort.

D.1 Schema Annotation
A domain expert who is also conversant with the database schema could

have a sense of which parts of the schema and data users will find most use-
ful, i.e., which parts are likely to generate the highest query traffic. There
could be differences between these and what the automated system deter-
mines to be important, and by annotating these parts of the schema ap-
propriately, the system can place greater emphasis on them while generated
forms to cater to users who would be interested in these parts of the schema.
The annotation procedure can simply be the addition of one or more enti-
ties to the list of highly queriable ones, or in rare cases a re-ranking of the
entity list. Additionally, there could be some attributes in that data that are
of a sensitive nature. These can be marked by an expert to be excluded
from consideration while automatically generating forms. A second way in
which an expert can assist the automated process is by identifying collec-
tions of entities that relate to one another which collectively form the basis
of a meaningful and perhaps useful query. This is especially useful for rela-
tionships with arity greater than 2 (ternary, quaternary, etc.). Although the
system does factor entity-relationships while designing forms, queriability
and usefulness are hard to gauge for collections having more than two or
three entities.

D.2 Useful Query Types
Aside from being able to identify regions of maximum interest in the

schema, a domain expert may also have an intuition of the nature of queries
(to those regions) that would be of interest to users. For instance, the ex-
pert may know the fields for which users would like to ask range queries
(rather than simple selections), which fields are ideal to sort all results by,
what indirect relationships may be worth joining entities on (these are not
explicitly specified in the schema), which numerical fields are sensible to
sum up or average and so on. We introduced some postulates for form gen-
eration in Sec. 4, but it is not always obvious which of these to apply on
a given database. Each postulate is implemented in the system and an ex-
pert, if available, would only have to turn one or more of them on (or off)
at form creation time. For example, in the Jobsquery dataset, we observed
two fieldsfile loc andpost date within job which are used to record a disk
location and a posting date for a job listing respectively. While their prop-
erties made them seem highly queriable to our form generator, they were
never once queried for by actual users. It is in situations like these that an
expert can guide the system to neglect fields that are intuitively of little or
no interest to users. Had this step been taken, we could have achieved 80%
query support with only 12 fields instead of 14.


