
The VLDB Journal
DOI 10.1007/s00778-007-0063-0

SPECIAL ISSUE PAPER

XML schema refinement through redundancy detection
and normalization

Cong Yu · H. V. Jagadish

Received: 20 February 2007 / Revised: 21 May 2007 / Accepted: 2 July 2007
© Springer-Verlag 2007

Abstract As XML becomes increasingly popular, XML
schema design has become an increasingly important issue.
One of the central objectives of good schema design is to
avoid data redundancies: redundantly stored information can
lead not just only to a higher data storage cost but also to
increased costs for data transfer and data manipulation. Fur-
thermore, such data redundancies can lead to potential update
anomalies, rendering the database inconsistent. One strat-
egy to avoid data redundancies is to design redundancy-free
schema from the start on the basis of known functional depen-
dencies. We observe that XML databases are often “casually
designed” and XML FDs may not be determined in advance.
Under such circumstances, discovering XML data redundan-
cies from the data itself becomes necessary and is an integral
part of the schema refinement (or re-design) process. We
present the design and implementation of the first system,
DiscoverXFD, for efficient discovery of XML data redun-
dancies. It employs a novel XML data structure and intro-
duces a new class of partition-based algorithms. The XML
data redundancies are defined on the basis of a new notion
of XML functional dependency (XML FD) that (1) extends
previous notions by incorporating set elements into the XML
FD specification, and (2) maintains tuple-based semantics
through the novel concept of Generalized Tree Tuple (GTT).
Using this comprehensive XML FD notion, we introduce
a new normal form (GTT-XNF) for XML documents, and
provide comprehensive comparisons with previous studies.
Given the set of data redundancies (in the form of redun-
dancy-indicating XML FDs) discovered by DiscoverXFD,

C. Yu (B) · H. V. Jagadish
Department of EECS, University of Michigan,
Ann Arbor, MI, USA
e-mail: congy@eecs.umich.edu

H. V. Jagadish
e-mail: jag@eecs.umich.edu

we describe a normalization algorithm for converting any
original XML schema into one in GTT-XNF.

Keywords XML · Schema design · Functional
dependency · Normal form · Data redundancy

1 Introduction

Redundant data take up unnecessary storage, inflates data
transfer cost, and can lead to update anomalies. A central
objective of database design is to ensure that there are no
unintended redundancies. As XML databases have become
more common, good design of XML schemas has become
increasingly important, especially in complex scientific
databases. Furthermore, one of the benefits of XML (whether
intended or not) is the ease of generating XML data:
compared with relational data, XML data can be created by
ordinary users (e.g. individual scientists) with minimal train-
ing in database schema design. Such casual design of XML
schemas, while important for encouraging data generation, is
likely to lead to many data redundancies in the resulting XML
databases.1 Designing a good XML schema is therefore often
a two-stage process. In the first stage, data are generated
according to the casually designed schema and redundancies
are being discovered and recorded. In the second stage, the
original schema is re-designed to eliminate unintended data
redundancies, and the original data are transformed into the
new schema.

The notion of functional dependency (FD) plays an impor-
tant role in defining redundancies [7] in relational databases,
and should play a correspondingly important role in XML

1 Anecdotal examples include some large, heavily used community
resources, such as PIR [21].

123

C. Yu, H. V. Jagadish

databases as well. Redundancies in XML data have several
distinct features due to the heterogeneous nature of XML
data, which makes them richer in semantics as compared
with redundancies in relational data. As a result, standard
relational FD discovery algorithms are insufficient to find all
XML FDs (this is true whether we consider classic relational
FD discovery algorithms such as [16], or more recent pro-
posals such as Dep-Miner [15], TANE [11], and FUN [19]).
In this paper, we develop a new algorithm DiscoverXFD, for
efficient discovery of XML data redundancies in terms of
redundancy-indicating XML FDs.

XML functional dependency (i.e., constraints which spec-
ify that values of certain XML elements are determined by
others—to be formally defined later), and the related notion
of XML normal form, have recently become an important
research topic. In [1], Arenas and Libkin adopted a tree tuple-
based approach and were the first to formally define XML
FD and normal form (XNF). In [13,25], the authors took
a path-based approach and built their XML FD notion in a
fashion similar to the XML Key notion proposed in [4]. In
this paper, we show that these XML FD notions are insuffi-
cient, and propose a Generalized Tree Tuple-based XML FD
notion that can fully capture XML data redundancies with
unambiguous semantics. Based on the new XML FD notion,
we introduce a new XML normal form called GTT-XNF,
and design an algorithm for converting any XML schema
into one in GTT-XNF given a set of redundancy-indicating
XML FDs.

The unique challenge in defining XML data redundancies
can be illustrated using the example XML document shown
in Fig. 1. The document maintains information about books
sold at various book stores within a book warehouse, grouped
by states. Each store records its contact information and the
books it is selling, and for each book, the ISBN, author, title,
and price are maintained. Two intuitive constraints, which the
example satisfies, are the following: two books with the same
ISBN must have the same title and the same set of authors;
and likewise, two books with the same set of authors and
the same title must share the same ISBN. Both constraints
cause some information in the XML document to become
redundant (e.g., the title DBMS and the set of authors Rama-
krishnan and Gehrke are stored multiple times for ISBN
0072465638, and vice versa). One important characteristic
that distinguishes such XML redundancies from their rela-
tional counterparts is the involvement of set elements: it is
the set of authors, rather than an individual author, that are
being compared and duplicated. This class of FDs is not cov-
ered by the definitions in [1] and [25]. A third constraint is
equally interesting: for any two books sold at the same store
chain (i.e., stores with the same name), if they have the same
ISBN, they will be sold at the same price. The price 79.90
of book 0072465638, therefore, is stored redundantly for
the store chain Borders (one in Seattle and the other in

Lexington). Such a redundancy is special in that while it
is the books on which the comparison is specified, the con-
straint actually involves an element (i.e., store name) that is
not a descendant of book.

Main contributions and paper outline. We make the fol-
lowing main contributions: (1) We study the examples of
redundancy-inducing (i.e., potentially redundancy indicat-
ing) constraints in the XML data model (Sect. 2.2) and show
that existing XML FD notions are insufficient for capturing
certain XML data redundancies (Sect. 2.3). (2) We propose
a new Generalized Tree Tuple-based XML FD notion, which
improves upon the notion introduced in [1]. We show that
more XML data redundancies can now be effectively cap-
tured by interesting XML FDs (Sect. 3). (3) We introduce a
new XML normal form (GTT-XNF) based on our proposed
XML FD and XML Key notions and provide comprehensive
comparisons with a previous XML Key notion [4] and a pre-
vious normal form notion XNF [1] (Sect. 4). (4) We design
and implement the DiscoverXFD system, which employs a
new XML data structure and several novel partition-based
algorithms that can efficiently discover XML FDs and detect
XML data redundancies (Sect. 5); (5) We describe a nor-
malization algorithm for converting any XML schema into
GTT-XNF given a set of redundancy-indicating XML FDs
(Sect. 6). (6) We demonstrate the scalability and practicality
of DiscoverXFD using a benchmark dataset and a variety of
real life datasets (Sect. 7). We first present some necessary
background.

2 Background and challenges

2.1 Schema and data tree

Figure 2 illustrates the schema of the example XML docu-
ment in Fig. 1. It is shown in a nested relational representation
[22] that is used as a common data model to represent both
relational and hierarchical (XML) schemas. Intuitively, key-
word Rcd is used to indicate complex schema elements (i.e.,
elements that have children elements, e.g., contact), and
keyword SetOf is used to indicate set schema elements (i.e.,
elements that can have multiple matching data elements shar-
ing the same parent in the data, e.g., book). A set element is
not necessarily complex: e.g., author is a set element with
a domain of string (str). Formally:

Definition 1 (Schema) A schema is defined to be S =
〈E, T, r〉, where:

– E is a finite set of element labels;
– T is a finite set of element types, and each e ∈ E is asso-

ciated with a τ ∈ T , written as (e : τ), τ has the form:
τ ::= str | int | float | SetOf τ | Rcd[e1 : τ1, . . . , en : τn];

123

XML schema refinement through redundancy detection and normalization

Fig. 1 Example XML
document. Each node is
assigned a key (shown in the
bracket), which is referred to as
@key, and the dashed boxes
isolate data elements that
correspond to complex set
elements in the schema (Fig. 2)

warehouse[1]

store[12]

book[20]

ISBN[21] =
0072504269

author[22] =
Post

title[23] =
DBMS

price[24] =
126.99

name[14]
= Borders

address[15] =
Seattle

book[30]

author[32] =
Ramakrishnan

title[34] =
DBMS

price[35] =
79.90author[33] =

Gehrke

ISBN[31] =
0072465638

store[42]

book[50]

ISBN[51] =
0072465638

author[52] =
Ramakrishnan

title[54] =
DBMS price[55] =

79.90

name[44]
= Borders

author[53] =
Gehrke

address[45] =
Lexington

…… …

state[10]

store[72]

name[11]
= WA

name[74]
= WHSmith

…

address[75]
= Lexington

book[80]

ISBN[81] =
0072465638

author[82] =
Ramakrishnan

title[84] =
DBMS

author[83] =
Gehrke

state[40]

name[41]
= KY

…

contact[13]

…
contact[43]

contact[73]

…

warehouse: Rcd
state: SetOf Rcd

name: str
store: SetOf Rcd

contact: Rcd
name: str
address: str

book: SetOf Rcd
ISBN: str
author: SetOf str
title: str
price: str

Fig. 2 Example schema (Swarehouse) for the example XML docu-
ment in Fig. 1

– r ∈ E is the label of the root element, whose associated
element type can not be SetOf τ .

Definition 1 corresponds to the “core” constructs in XML
Schema [26]. Types str, int, and float are system defined
simple types. Rcd is a complex type representing the “all”
model-group in XML, respectively. Type SetOf is the set type
associated with elements with maxOccurs greater than one
in XML Schema. We ignore element order and represent the
“sequence” model-group as the Rcd type. For simplicity, we
treat attributes and elements in the same way, with a reserved
“@” symbol to indicate attributes. For mixed-content ele-
ments, if there is exactly one textual value, we store it under
a distinct new attribute “@value.” Otherwise, we ignore the
textual values and treat the mixed-content elements as regular
complex elements.

A schema element ek can be identified through a path
expression, path(ek) = /e1/e2/ . . . /ek , where e1 = r , and
ei is associated with type τi ::= Rcd[. . . , ei+1 : τi+1, . . .] for
all i ∈ [1, k − 1]. Furthermore, if ek is a set element, we call
path(ek) a repeatable path, which is an important concept

to be used later. Note that we do not consider path(ek)

to be a repeatable path if ek is not a set element, even if
some ei (i < k) is a set element. For example, /ware-
house/state/name is not a repeatable path while
/warehouse/state/store is. For convenience, we
adopt XPath steps “·” (self) and “··” (parent) to form a rela-
tive path given an anchor path. For example, if the anchor
path is /warehouse/state/store, the relative path
../name is equivalent to /warehouse/ state/name.

Definition 2 (Data tree) An XML database is defined to be
a rooted labeled tree T = 〈N ,P,V, nr 〉, where:

– N is a set of labeled data nodes, each n ∈ N has a label
e and a node key that uniquely identifies it in T ;

– nr ∈ N is the root node;
– P is a set of parent–child edges, there is exactly one p =

(n′, n) in P for each n ∈ N (except nr), where n′ ∈
N , n �= n′, n′ is called the parent node, n is called the
child node;

– V is a set of value assignments, there is exactly one v =
(n, s) in V for each leaf node n ∈ N , where s is a value
of simple type.

We assign a node key, referred to as @key, to each data
node in the data tree in a pre-order traversal (gaps in the
numbering in Fig. 1 indicate omitted elements). Parent–child
edges are represented as directed lines between two data
nodes (with arrow pointing to the child node). Value assign-
ments are represented as equality between the node label and
the value. We adopt the notion of conformance as defined in
[26] and assume that all given data trees conform to their
schemas.

A data element nk is a descendant of another data ele-
ment n1 if there exists a series of data elements ni , such

123

C. Yu, H. V. Jagadish

that (ni , ni+1) ∈ P for all i ∈ [1, k − 1]. Similar to schema
elements, nk can also be addressed using a path expression,
path(nk) = /e1/ . . . /ek , where ei is the label of ni for each
i ∈ [1, k], n1 = nr , and (ni , ni+1) ∈ P for all i ∈ [1, k −1]. It
is possible that two distinct data elements can have the same
path (e.g., node 11 and node 41). A data element nk is called
repeatable if ek corresponds to a set element in the schema.
Finally, nk is called a direct descendant of element na , if nk

is a descendant of na , path(nk) = . . . /ea/e1/ . . . /ek−1/ek ,
and ei is not a set element for any i ∈ [1, k −1]. For example,
node 21 (ISBN) is a direct descendant of node 20 (book), but
not node 12 (store).

In considering data redundancy, it is important to deter-
mine the equality between the “values” associated with two
data elements [4], instead of comparing their “identities,”
which is represented by @key. Therefore, we have:

Definition 3 (Element-value equality) Two data elements n1

of T1 = 〈N1,P1,V1, nr1〉 and n2 of T2 = 〈N2,P2,V2, nr2〉
are element-value equal (written as n1 =ev n2) if and only
if:

– n1 and n2 both exist and have the same label;
– There exists a set M , such that for every pair (n′

1, n′
2)

∈ M , n′
1 =ev n′

2, where n′
1, n′

2 are children elements
of n1, n2, respectively. Every child element of n1 or n2

appears in exactly one pair in M .
– (n1, s) ∈ V1 if and only if (n2, s) ∈ V2, where s is a simple

value.

Intuitively, two data elements (e.g., node 30 and 50) are
element-value equal if and only if the subtrees rooted at those
two elements are identical when the order among sibling ele-
ments is ignored. Based on element-value equality, we can
now define the path-value equality:

Definition 4 (Path-value equality) Two data element paths
p1 on T1 = 〈N1,P1,V1, nr1〉 and p2 on T2 = 〈N2,P2,V2,

nr2〉 are path-value equal (written as T1.p1 =pv T2.p2) if
and only if there is a set M ′ of matching pairs where

– For each pair m′ = (n1, n2) in M ′, n1 ∈ N1, n2 ∈ N2,
path(n1) = p1, path(n2) = p2, and n1 =ev n2;

– All data elements with path p1 in T1 and path p2 in T2

participate in M ′, and each such data element participates
in only one such pair.

Value equality between two paths is complicated by the
fact that a single path can match multiple data elements in
a data tree. Definition 4 requires that, for two paths to be
considered value equal, each node that is pointed to by one
path must have a corresponding node that is pointed to by the
other path, where the two nodes are element-value equal.

Order consideration. In Definitions 3 and 4, we take extra
steps to ignore the ordering among data elements. This is
because ordering in a majority of the real life XML doc-
uments we have observed is not semantically significant.
When order is important, Definitions 3 and 4 can be adjusted
such that each matching pair always involves two data ele-
ments that have the same ordering position either among its
siblings (Definition 3) or among the data elements with the
same path (Definition 4).

2.2 Example XML data redundancies

We now illustrate data redundancies that can be caused by
constraints on the XML data and describe the features of
those redundancy-inducing constraints. All the examples are
based on the data tree in Fig. 1.

Constraint 1 Whenever two books (e.g., nodes 30 and 50)

agree on their ISBN values, they will have the same title.

It is clear that Constraint 1 leads to redundancies if there
are two distinct books in the data with the same ISBN value:
their titles are redundantly stored. Intuitively, such XML con-
straints consist of three components. First, target elements,
which is the set of data elements (e.g., the books) on which the
constraints are imposed. Second, condition elements, which
are the elements (e.g., ISBN) specified in the condition of the
constraint. Third, implication elements, which are the ele-
ments (e.g., title) whose equality is implied if the condition
is met. It is worth noting that not all constraints correspond
to redundancies. For example, if each distinct book in the
data has a unique ISBN value, then Constraint 1 will not
result in any redundancy. We will explore the properties of
redundancy-inducing constraints later in Sect. 3.3.

Constraint 1 is straight-forward because both ISBN and
title are subelements of book, and each book has exactly one
ISBN and one title. However, constraints on XML data can
become more complicated. Consider:

Constraint 2 Whenever two books are on sale at stores with
the same name, if they agree on their ISBN values, they will
have the same price.

Again, Constraint 2 indicates redundancies if there exist
two distinct books that share the same ISBN value and that
are being sold at the same store or at two stores with the
same name. More importantly, Constraint 2 illustrates two
important features for XML constraints. First, constraints
can involve elements from multiple hierarchies. In this case,
while the target elements are the set of books, the condition
elements include not only a descendant element of book (i.e.,
title) but also a store name element that is neither an ancestor
nor a descendant of book. Second, constraints can involve
missing elements. Often, either the condition elements or the

123

XML schema refinement through redundancy detection and normalization

implication elements can be missing in the data instances. For
example, the price of the book node 80 is not recorded. The
following constraints illustrate yet another important feature
of XML constraints:

Constraint 3 Whenever two books agree on their ISBN
values, they have the same set of authors.

Constraint 4 Whenever two books share the same set of
authors and the same title, they agree on their ISBN values.

Constraints 3 and 4 indicate redundancies if there are two
distinct books (e.g., book nodes 30 and 50) in the data with
either the same ISBN values, or the same title values and
the same set of author values. Most importantly, it is not any
individual author, but rather the set of authors, that are being
compared or redundantly stored because each book has a set
of authors. The third important feature of XML constraints,
therefore, is the involvement of set elements: each condition
or implication element specification can, and often, resolve
to a set of elements.

2.3 Previous proposals

The above constraints are essentially intuitive forms of func-
tional dependencies (FDs). To capture redundancies indi-
cated by those constraints, formal definitions of XML FD
have been proposed and follow two main approaches: path-
based approach and tuple-based approach. They differ in how
the target elements of the constraint are specified: the former
implicitly encodes the target elements inside the FD specifi-
cation, while the latter specifies the target elements indepen-
dent of each individual FD specification.

Path-based approach. Proposed by Vincent et al. [25] is
representative of the path-based approach. An XML FD is of
the form: {Px1 , . . . , Pxn } → Py , where Pxi (also called LHS)
are the paths specifying the condition elements, Py (also
called RHS) is the path specifying the implication element,
and the target elements are implicitly specified as the set of
elements pointed to by Py . For example, Constraint 1 can
be expressed as: {/warehouse/state/store/book/
ISBN}→/warehouse/state/store/book/title.
The semantics of the FD is intuitively defined as the follow-
ing: for any two distinct title nodes in the data tree, if the
ISBN nodes they are associated with have the same value,
then the title nodes themselves have the same value. A title
node and an ISBN node are associated if they are the descen-
dants of the same book node (book is chosen because its
path is the longest common prefix of both title and ISBN).
For example, the FD is satisfied in Fig. 1 because for any
two titles (e.g., nodes 34 and 54), if their associated ISBNs
(e.g., nodes 31 and 51, respectively) share the same value,
they have the same value as well.

warehouse[1]

store[12]

name[14]
= Borders

address[15] =
Seattle

book[30]

author[32] =
Ramakrishnan

title[34] =
DBMS

price[35] =
79.90

ISBN[31] =
0072465638

state[10]

name[11]
= WA

contact[13]

warehouse[1]

store[12]

name[14]
= Borders

address[15] =
Seattle

book[30]

author[32] =
Ramakrishnan

title[34] =
DBMS

price[35] =
79.90

author[33] =
Gehrke

ISBN[31] =
0072465638

state[10]

name[11]
= WA

contact[13]

A B

Fig. 3 (a) Original tree tuple example, and (b) generalized tree tuple
example (book 30 is the pivot node)

Tuple-based approach. In [1], Arenas and Libkin proposed
the first formal XML FD notion built upon the concept of tree
tuples. Instead of specifying target elements from each indi-
vidual FD as in [25], a set of tree tuples is defined independent
of any FD and serves as the target for all FDs. Each tree tuple
is a tree constructed by picking exactly one data node from
the original data tree for each schema element and projecting
away all the other nodes. Figure 3a illustrates one such tree
tuple. XML FDs are subsequently defined based on this tree
tuple notion and take a form similar to the one in the path-
based approach. For example, Constraint 2 can be expressed
as: {/warehouse/state/store/contact/ name,
/warehouse/state/store/book/ISBN}→/ware-
house/state/store/book/price. The semantics of
the FD is defined as the following: for any two tree tuples, if
they have the same values at the nodes specified in the LHS
of the FD (i.e., the name and ISBN nodes), they will share the
same values at their RHS nodes (i.e., the price nodes). It is
worth noting that, if the original XML data tree is viewed as
a set of nested relations [3], the set of tree tuples is conceptu-
ally equivalent to the set of fully unnested tuples. Compared
with path-based approach, tuple-based XML FD notion has
a semantics that is closer to the relational FD notion. It also
suggests a natural technique for XML FD discovery: one can
convert the XML data into a fully unnested relation and apply
existing FD discovery algorithms directly.

Discussion: Both [25] and [1] effectively capture multi-
hierarchical constraints like Constraint 2. In the former, ele-
ments from different hierarchies are associated with each
other through the common ancestor node. In the latter, they
are connected by belonging to the same tree tuple. Both pro-
posals also adopt a similar semantics for missing elements,
which roughly corresponds to the strong satisfaction of FD
over incomplete relations as defined in [3].

However, neither notion can effectively capture con-
straints with set elements. Consider Constraint 3 for Fig. 1.

123

C. Yu, H. V. Jagadish

The closest form to which it can be expressed under both [25]
and [1] is the following: {/warehouse/state/store/
book/ISBN}→/warehouse/state/store/book/
author. It is not difficult to see that the semantics of this FD
under either notion are not the same as the semantics of the
original constraint. The semantics under [25] is that for any
two authors, if they are associated with the same ISBN value,
their values are the same. Under this semantics, the FD is vio-
lated since book 30 has two authors of different values and
the two authors are clearly associated with the same ISBN
value. The semantics under [1] is that for any two tree tuples,
if their ISBN nodes share the same value, then they have
the same value for their author nodes. According to the con-
struction of tree tuple, author 32 and author 33 belong to two
different tree tuples. Since the ISBN nodes of the two tuples
have the same value while the author nodes of the two tuples
differ, the FD is again violated. The original constraint, how-
ever, is satisfied in Fig. 1: two books with the same ISBN
value always have the same set of authors. In the next sec-
tion, we proposed Generalized Tree Tuple-based XML FD
notion that overcomes the semantic limitations the previous
proposals have in expressing constraints with set elements.

3 Capturing XML data redundancy

While both tuple and path-based approaches are valid ways
for defining XML FDs, the tuple-based approach has a clearer
semantics and is conceptually similar to the relational FD
notion. As such, we follow the tuple-based approach. In
Sect. 3.1, we introduce the notion of Generalized Tree Tuple
(GTT), which improves upon the tree tuple notion in [1].
Based on this new tuple notion, we define GTT-Based XML
FD and XML Key. In Sect. 3.2, we analyze the general form
of XML FDs and show that only a subset of such XML FDs
are considered interesting. Finally, in Sect. 3.3, XML data
redundancy is defined formally.

3.1 GTT-based XML FD

Definition 5 (Generalized tree tuple) A generalized tree
tuple of data tree T = 〈N ,P,V, nr 〉, with regard to a par-
ticular data element n p (called pivot node), is a tree t T

n p
=

〈N t ,P t ,V t , nr 〉, where:

– N t ⊆ N is the set of nodes, n p ∈ N t ;
– P t ⊆ P is the set of parent–child edges;
– V t ⊆ V is the set of value assignments;
– nr is the same root node in both t T

n p
and T ;

– n ∈ N t if and only if: 1) n is a descendant or ancestor of
n p in T , or 2) n is a non-repeatable direct descendant of
an ancestor of n p in T ;

– (n1, n2) ∈ Pt if and only if n1 ∈ N t , n2 ∈ N t , (n1, n2) ∈
P;

– (n, s) ∈ V t if and only if n ∈ N t , (n, s) ∈ V .

Similar to an original tree tuple, a generalized tree tuple
is a data tree projected from the original data tree. However,
instead of separating sibling nodes with the same path at all
hierarchy levels, a generalized tree tuple has an extra param-
eter called a pivot node, and the separation is done only for
data elements above the pivot node. As a result, ancestor
and descendant nodes of the pivot node, as well as all the
non-repeatable direct descendant nodes (previously defined
in Sect. 2.1) of those ancestor nodes, are preserved in the
tuple. Figure 3b illustrates one such generalized tree tuple
with node 30 as the pivot node. Note that both author nodes
of the book are preserved in the tuple, while in Fig. 3a, only
one is kept. Based on the pivot node, we can categorize all
generalized tree tuples into tuple classes:

Definition 6 (Tuple class) A tuple class CT
p of the data tree

T is the set of all generalized tree tuples t T
n , where path(n) =

p. Path p is called the pivot path.

For example, the generalized tree tuple in Fig. 3b belongs
to the tuple class C/warehouse/state/store/book.2 Finally,
we introduce the notion of XML FD-based on tuple class:

Definition 7 (XML FD) An XML FD is a triple 〈C p, L H S,

RH S〉, written as L H S → RH S w.r.t. C p, where C p denotes
a tuple class, LHS is a set of paths (Pli , i = [1, n]) relative
to p, and RHS is a single path (Pr) relative to p.

An XML FD holds on a data tree T (or T satisfies an
XML FD) if and only if for any two generalized tree tuples
t1, t2 ∈ C p

3

– ∃ i ∈ [1, n], t1.Pli =⊥ or t2.Pli =⊥, or
– If∀ i ∈[1, n], t1.Pli =pv t2.Pli , then t1.Pr �=⊥, t2.Pr �=⊥,

t1.Pr =pv t2.Pr . A null value, ⊥, results from a path that
matches no node in the tuple, and =pv is the path-value
equality defined in Definition 4.

The expression t.P , where t is a tree tuple and P is a path
expression, corresponds to (a set of) node(s) that are identi-
fied by following the path P starting with the pivot node of
the tree t .

Because generalized tree tuples can be defined at any hier-
archy level, with an appropriate tuple class specification,

2 While the definitions and algorithms throughout the rest of paper han-
dle both types, we largely omit the “choice” type for the simplicity of
discussion.
3 The superscript is often omitted for brevity. The same for the sub-
script, which in this case can be abbreviated as book.

123

XML schema refinement through redundancy detection and normalization

this new XML FD notion can effectively capture constraints
involving set elements. For example, Constraints 3 and 4 can
now be expressed as:

FD 3: {./ISBN} → ./author w.r.t. Cbook

FD 4: {./author, ./title} → ./ISBN w.r.t.
Cbook

Note that their semantics are exactly as expected. And the
other two example constraints (Constraints 1 and 2) can be
expressed as:

FD 1: {./ISBN} → ./title w.r.t. Cbook

FD 2: {../contact/name, ./ISBN} →./price
w.r.t. Cbook.

We treat missing elements (regarded as being null values)
in the same way as in [25], where they are considered as dif-
ferent from each other and from all other existing elements
(i.e., each FD must be strongly satisfied [3]). We also note that
FDs involving set elements only on the RHS can also be cap-
tured by incorporating multivalued dependencies (MVD) [8]
into the previous tuple-based approach. However, in general,
FDs involving set elements cannot be captured using MVD.
For example, FD 4 cannot be expressed using MVD because
the set of author values must be considered together.

When the RHS of an XML FD is ./@key, the LHS then
uniquely identifies each tuple in C p because the pivot node
(and hence its key) for each tuple is unique. This naturally
leads us to the following XML Key notion:

Definition 8 (XML key) An XML Key of a data tree T is a
pair 〈C p, LHS〉, where T satisfies the XML FD 〈C p, LHS,
./@key〉.

For example 〈Cstate, {./name}〉 is an XML Key for
our running example, so is 〈Cstore, {./contact/name,
./contact/address}〉.

This new notion of XML Key shares many similarities
with the notion proposed by Buneman et al. in [4], which
contains a target path (which identifies a set of nodes) and a
set of key paths (which uniquely identifies each node in the
aforementioned set). There are also important differences
that we will explore in Sect. 4.

3.2 Interesting XML FD

The range of XML FDs expressible under the new notion are
quite broad. However, not all expressible FDs are of interest.
For example, some FDs may not be interesting because they
are trivial or redundant with other FDs.

3.2.1 Trivial XML FDs

Definition 9 (Trivial XML FD) An XML FD 〈C p, L H S,

RH S〉 is trivial if:

1. RH S ∈ L H S, or

2. For any generalized tree tuple in C p, there is at least one
path in L H S that matches no data element.

The definition of trivial XML FDs partly follows the rela-
tional semantics, where an FD is trivial if the LHS contains
the RHS, and partly follows the strong satisfaction semantics,
where an FD is trivial if the LHS always contains at least one
null value. Such a situation can arise, as mentioned in [1],
because of the existence of Choice elements. For example, if
contact is a Choice element instead of a Rcd element (i.e., it
can have either name or address as its child, but not both) in
Fig. 2, then the XML FD {./contact/name, ./con-
tact/address} → ./@key w.r.t. Cstore is trivial since
no Cstore tuple will have both LHS nodes.

3.2.2 Essential tuple classes

Theorem 1 Given a tuple class C p, if p is not a repeatable
path (see Sect. 2.1), and there exists a tuple class C p′ , where
p′ is the longest repeatable path that is a prefix of p, then
each tuple in C p corresponds to a distinct tuple in C p′ .

Proof Each data element matching p′ has at most one descen-
dant matching p, and therefore each data element matching
p has a distinct ancestor matching p′. Following Definitions
5 and 6, data elements matching p and p′ have one-on-one
correspondence to tuples in C p and C p′ , respectively. Hence,
each tuple in C p corresponds to a distinct tuple in C p′ . ��

A direct implication of Theorem 1 is that C p is no longer
necessary for the purpose of expressing FDs. Consider Fig. 4,
which illustrates example tuples in both Ccontact and
Cstore. Each tuple in Ccontact has a distinct correspond-
ing tuple in Cstore. A comparison between two tuples in
Ccontact can also be performed on their corresponding
tuples in Cstore, obtaining the same result. Therefore, all

warehouse[1]

store[12]

name[14]
= Borders

address[15] =
Seattle

state[10]

name[11]
= WA

contact[13]

warehouse[1]

store[12]

name[14]
= Borders

address[15] =
Seattle

book[30]

author[32] =
Ramakrishnan

title[34] =
DBMS

price[35] =
79.90

author[33] =
Gehrke

ISBN[31] =
0072465638

state[10]

name[11]
= WA

contact[13]

A B

book[20]

ISBN[21] =
0072504269

author[22] =
Post

title[23] =
DBMS

price[24] =
126.99

…

Fig. 4 Example tuples in non-essential tuple class Ccontact (a) and
Cstore (b). In contrast, Cbook (with an example tuple in Fig. 3) is an
essential tuple class

123

C. Yu, H. V. Jagadish

FDs under Ccontact can be expressed under Cstore with
the same semantics (tuples in Cstore without contact do not
affect this conclusion because missing elements are treated
as unknowns). The reverse, however, is not true. FDs that are
expressible under Cstore may refer to data elements that do
not exist in tuples in Ccontact, and are therefore not express-
ible under Ccontact.

We call C p′ the lowest-repeatable-ancestor tuple class of
C p. Since only tuple classes with repeatable pivot paths are
essential for fully expressing all (non-redundant) XML FDs,
we call them essential tuple classes. Intuitively, each essen-
tial tuple class corresponds to a distinct set element in the
schema.

3.2.3 Structurally redundant XML FDs

Theorem 2 Let F D = 〈C p, L H S, RH S〉, if none of the
paths in LHS and RHS specifies a data element that is a
descendant of the pivot node in the tuple, then F D holds on
a data tree T if and only if F D′ = 〈C p′ , L H S′, RH S′〉 holds
on T , where C p′ is the lowest-repeatable-ancestor tuple class
of C p, and paths in L H S′ and RH S′ are equivalent to paths
in L H S and RH S (i.e., they correspond to the same absolute
paths).

Proof Each tuple in C p has a corresponding tuple in C p′ and
tuples with sibling pivot nodes in C p correspond to the same
tuple in C p′ . If F D′ is satisfied, then F D is not violated by
two tuples with non-sibling pivot nodes. Because two tuples
with sibling pivot nodes never violates F D (they share the
same LHS and RHS elements), F D is satisfied. The reverse
direction can be proved similarly. ��

This structural redundancy is best illustrated by the fol-
lowing example FD, which is structurally redundant to FD 1
in Sect. 3.1:

FD 5 {../ISBN} → ../title w.r.t. Cauthor

For the purpose of verifying F D, tuples in C p with sibling
pivot nodes are redundant to each other. Such redundancies
are naturally eliminated in F D′. As a result, we consider FDs
like FD 5 as structurally redundant and therefore uninterest-
ing.

Another group of uninteresting FDs are those with an RHS
path that does not match any descendant of the tuple pivot
node, but with at least one LHS path that does match a descen-
dant of the tuple pivot node. The satisfaction of such FDs
either does not indicate redundancies or it indicates redun-
dancies that are almost always indicated by other FDs. In the
former case, for example, the satisfaction of {../@key,
./ISBN} → ../contact/name w.r.t. Cbook cannot
cause any redundancy because for any two Cbook tuples with
matching LHS, the RHS will always point to the same data

element. In the latter case, for example, if {./ISBN} →
../contact/name w.r.t. Cbook were satisfied, it would
have meant that any two stores selling two books with the
same ISBN would have the same name. In most scenarios,
this means that all the stores in the database have the same
name, which is easily detected through {../../@key} →
./contact/name w.r.t. Cstore.

3.2.4 Interesting XML FDs

Definition 10 (Interesting XML FD) An XML FD = 〈C p,

L H S, RH S〉 is interesting if it satisfies the following condi-
tions:

– RHS /∈ LHS;
– C p is an essential tuple class;
– RHS matches to descendant(s) of the pivot node.

In summary, an interesting XML FD is a non-trivial XML
FD with an essential tuple class, and is not structurally redun-
dant to any other XML FD. We note here that Definition 10
focuses on distinguishing interesting XML FDs from uninter-
esting ones based on the FD specification alone. As a result,
the second condition of Definition 9 is not incorporated here:
checking for triviality based on the second condition requires
either examining the schema or checking the data directly.

3.3 XML data redundancy

Definition 11 (XML data redundancy) A data tree T con-
tains a redundancy if and only if T satisfies an interesting
XML FD 〈C p, LHS, RHS〉, but does not satisfy the XML
Key 〈C p, LHS〉.

Intuitively, if 〈C p, LHS〉 is not a key for T , then there exist
two distinct tuples in C p that share the same LHS. Since T
satisfies 〈C p, LHS, RHS〉, the RHS paths of the two tuples
must be value equal. However, according to Definitions 5
and 10, the RHS paths match distinct data elements (because
they are descendants of two distinct pivot nodes), which are
therefore redundantly stored. For example, the data tree in
Fig. 1 contains redundancies due to the satisfaction of FDs 1
and 3, where the book ISBN determines the title and author,
but cannot uniquely identify an individual book in the set of
books.

4 XML normal form: GTT-XNF

The definition of our new XML normal form, called GTT-
XNF, naturally follows Definition 11 and is inspired by the
XNF normal form defined in [1]. Formally, we have:

123

XML schema refinement through redundancy detection and normalization

Definition 12 (GTT-XNF) An XML schema S is in GTT-
XNF given the set of all satisfied interesting XML FDs if
and only if for each such XML FD (〈C p, L H S, RH S〉),
〈C p, L H S〉 is an XML key.

Intuitively, GTT-XNF disallows any satisfied interesting
XML FD that indicates data redundancies. The set of all sat-
isfied interesting XML FDs needs to be either derived from
an initial set of FDs specified independent of any database
(XML FD inference) or extracted from the databases (XML
FD detection). Section 5 describes XML FD detection, and
here we briefly discuss XML FD inference.

The set of all interesting XML FDs for a given tuple class
C p can be derived from existing interesting XML FDs for C p

using the following inference rules. Those rules are similar
to the Armstrong’s axioms in the relational case, which are
used to compute the closure of relational FDs [2].

Rule 1 (Reflexivity) L H S → P1 w.r.t. C p is satisfied if
P1 ⊆ L H S.

Rule 2 (Augmentation) L H S → P1 w.r.t. C p ⇒
{L H S, P2} → P1 w.r.t. C p.

Rule 3 (Transitivity) L H S → P1 w.r.t. C p ∧. . .∧L H S →
Pn w.r.t. C p ∧ {P1, . . . , Pn} → P w.r.t. C p ⇒ L H S → P
w.r.t. C p.

Deriving interesting XML FDs across different tuple clas-
ses, however, is more difficult. In general, no such axiom
exists because the semantics of each path expression can
change when their associated tuple class changes. For exam-
ple, path /warehouse/state/store/ book/title
matches a set of data elements within tuple class Cstore, but
a single data element within tuple class Cbook. As a result,
deriving all interesting XML FDs from an existing set of
interesting XML FDs is often very difficult. This is in agree-
ment with the nonaxiomatizability of XML FDs shown in
[1]. Fortunately, XML FD inference is often not necessary
since XML FD detection is more practical and fits the casual
nature of XML schema design.

4.1 Comparison with previous key notion

Before we explore the differences between GTT-XNF and
previously proposed normal forms, we analyze the differ-
ence between our XML Key notion and the notion proposed
by Buneman et al. [4] first.

In [4], an XML Key is defined as (Q, (Q′, S)), where Q
is a path specifying a set of data elements that are the roots
of data subtrees, on which the key (Q′, S) holds. Within the
key, Q′ is a path specifying the set of data elements whose
identities are to be compared (target elements), and S is a
set of paths specifying the set of data elements whose values

Fig. 5 An alternative schema
with multiple hierarchies

warehouse: Rcd
state: SetOf Rcd

name: str
auction: SetOf Rcd

contact: Rcd
name: str

book: SetOf Rcd
ISBN: str
au: SetOf str

store: SetOf Rcd
contact: Rcd

name: str
address: str

book: SetOf Rcd
ISBN: str
author: SetOf str
title: str
price: str

are to be compared (condition elements). For example, in
Fig. 1, if we want to express that within each store, ISBN
is a key for book, here is what we will have: (/ware-
house/state/store, (./book, {./ISBN})).

When the paths in Q and Q′ are all simple paths (i.e.,
they do not contain XPath step “//”, which can potentially
match multiple schema elements), an XML Key in [4] can
be transformed into our GTT-based notion in the following
way: first, set the tuple class to be CQ′ ; second, set the LHS
to be {S∪ Q/@key}. For example, the above relative key can
be specified as 〈Cbook, {./ISBN, ../@key}〉 in our notion.
Intuitively, the concept of “context” in [4] is transformed into
one of the condition elements in LHS.

There are two main differences between the two key
notions. First, in [4], Q′ can involve an arbitrary path step and
therefore specify a heterogeneous set of data elements. For
example, consider an alternative schema in Fig. 5, Q′ can be
set to /warehouse/state//book and therefore match
to book elements under both store and auction. In GTT-based
XML Key notion, we only allow simple paths when speci-
fying tuple classes, and therefore cannot express a key that
holds for both sets of book elements. While allowing arbitrary
paths for tuple classes gives us more powerful semantics, it
introduces significant complexities into the specification of
XML FDs. This is because a path in LHS that refers to ances-
tors of the pivot node can now match to a heterogeneous
set of data elements as well. Furthermore, the redundancy
detection algorithms will become significantly more com-
plex when heterogeneous tree tuples need to be considered.
We consider the benefits of this more flexible semantics not
worth the significant complexities it introduces.

Second, the specification of the “context” of relative key is
more flexible in GTT-based notion. While in [4], Q can only
specify a path expression, we can in fact introduce more com-
plex conditions. For example, consider the original example
in Figs. 1 and 2, the key 〈Cbook, {./ISBN, ../contact/

name}〉 specifies that ISBN is a key for book under all stores

123

C. Yu, H. V. Jagadish

with the same name. Such relative notion is difficult, if not
impossible, to specify with the definition of [4].

4.2 Comparison with previous normal form notion

XNF is a normal form introduced by Arenas and Libkin [1]
and our GTT-XNF generalizes XNF by allowing more flexi-
ble XML FD notions. As mentioned before, the main differ-
ence between the two XML FD notions is that XNF builds
a single set of tree tuples by separating data elements of the
same schema element at all levels, while GTT-XNF builds
multiple sets of tree tuples, and within each set, data elements
of the same schema element are only separated if they are not
descendants of the pivot nodes.

Proposition 1 For any given XML FD that is expressible
under XNF, it is either expressible under GTT-XNF, or its
satisfaction is trivially implied from the satisfaction of an
XML FD that is expressible under GTT-XNF.

Proof We prove the simple case first, where the XML schema
contains a single hierarchy. In a “single-hierarchy” schema,
every pair of set schema elements are in an ancestor-
descendant relationship. For example, the schema in Fig. 2
is a single hierarchy schema. It is easy to see that, in this
case, the set of tree tuples generated in XNF is exactly the
set of generalized tree tuples within the essential tuple class
whose pivot path matches the lowest set schema element
(e.g., Cauthor). As a result, all FDs expressible under XNF
is expressible under GTT-XNF, although not all such FDs are
considered interesting (see Sect. 3.2.4).

When the schema contains more than one hierarchy, tree
tuples generated in XNF do not appear as generalized tree
tuples in GTT-XNF. For example, consider the multi-
hierarchy schema in Fig. 5, both auction and store
are set schema elements and they do not have an ancestor-
descendant relationship. Each tree tuple generated in XNF
will have exactly one store data element and exactly one
auction data element. No tuple class, however, in GTT-XNF
contains those tree tuples as defined in Definition 5.

We divide FDs under XNF in this case into two categories.
First, we consider single-hierarchy FDs. A single-hierarchy
FD is one in which all the path expressions in LHS and RHS
only involve set schema elements within a single hierarchy.
For example, {/warehouse/state/ store/book/
ISBN}→/warehouse/state/store/book/title
is a single-hierarchy FD involving set schema elements
state, store, book, all within a single hierarchy. Like
in the simple case, those FDs are expressible in GTT-XNF
within the appropriate tuple class (e.g., {./ISBN} → ./
title w.r.t. C/warehouse/state/store/book).

Second, we consider FDs that involve set schema ele-
ments belong to multiple hierarchies. For example, {/ware-
house/state/name,/warehouse/state/store/

warehouse[1]

store[12]

name[14]
= Borders

state[10]

name[11]
= WA

contact[13]

…

auction[32]

name[34]
= Amazon

contact[33]

…

warehouse[1]

store[12]

name[14]
= Borders

state[10]

name[11]
= WA

contact[13]

…

auction[32]

name[34]
= Amazon

contact[33]

…

warehouse[1]

store[12]

name[14]
= Borders

state[10]

name[11]
= WA

contact[13]

…

auction[22]

name[24]
= Amazon

contact[23]

…

auction[22]

name[24]
= Amazon

contact[23]

…

A

B C

Fig. 6 Tuples under XNF with multiple hierarchies. (a) The partial
data tree conform to the schema in Fig. 5. (B, C) Two of the tree tuples
generated from the data tree that contain the same store

contact/name}→/warehouse/state/auction/
contact/name. While we may be tempted to express this
FD within tuple class Cstate since only tuples within Cstate

contain both store and auction data elements, we in fact
can not. Both ./store/contact/ name and ./auc-
tion/contact/namehave set semantics (i.e., they match
a set of data elements) for tuples within Cstate, which is not
the semantics of the FD under XNF because XNF, by defini-
tion, does not allow set semantics. However, the satisfaction
of this FD, under XNF, can only mean one thing: names
of all the auctions under the same state are the same. The
reason is that according to Definitions 3.1 and 3.6 in [1],
each store under a state will pair with every auction under
the same state (and vice versa), and there is one tuple for
each such pair. Consider the set of such tuples with the same
store, but different auctions as shown in Fig. 6, the satisfac-
tion of the above FD means those auctions all have the same
name because they are all determined by the name of the
same store. As a result, the satisfaction of this FD is trivially
implied by the following FD under GTT-XNF: {../name}
→ ./contact/name w.r.t. Cauction.

Let the multi-hierarchy FD expressible under XNF be
{L H S1 ∪ L H S2} → RH S, where L H S1 contains paths
within the same hierarchy as RH S and L H S2 contains all
other paths in different hierarchies. Let FD {L H S1} → RH S
w.r.t. C p, where p is the longest repeatable path that is a pre-
fix of RH S, be an FD under GTT-XNF. The satisfaction of
the former is always implied by the satisfaction of the latter.

123

XML schema refinement through redundancy detection and normalization

warehouse state name store contact contact/name contact/address book ISBN author title price
1 10 WA 12 13 Borders Seattle 20 00...269 Post DBMS 126.99
1 10 WA 12 13 Borders Seattle 30 00...638 Rama... DBMS 79.90
1 10 WA 12 13 Borders Seattle 30 00...638 Gehrke DBMS 79.90
...

Fig. 7 Example flat tuples in the flat representation of the XML data in Fig. 1

(If L H S1 is empty in the original FD, we set L H S1 in the new
FD to be /@key, meaning the RH S is a constant throughout
the entire database).

Theorem 3 Any data redundancy that can be detected based
on the XML FD notion in XNF can be detected based on the
XML FD notion in GTT-XNF.

Proof According to Definition 5.1 in [1], the RHS of a
satisfied non-trivial FD is redundantly stored if the LHS of
the FD does not determine the identity (i.e.,@key) of the par-
ent data element of the RHS. If the FD is expressible under
both XNF and GTT-XNF, and it is interesting under GTT-
XNF, then this definition and our Definition 12 express the
same semantics. If the FD is not expressible under XNF, we
identify a new FD with the same RHS under GTT-XNF that
implies this FD (as discussed in the previous paragraph), and
the redundancy of the RHS can then be detected based on
this new FD (see Sect. 5). ��

5 Detecting XML data redundancy

In this section, we show how data redundancies in XML
can be efficiently detected through the discovery of satis-
fied interesting XML FDs and Keys. Based on Definition 11,
we design DiscoverXFD, an algorithm to discover interest-
ing XML FDs with non-key LHSs, and several related algo-
rithms.

5.1 XML data representation

Flat Representation. The XML FD notion proposed in [1]
suggests a natural way of XML FD discovery: the origi-
nal XML data tree can be represented as a single relational
table, and existing relational FD discovery algorithms can be
directly applied. As shown in Fig. 7, the flat representation
converts the XML data into a single relation of flat tuples,
where each attribute in the relation corresponds to a distinct
schema element and each tuple is generated by selecting one
data value (or @key) from the data tree for each simple (or
complex) element, following the notion of tree tuple in [1].
For example, the tuple in Fig. 3a is represented by the second
tuple in Fig. 7.

There are, however, two major issues with applying exist-
ing relational FD discovery algorithms to this flat represen-
tation. First, it is not clear how certain interesting XML FDs

Rroot

@key parent
1 ⊥

Rstate

@key parent name
10 1 WA
40 1 KY

Rstore

@key parent contact contact/name contact/addr.
12 10 13 Borders Seattle
42 40 43 Borders Lexington
72 40 73 WHSmith Lexington

Rbook

@key parent ISBN title price
20 12 00...269 DBMS 126.99
30 12 00...638 DBMS 79.90
50 42 00...638 DBMS 79.90
80 72 00...638 DBMS ⊥

Rauthor

@key parent author
22 20 Post
32 30 Ramakrishnan
33 30 Gehrke
52 50 Ramakrishnan
53 50 Gehrke
82 80 Ramakrishnan
83 80 Gehrke

Fig. 8 Example essential tuples in the hierarchical representation of
the XML data in Fig. 1

(i.e., those involving set elements) can be discovered. For
example, those algorithms cannot discover previously men-
tioned XML FDs like FD 3 and FD 4. Second, relational
FD discovery algorithms have exponential complexity in the
number of attributes they have to consider. As a result, this
implementation does not scale well when the XML schema
is complex: the more complex the XML schema is, the more
attributes there are in the transformed relational schema. Fur-
thermore, the number of tuples in the single relation will
increase multiplicatively if the schema contains multiple set
elements that have no ancestor-descendant relationship with
each other. For example, if each book had two review ele-
ments, the total number of tuples in Fig. 7 would double.

Hierarchical representation. Inspired by the notion of
essential tuple class (Sect. 3.2.2), and the concept of nested
relation [18], a more compact representation of the XML
data can be adopted. As shown in Fig. 8, the original XML
data tree can be converted into a set of relations based on the
original XML schema, where each relation Rp (e.g., Rbook)
corresponds to an essential tuple class C p (e.g., Cbook).

123

C. Yu, H. V. Jagadish

Attributes in each relation match distinct non-repeatable
schema elements, whose longest repeatable prefix path is
the pivot path of C p. There are two additional attributes: (1)
the @key attribute, which matches to the pivot path itself
and serves as the key for the relation (since each generalized
tree tuple has a unique pivot node); (2) the parent attribute,
which matches to the pivot path of C p’s lowest-repeatable-
ancestor tuple class (see Theorem 1). For example, the parent
attribute of Rbook corresponds to the path /warehouse/
state/store since Cstore is the lowest-repeatable-
ancestor tuple class of Cbook. Each tuple (called essential
tuples) in the relations corresponds to a partial generalized
tree tuple in C p. Any generalized tree tuple of an essential
tuple class can be fully reconstructed by joining tuples from
multiple relations (on the parent and @key attributes). For
example, to generate the generalized tree tuple in Fig. 3b, one
can join t10 in Rstate with t12 in Rstore, then with t30
in Rbook , then with t32 and t33 in Rauthor . We call Rp1

a parent relation of Rp2, and Rp2 a child relation of Rp1,
if C p1 is the lowest-repeatable-ancestor tuple class of C p2.
For example, Rstore is a parent relation of Rbook . We can
similarly define ancestor relation and descendant relation.

Compared with the flat representation, hierarchical rep-
resentation avoids many redundancies because the common
part of different tree tuples is represented only once. For
example, title and price about a single book is stored once
(in Rbook) throughout the entire database, instead of once for
each author as in Fig. 7. Therefore, each individual relation
in Fig. 8 is considerably smaller than the single relation in
Fig. 7 in terms of both the number of tuples it has and the num-
ber of attributes it maintains. Interesting XML FDs, whose
LHS and RHS paths are in the same relation (e.g., FD 1 in
Sect. 3.1), can be discovered efficiently by applying existing
relational FD discovery algorithms to individual relations
in isolation. The problem, however, is that not all interest-
ing XML FDs contain only LHS or RHS paths within the
same relation. For example, all the other three FDs (FD 2–
4) in Sect. 3.1 contain paths that appear in multiple rela-
tions. We call XML FDs/Keys that involve a single relation
intra-relation FDs/Keys, and those that involve multiple rela-
tions inter-relation FDs/Keys. The challenge is how to effi-
ciently discover interesting inter-relation XML FDs/Keys.
In the rest of the section, we present algorithms for discov-
ering inter-relation FDs (Sect. 5.3) and FDs involving set
elements (Sect. 5.4) based on the concepts of partition tar-
get and set partition. Section 5.5 analyzes the complexities
of those algorithms. We first briefly describe how relational
algorithms are applied to discover intra-relation FDs.

5.2 Discovering intra-relation FDs

The algorithm for discovering intra-relation FDs is adopt-ed
from existing partition-based algorithms, e.g., TANE [11],

I T P

ITP

IT IP TP

C N A

CNA

CN CA NA

{} {}

{t20}
{t30,t50,t80}

{t20,t30,
t50,t80}

{t20}
{t30,t50,t80}

{t20}
{t30,t50}

{t80}

{t12}
{t42,t72}{t20}

{t30,t50}
{t80}

{t20}
{t30,t50}
{t80}

{t12}
{t42}
{t72}

{t12,t42}
{t72}

{t12}
{t42}
{t72}

A B

Fig. 9 Example attribute set lattices for Rbook (a) and Rstore (b).
I, T, P, C, N, A stand for ISBN, title, price, contact,
contact/name, contact/address, respectively. Shown along
selected nodes are the attribute partitions. Bold edges correspond to sat-
isfied FDs. Dashed nodes and edges are those not visited in algorithms
DiscoverFD and DiscoverXFD

Dep-Miner [15], and FUN [19]. There are two main data
structures: attribute partition and attribute set lattice.

Attribute partition: An attribute partition of an attribute set
X (�X) is a set of partition groups, where each group contains
all tuples sharing the same values at X . For example, in Rbook ,
�{ISBN,price} = {{t20}, {t30,t50}, {t80}}.4,5 We say
that �X is a refinement of �Y (�X ↪→ �Y) if whenever
two tuples are in the same group in �X , they are in the same
group in �Y , which leads to the following:

Lemma 1 A given intra-relation FD: L H S → RH S w.r.t.
C p holds if and only if �L H S ↪→ �R H S in Rp.

Lemma 2 A given intra-relation FD: L H S → RH S w.r.t.
C p holds if and only if �L H S∪R H S = �L H S in Rp.

Lemma 1 is straightforward and Lemma 2 is true because
�X ↪→ �Y if and only if �X∪Y = �X . Intuitively,
Lemmas 1 and 2 provide a more efficient way of determining
the satisfaction of a given intra-relation FD.

Attribute set lattice. An attribute set lattice (in short, lat-
tice) of relation Rp represents all intra-relation FDs in Rp

(except those involving @key and parent). As shown in Fig. 9,
each node in the lattice corresponds to an attribute set, and
an edge goes from node X to node Y if Y contains X and has
exactly one more attribute than X . Each edge, in fact, corre-
sponds to an intra-relation FD: let Y = X ∪{A}, edge (X, Y)

corresponds to the intra-relation FD: X → A w.r.t. C p.
The algorithm DiscoverFD (shown in Fig. 10) aims to

discover all intra-relation FDs that are not implied by other
intra-relation FDs (i.e., minimal FDs). It traverses the lat-
tice and discovers keys and satisfied minimal FDs by con-
structing and comparing the attribute partitions. The lattice
is simulated with queue Q, which produces the nodes from

4 All examples are based on the data in Fig. 8.
5 If a group contains only one tuple, it can be removed from the parti-
tion, resulting in a striped partition [11]. While we adopt striped partition
in the implementation, we continue to use non-striped partition in the
discussion for clarity.

123

XML schema refinement through redundancy detection and normalization

Fig. 10 Algorithm DiscoverFD

the lattice in level-order. For each node visited, the algo-
rithm checks: (1) the associated partition to see if the attri-
bute set is a Key. An attribute set is a Key if all groups in
its partition contain exactly one tuple (line 11); (2) the set
of associated edges to detect satisfied FDs. An FD corre-
sponding to edge (X, X A) is satisfied if �X = �X A (lines
12–14). The algorithm also produces new partitions by com-
bining input partitions of smaller attribute sets (lines 9–10,
see [19]).

Since the objective is to discover minimal FDs only, the
algorithm adopts several optimization rules to remove cer-
tain nodes and edges from the lattice, which also improves
performance because constructing and comparing partitions
is costly. Assume that X, Y are two possibly empty attri-
butes sets, A, B are two single attributes, A, B /∈ X , A, B /∈
Y , and X ∩ Y = ∅, the rules are: (1) Edge (XY, XY A) is
removed if edge (X, X A) corresponds to a satisfied FD (line
23), because if X → A w.r.t. C p holds, then X ∪ Y → A
w.r.t. C p is implied; (2) Edge (XY A, XY AB) is removed if
edge (X, X A) corresponds to a satisfied FD (line 24). This
is because if X → A w.r.t. C p holds, then X ∪Y ∪{A} → B
w.r.t. C p is implied by X ∪Y → B w.r.t. C p and thus it would
not be minimal. For example, in Fig. 9a, after visiting edge
(I, I T) and detecting {ISBN} → ./titlew.r.t. C p is sat-
isfied, edge (I P, I T P) is removed by the first rule, while
edge (I T, I T P) is removed by the second rule; (3) If X is
detected as an XML Key, the algorithm removes all nodes
XY from the lattice (lines 11, 18). For example, in Fig. 9b,

nodes C N , C A, and C N A are removed because C is an XML
Key.

5.3 Discovering inter-relation FDs

The number of all possible inter-relation FDs is usually sig-
nificantly larger than the number of all possible intra-relation
FDs. Fortunately, the number of minimal inter-relation FDs
is limited as Lemma 3 shows:

Lemma 3 Let f d0 = L H S → RH S w.r.t. C p be an inter-
relation FD. For a given relation Rp′ , where Rp′ = Rp or
Rp′ is an ancestor relation of Rp (Rp is the relation corre-
sponding to C p), let L H S′ ⊂ L H S be the set of paths cor-
responding to attributes in Rp′ and descendant relations of
Rp′ . We have: (1) If f d1 = L H S′∪{ p′/parent} → RH S
w.r.t. C p does not hold, then f d0 cannot be satisfied; (2) If
FD f d2 = L H S′ → RH S w.r.t. C p holds, then f d0 is
implied by f d2.

First, if an FD does not even hold for tuples with the same
parent in a relation, any inter-relation FD that is generated by
extending its LHS with attributes from ancestor relations can-
not hold either. This is true because no ancestor attribute set
can distinguish tuples with the same parent in the current rela-
tion. For example, {./title} → ./price w.r.t. Cbook

does not hold for tuples t20 and t30, which share the same
parent t12. No matter what attributes from Rstore and Rstate

are added to the LHS, t20 and t30 will always violate the
resulting FD. Second, if an FD is already satisfied, extend-
ing its LHS with ancestor attributes produces only implied
inter-relation FDs. Therefore, any minimal inter-relation FD
is built upon an intra-relation FD that is satisfied under indi-
vidual parents but not throughout the entire relation (Fig. 11).

Algorithm DiscoverXFD is designed based on the above
lemmas. It treats the entire collection of relations as a tree
with edges corresponding to their parent/child relationships.
It proceeds from leaf level to top level relations (lines
5–6: children relations are visited before the parent rela-
tion). At each relation, the algorithm accomplishes two things
by employing the data structure partition target (shown in
Fig. 12): First, it detects any intra-relation FD/Key that is
satisfied under individual parents but not the entire relation.
Those FDs/Keys will become candidate partial FDs/Keys.
Second, it detects any attribute set in the relation that can
form a satisfied inter-relation FD/Key with any candidate
partial FD/Key from its descendant relations. A partition tar-
get, which is associated with a candidate partial FD and a
candidate partial Key (the FD’s LHS), contains two sets of
inequalities: one corresponds to the FD satisfaction condition
(FDTarget) while the other corresponds to the Key satisfac-
tion condition (KeyTarget). The inequalities are constructed
from partitions (Function createPT in Fig. 12) and updated as

123

C. Yu, H. V. Jagadish

Fig. 11 Algorithm DiscoverXFD

the algorithm moves up the hierarchies (Function updatePT
in Fig. 12).

The details of the algorithm are shown in Figs. 11 and
12. We illustrate how it works through a simple example:
the discovery of FD 2 {../contact/name, ./ISBN}
→ ./price w.r.t. Cbook on data in Fig. 8. When visiting

Fig. 12 Utility functions

Rbook , the algorithm detects that �{I SB N } is not the same as
�{I SB N ,price} (see Fig. 9a), which means that {./ISBN} →
./price w.r.t. Cbook is not satisfied. In fact, for this FD to
be part of some inter-relation FD, two inequalities must be
satisfied, namely t30�=t80 and t50�=t80. Because these
inequalities will have to be satisfied in the parent relation,
tuples in them are converted into their parent tuples, result-
ing in t12�=t72 and t42�=t72. Often, two tuples in the
same inequality are converted into the same parent tuple: the
inequality can never be satisfied and the FD is not considered
as a candidate partial FD. In this case, however, both inequal-
ities can potentially be satisfied (i.e., the FD holds for tuples
sharing the same parent), therefore, the FD is regarded as a
candidate partial FD. Furthermore, for the LHS of a potential
inter-relation FD to be a Key, the inequality t30�=t50must
also be satisfied, which converts into t12�=t42. As a result,
a partition target corresponding to {./ISBN} → ./price
w.r.t. Cbook is created, with its FDTarget being {t12�=t72,
t42�=t72} and KeyTarget being {t12�=t42}. The algo-
rithm then visits Rstore and examines its attribute partitions.
In particular, in �contact/name (see Fig. 9b), t72 is separated

123

XML schema refinement through redundancy detection and normalization

from t12 and t42, which means that the FDTarget is
satisfied by the partition. On the other hand, t12 and t42
remain in the same group in �contact/name, which means that
the KeyTarget is not satisfied. As a result, {../contact/
name, ./ISBN} → ./price w.r.t. Cbook is reported as
an inter-relation FD.

5.4 Handling set elements

Finally, to discover FDs involving set elements, like FD 3:
{./ISBN} → ./authorw.r.t. Rbook , we generate set par-
titions, which separate tuples according to those set attributes.
We explain Algorithm CreateSetPartition (Fig. 13) through a
simple example based on the data in Fig. 8. Consider attribute
author in Rauthor , �author

author = {{t22}, {t32,t52,t82},
{t33,t53,t83}}. The initial �book

author is set as {{t20,
t30, t50,t80}} (line 1). The first group in �author

author is
converted into {t20} (line 3), and since there is only one
tuple, no group division is needed (line 4). Applying {t20}
to �book

author (lines 5–6) results in a refined �book
author = {{t20},

{t30,t50,t80}}. Going through the next two groups in
�author

author will not further refine �book
author . In a similar way,

�book
author can be further turned into �store

author = {{t12}, {t42,
t72}}. Each generated set partition, in fact, groups the tuples
in the parent relation in the same way as an attribute parti-
tion, and can therefore be directly used in both discovery
algorithms to detect satisfied FDs involving set elements.
For example, �book

author is added to the attribute set lattice of
Rbook , and FD 3 and FD 4 can be discovered just like any
other interesting FDs.

It is easy to see that, in the worst case, a top-level relation
will have to deal with a large number of set partitions coming
from its descendant relations. In practice, however, this is less
of a concern for the following two reasons: (1) most of the
set partitions quickly become key partitions (the higher the
partition moves, the more likely it becomes a key partition),
where each group in the partition contains only one tuple.
As discussed in Sect. 5.2, such partitions are optimized and
have little effect on the performance; (2) higher level relations

Algorithm CreateSetPartition
Input: Πchild

A , the partition on attribute A in Rchild

ID, the index maps @key to parent in Rchild

1. Init. Πparent
A as a single group of all distinct parents in Rchild

2. foreach g∈Πchild
A :

3. foreach t∈g: t=ID.get(t) // convert @key to parent
4. divide g into a set G of duplicates eliminated groups,

such that t1, t2 ∈ same group
cnt(t1) = cnt(t2) in g

5. foreach g ∈Πparent
A , g ∈G:

6. divide g into g1↪ g2, where g1=g and g2=g -g
Output: Πparent

A , the set partition on A in Rparent

if ifand only

Fig. 13 Algorithm CreateSetPartition

contain significantly fewer tuples and are therefore less
impacted by the increasing number of set partitions.

5.5 Complexity analysis and discussion

We briefly analyze the complexities of algorithms Discover-
FD and DiscoverXFD. For DiscoverFD, the number of edges
in the attribute set lattice and the number of partitions at each
relation R are bounded by O(Rk2Rk) and O(2Rk), respec-
tively, where Rk is the number of attributes in R. For each
edge visited in the lattice, a scan of the tuples in the rela-
tion is required. As a result, DiscoverFD has a worst case
time complexity of O(Rn Rk2Rk), where Rn is the number
of tuples in R. For DiscoverXFD, at each relation R, parti-
tion targets and set partitions from its descendant relations
must be examined for each partition of R. Since the num-
ber of such partition targets and set partitions can be in the
worst case O(Rd2Rd) (where Rd is the total number of attri-
butes of all descendant relations of R), the worst case com-
plexity for DiscoverXFD at each relation is O(Rn Rk2Rk +
Rn Rd2Rk+Rd). This is in contrast with the complexity of
O(Rn′(Rk + Rd)2Rk+Rd), where Rn′ is the number of tuples
in the flat representation, if we adopt the flat representation
and use relational FD discovery algorithms. While the worst
case complexity is only slightly better for DiscoverXFD and
still exponential, the pruning strategies employed by Dis-
coverXFD can often reduce the number of partition targets
and set partitions to be examined to near linear (see Sect. 7),
reducing the time cost of DiscoverXFD close to that of Dis-
coverFD.

Discussion. First, order can be considered. It simply
requires that, for two data nodes to be considered equal, their
positions among the siblings (which can be obtained when
establishing the hierarchical relations), in addition to their
values, must be matched. While this increases the cost of
computing partitions, it is also likely to produce more key
partitions, which can be pruned away. As a result, we do not
expect the impact of considering orders to be significant. We
do not consider order in our system because we believe order-
unaware redundancy is more meaningful in practice. Second,
for XML data stored in native format, our algorithms cannot
be applied directly. However, the general pruning principles
as shown in Lemma 3 still apply. Finally, We note here that
FDs really depend on inherent properties of the world being
represented. It is not possible to “prove” that there is an FD
based purely on the data. In this sense, any FD discovery
algorithm must be viewed as merely suggesting FDs, which
hold in the current instance of the database, rather than estab-
lishing FDs. Some suggested FDs may turn out to be spuri-
ous—artifacts of the current database instance. Where data
collections are large and representative, it is unlikely that too
many spurious FDs will be suggested. Nonetheless, a final
manual verification is often required.

123

C. Yu, H. V. Jagadish

6 Schema normalization

Given the set of discovered redundancies, our next objec-
tive is to eliminate those redundancies from the database.
This redundancy elimination process involves three phases.
The first phase is schema normalization, where the original
schema is refined into a new schema such that all redundancy-
indicating FDs are eliminated.6 The second phase is mapping
generation, where a schema mapping is established between
the original schema and the new schema. The last phase is
data transformation, where the original database is trans-
formed into the new format based on the schema mapping.
The last two phases are studied extensively in the context of
data integration [22], and therefore we only focus on schema
normalization in this paper. In Sect. 6.1, we describe how
individual redundancy-indicating XML FDs can be elim-
inated by modifying the schema. In Sect. 6.2, we present
the overall algorithm for schema normalization, which uses
a bottom-up strategy to systematically group and eliminate
redundancy-indicating FDs.

For the rest of this section, we use the XML document and
schema in Figs. 1 and 2 as an example, and assume that we
have discovered a set � of redundancy-indicating FDs that
contains the following two FDs, both of which are interesting
(Definition 10) and minimal (i.e., not implied by other FDs).

F1 = {./ISBN} → ./title w.r.t. Cbook;
F2 = {../../name,../contact/name,./ISBN}

→ ./price w.r.t. Cbook;
F3 = {./ISBN} → ./author w.r.t. Cbook;
We further assume that 〈Cstore, {../name,./

contact/name} is an XML Key in our example.

6.1 Eliminating redundancy-indicating FDs

As defined in Definition 11, if an XML FD, 〈C p, L H S,

RH S〉, holds on a database, while the XML Key 〈C p, L H S〉
does not, the data elements that are represented by RHS are
redundantly stored. To eliminate such an FD, we move the
schema element corresponding to RHS into an appropriate
new schema location, such that those data elements are no
longer redundantly stored. We first classify those FDs into
two categories: local and global.

Definition 13 (Local/global XML FD) An XML FD, 〈C p,

L H S, RH S〉, is local if there exists L H S′ ⊂ L H S such that
〈C p′ , L H S′〉 is an XML Key, where C p′ is an ancestor tuple
class of C p (i.e., p′ is a prefix of p). Otherwise, the FD is
global.

6 Eliminate here means adjusting the schema such that those FDs no
longer indicate redundancy. FDs are a property of the database and, as
a result, can never be eliminated.

The distinction between global and local FDs can be
illustrated through some examples. Consider F1, which is
a global FD because no subset of its LHS is a key for any
tuple class above Cbook. Intuitively, this FD means any two
books, regardless whether they are under the same store
or state, if they have the same ISBN, then they will have
the same title. Consider F2, which is a local FD because
{../name, ./contact/name} is a key for Cstore.
Because the state name and store name uniquely identifies
each store, this FD intuitively means any two books, if
they have the same ISBN, they will have the same price,
as long as they are under the same store. In other words,
unlike global FDs, local FDs are satisfied within a single
subtree, instead of across multiple subtrees. Because of this
distinction, we adopt different procedures for eliminating
global and local FDs, with the goal of minimal changes to
the original schema. Both procedures de-couple the RHS
schema element of the redundancy-indicating FD from the
other schema elements within the tuple class, and create a new
schema element that contains the de-coupled RHS schema
element. The differences are where is the new schema element
created and what are the type of this new schema element.

Procedure 1 (Eliminate global FD) Let F = {P1, . . . ,

Pn} → Pr w.r.t. C p be a redundancy-indicating global FD
on Schema Sroot; {ei | i ∈ [1, n]} and {τi | i ∈ [1, n]} be
the sets of schema element labels and types, respectively,
associated with each Pi ; er and τr be the schema element
label and type, respectively, associated with Pr ; τparent
be the schema element type of the parent element of Pr ;
τroot = Rcd[e′

1 : τ ′
1, . . . , e′

m : τ ′
m] be the element type

of the root element. We eliminate the redundancy by the
following procedure:

– Create a new schema element with label enew and type
τnew = SetOf Rcd[e1 : τ1, . . . , en : τn, er : τr]

– Set τroot = Rcd[e′
1 : τ ′

1, . . . , e′
m : τ ′

m, enew : τnew]
– Remove (er : τr) from τparent.

To eliminate a global FD (e.g., F1), we create a new
schema element containing both its LHS elements (e.g.,
ISBN) and RHS element (e.g.,title), and put this new ele-
ment under the root. The RHS element is then removed from
its original position. Figure 14 illustrates the new schema
after eliminating F1.

Creating inclusion constraint. To avoid the loss of asso-
ciations between Pr and paths other than Pi (i ∈[1, n]}), an
implicit value-based inclusion constraint will now be cre-
ated on the generalized tree tuples in C p and Cenew : Let P ′

i
(i ∈ [1, n]}) be the set of paths (relative to enew) for the
schema elements ei (i ∈ [1, n]}) under enew; for each tuple
t ∈ C p, there exists a tuple t ′ ∈ Cenew , such that t.Pi =nv t ′.P ′

i

123

XML schema refinement through redundancy detection and normalization

Fig. 14 Resulting schema
after eliminating F1

warehouse: Rcd
state: SetOf Rcd

name: str
store: SetOf Rcd

contact: Rcd
name: str
address: str

book: SetOf Rcd
ISBN: str
author: SetOf str
price: str

new-book: SetOf Rcd
ISBN: str
title: str

for all i ∈ [1, n]. This constraint is very much like the inclu-
sion constraints that are adopted in relational data model.

Adjusting FD. We first remove F from �. The semantics
of F is now captured by the new FD: {P1, . . . , Pn} → Pr

w.r.t. Cnew. However, since {P1, . . . , Pn} is a key for Cnew,
this new FD is not redundancy indicating and therefore does
not need to be added to �. We then remove all FDs in � that
are affected by the move of Pr . For example, if the FD F4 =
{./author, ./title} → ./ISBN w.r.t. Cbook is in
�, it will be removed because it is no longer valid. It is safe
to do so becauseISBN is no longer redundant and the seman-
tics of this FD is now captured through the above-mentioned
inclusion constraint.

Procedure 2 (Eliminate local FD) Let F = {P1, . . . , Pk−1,

Pk, . . . , Pn} → Pr w.r.t. C p be a redundancy indicating local
FD on Schema Sroot, where {P1, . . . , Pk−1} is the key for
C p′ , C p′ is an ancestor tuple class of C p, and there is no
other subset L of {Pi | i ∈ [1, n]} such that L is a key for
C p′′ , C p′′ is an ancestor tuple class of C p and a descendant
tuple class of C p′ (i.e., C p′ is the lowest tuple class that can
be identified);

Furthermore, let {ei | i ∈ [k, n]} and {τi | i ∈ [k, n]} be
the sets of schema element labels and types, respectively,
associated with each Pi ; er and τr be the schema element
label and type, respectively, associated with Pr ; τparent be
the schema element type of the parent element of Pr ; τp′ =
Rcd[e′

1 : τ ′
1, . . . , e′

m : τ ′
m] be the element type of the schema

element corresponding to the pivot path of C p′ . We eliminate
the redundancy by the following procedure:

– Create a new schema element with label enew and type
τnew = SetOf Rcd[ek : τk, . . . , en : τn, er : τr]

– Set τp′ = Rcd[e′
1 : τ ′

1, . . . , e′
m : τ ′

m, enew : τnew]
– Remove (er : τr) from τparent.

To eliminate a local FD (e.g., F2), we create a new schema
element containing the subset of its LHS elements (e.g.,
ISBN) that are not part of the key for the ancestor tuple
class (e.g., Cstore) and RHS element (e.g., title), and put
this new element under the schema element corresponding

Fig. 15 Resulting schema
after eliminating F2

warehouse: Rcd
state: SetOf Rcd

name: str
store: SetOf Rcd

contact: Rcd
name: str
address: str

book: SetOf Rcd
ISBN: str
title: str
author: SetOf str

new-book: SetOf Rcd
ISBN: str
price: str

to the pivot path of the ancestor tuple class (e.g., /ware-
house/state/store). The RHS element is then
removed from its original position. By creating the new
schema element under the non-root ancestor, fewer ele-
ments needs to be copied under the new schema element and
the overall schema becomes simpler. Figure 15 illustrates the
new schema after eliminating F2.

Just like in the case of eliminating local FDs, after the
modification of the schema, we impose a value-based inclu-
sion constraint on tuples in C p and Cnew, and remove any
FD that is affected by the move of Pr .

Special case for Procedure 2. There is a special case for
eliminating local FDs, that is when the entire LHS of the FD
is a key for some ancestor tuple class. A classic example is
the DBLP schema, where the year of an article (tuples
in Carticle) is determined by the identity (i.e., @key) of
the issue containing the article. In this case, instead of
creating a new schema element containing a single element
year, we can simply move year directly under issue,
making the result schema simpler. Note that by not creating
a new (set) schema element, we can potentially introduce
new redundancy-indicating FDs into �. For example, year
can be determined by some non-key elements under issue,
and therefore still be redundant. This redundancy will then
be eliminated when we analyze FDs for Cissue.

6.2 Normalization algorithm

Figure 16 illustrates the overall schema normalization algo-
rithm. The bulk of the algorithm is modifying the schema
using either Procedures 1 or 2, which are described exten-
sively before. There are several things worth mentioning
here. First, we group FDs according to their LHS so that no
unnecessary schema element is created. For example, con-
sider our example FDs F1 and F3, both of which have the LHS
{./ISBN}. If they are dealt with separately, two new schema
element will be created: one contains ISBN and title, the
other contains ISBN and author. By grouping these two
FDs, only one new schema element needs to be created: one
contains ISBN, title, and author.

123

C. Yu, H. V. Jagadish

Fig. 16 Algorithm SchemaNormalization

Second, we process FDs according to the number of paths
in their LHS as a heuristic strategy to reduce the storage
cost. Consider F1 and F3, plus a new FD F5 = {./title,
./author} → ./ISBN w.r.t. Cbook. If F5 is processed
first, then the elements title and author, instead of
ISBN, will remain under book. Even though there will be
no data redundancy, it is intuitively undesirable sincetitle
and author are more complex elements being stored at
a lower hierarchy (book instead of root). Ordering FDs
according to the number of paths in LHS ensures that F1 and
F3 will be processed before F5 and therefore only ISBNwill
remain under book.

Third, we process FDs according to the hierarchy depth of
their tuple class (i.e., in a bottom-up fashion). This is because
during the process of FDs for a lower hierarchy tuple class,
redundancy-indicating FDs for a higher hierarchy tuple class
may be created. Processing FDs in the hierarchical order
allows us to deal with each tuple class at most once.

Finally, the algorithm terminates because each application
of Procedures 1 and 2 either removes at least one redundancy-
indicating FD, or converts one redundancy indicating FD into
another one with a tuple class at a higher hierarchy (i.e., the
special case for Procedure 2).

Figure 17 illustrates the final redundancy-free schema after
eliminating all three FDs. Notice that eliminating F1 and
F3 together results in only one new schema element (new-
book), and that after the elimination of F1 and F3, F2 is no
longer redundancy indicating.

7 Experimental evaluation

We implemented the redundancy detection algorithm,
DiscoverXFD, on top of Berkeley DB [23] using Java. The
main data structures, including attribute partitions, partition

Fig. 17 Resulting schema
after eliminating all three FDs

warehouse: Rcd
state: SetOf Rcd

name: str
store: SetOf Rcd

contact: Rcd
name: str
address: str

book: SetOf Rcd
ISBN: str
price: str

new-book: SetOf Rcd
ISBN: str
title: str
author: SetOf str

targets, etc., are stored on disk and fetched when necessary,
and only a single attribute partition of a single relation is
required to fit in memory (for efficient generation of new par-
titions). This results in a small memory footprint. All exper-
iments were conducted on a PC with a 2.0-GHz P4 CPU and
1 GB RAM, running Windows XP (SP2) and JRE 1.4.2. The
JVM memory was 512 MB and the Berkeley DB cache size
was 128 MB. For timing measurements, each experiment was
run three times and the average reading was recorded.

7.1 Real life datasets

We first evaluated DiscoverXFD on three available real life
datasets to examine its practicality and to verify the exis-
tence of data redundancies in real world datasets. The data-
sets include: the Mondial [17] geography dataset; the human
subset of PIR protein information dataset from protein infor-
mation resource [21]; the DBLP [14] bibliography dataset.
The statistics of each dataset are shown in Table 1: the schema
and tuple class depth (the latter is usually smaller because of
the skipping of non-set schema elements) affect the discov-
ery of inter-relation FDs and Keys, and the average and max-
imum number of attributes per relation (in the hierarchical
representation) affect the discovery of both intra-relation and
inter-relation FDs and keys. While Mondial and PIR datasets
are similarly nested, the DBLP dataset stands out with a rel-
atively flat structure (tuple class depth of 3) and with more
complex relations (larger average and maximum number of

Table 1 Statistics of real life datasets

Mondial PIR DBLP

Schema elements 152 114 331

Max. schema depth 5 7 4

Tuple classes 31 31 73

Max. tuple class depth 5 5 3

Avg. attributes per relation 4.9 3.7 4.5

Max. attributes per relation 17 15 27

Data elements (in 000s) 48.7 1, 001.1 3, 736.4

Document size (in MB) 1.2 31.8 133.8

123

XML schema refinement through redundancy detection and normalization

Table 2 Analyzing real life datasets

Mondial PIR DBLP

Loading time (seconds) 0.6 18.0 55.9

Partition time (seconds) 6.0 20.2 79.9

Discovery time (seconds) 11.1 253.6 1,093.5

Intra-relation Keys 98 41 205

Inter-relation Keys 25 6 5

Intra-relation FDs 21 (0) 73 (12) 313 (16)

Inter-relation FDs 9 (0) 8 (2) 0 (0)

Total discovered FDs 30 81 313

When counting FDs, only the ones whose LHS is not a key are counted—
the numbers of discovered FDs therefore refer to only redundancy
indicating FDs. Numbers in parentheses are the number of FDs that
involve set elements

Mondial: Rcd
...

province: SetOf Rcd
name: str
city: SetOf Rcd

name: str
@province: str
@country: str

...

FD: {../name, ./@country} → ./@province w.r.t. Ccity

Fig. 18 Partial schema of the Mondial dataset and an example redun-
dancy-indicating inter-relation FD

attributes per relation). The size of each dataset is measured
as the number of data elements (including both elements and
attributes) it contains.

We performed redundancy detection on the datasets and
measured three time costs: the loading time (parsing the doc-
ument and converting it into the hierarchical representation),
the partition time (creating partitions of single attributes for
all the relations), and the discovery time (the time of actual
FD and Key discovery i.e., Algorithm DiscoverXFD). As
shown in the Table 2, redundancies in all datasets can be
detected in a reasonable amount of time, ranging from 20 s
for Mondial to 20 min for DBLP, demonstrating the practi-
cality of the system.

More importantly, data redundancies were detected in all
three datasets, as shown in Table 2. An example redundancy-
indicating FD in Mondial is shown in Fig. 18. Here, in Ccity ,
the name element of province and the country attribute of city
together determine the province attribute of city, but they are
not an XML Key (e.g., they do not determine the name ele-
ment of city). As a result, the province attribute of city is
stored redundantly: once for each city in the same province.
It is also worth noting that, for the PIR dataset, a significant
number of discovered redundancy-indicating FDs (17% of all
discovered FDs) involve set elements—those FDs can not be

Scale Factor

1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
(s

ec
.)

0

5000

10000

15000

20000

25000

30000

35000

Total
Intra Only

Fig. 19 Cost of redundancy detection on XMark datasets with increas-
ing scale factors

captured by previous XML FD proposals. Such set FDs are
less common for Mondial and DBLP, presumably because the
data those are representing inherently do not contain many
such redundancies. Furthermore, while the exact number of
redundant elements is unknown, its lower bound can be esti-
mated by checking only the recorded intra-relation FDs and
measuring the average group size of their LHS partitions.
We performed this estimation on the PIR dataset and found
that intra-relation FDs alone caused 104,507 data elements
to be stored redundantly, about 10.4% of total data elements.
We have proposed modifications to the PIR schema to avoid
these redundancies, and communicated this to the owners of
the database.7

We also analyzed the effect of FD grouping (Step 1 in
Fig. 16) of the SchemaNormalization algorithm by normal-
izing the PIR schema (given the set of discovered redun-
dancy-indicating FDs) with or without FD grouping. While
a total of 63 new schema elements are produced if we do
not adopt FD grouping, only 23 new schema elements are
produced when it is adopted.

7.2 Benchmark dataset

We further evaluated DiscoverXFD on the XMark dataset to
examine its scalability. The XMark schema shares similar
schema characteristics with the nested real life datasets: 327
schema elements with a maximum depth of 9; 117 tuple clas-
ses with a maximum depth of 5; average and maximum num-
ber of attributes per relation at 2.8 and 17, respectively. The
size of each dataset is linearly correlated to the scale factor
used for its generation. At scale factor 1, the dataset contains
about 2 million data elements and has a document size of
100 MB. As shown in Fig. 19, the total time for redundancy
detection (line Total) increases linearly with the scale factor,
indicating that the system scales well with increasing data

7 PIR has been replaced by the new UniProt database, whose design has
taken into consideration our suggestions. A rough comparison between
the two schemas show that an estimated 20% of the discovered FDs
pointing to unintended redundancies, 30% are intended redundencies,
the rest of FDs are no longer applicable in the new schema.

123

C. Yu, H. V. Jagadish

Table 3 Time cost (seconds) of redundancy detection on small XMark
datasets using the alternative relational algorithm implementation and
DiscoverXFD

S1 S2 S3 XMark (sf = 0)

Data elements 118 153 192 331

Rel. algorithm 0.9 6.0 128.2 >10,000

DiscoverXFD 2.1 2.3 2.5 4.2

size. To investigate whether detection of redundancies caused
by inter-relation FDs is becoming more significant, we per-
formed the detection for intra-relation FDs only (because
inter-relation FDs cannot be discovered without incurring
the cost of discovering intra-relation FDs). Again, the cost of
detecting intra-relation FDs (Fig. 19 line intra only) increases
linearly to the scale factor and remains between 60–70%
of the total (i.e, the cost of detecting redundancy-indicating
inter-relation FDs stays about 30–40% of the total), indi-
cating that manipulating partition targets and set partitions is
efficient and does not dominate the overall detection process.

Comparison with relational algorithms. As mentioned in
Sect. 5.1, XML FDs can also be discovered by applying rela-
tional algorithms on the flat representation of the XML data.
While such an alternative implementation is limited due to
its inability to discover FDs involving set elements, we nev-
ertheless want to compare our system against it. Towards this
objective, we implemented an alternative redundancy detec-
tion system, which converts XML data into flat representa-
tion and adopts the algorithm FUN [19]8 for FD and Key
discovery (we made minor adjustments to avoid recording
un-interesting FDs). We performed redundancy detection
with this system on all three real-life datasets. Not surpris-
ingly, it did not finish detection (within 24 h) even on the
Mondial dataset. In fact, redundancy detection using this sys-
tem took hours for the smallest XMark dataset (scale factor
0), which contains only 331 elements. As a result, we created
three more datasets (S1–S3) based on the smallest XMark
dataset and compared the performance of our system against
this alternative system on these. The results are shown in
Table 3. As expected, while the alternative system performs
well on very small datasets, it degrades rapidly as the size
increases and performs much worse than our DiscoverXFD
system for larger datasets.

8 Related work

Designing XML Keys and XML FDs were first addressed in
[4,5,13], respectively. Formal definitions of XML FDs and
Normal Forms were later proposed in [1] and [25], providing

8 FUN is chosen because it improves upon previous algorithms and is
the fastest.

significant improvements over relational FDs in capturing
XML data redundancies. However, as discussed at length in
Sect. 4, those proposals are limited in their ability to capture
redundancies involving set elements and many do not uti-
lize the formal tuple-based semantics. The redundancy detec-
tion problem, one of our main contributions, is not addressed
in any of the above studies. Integrity constraints (including
keys) in XML were studied extensively in [4,5,9,10], which
proposed several notions (e.g., element-value equality) that
are used here and in many other studies. However, they do
not adopt the tree tuple notion that we and [1] adopt here.

The hierarchical representation of XML data shares many
similarities with nested relations [3]. In [18,20], data redun-
dancies in nested relations are characterized using relational
FDs and MVDs. However, as mentioned in Sect. 3.1, MVDs
cannot fully capture XML redundancies involving set ele-
ments on both sides of the dependency, and a more compre-
hensive notion of XML FD is therefore necessary.

Several algorithms [11,15,19] have been proposed for
relational FD discovery. The intra-relation FD discovery
algorithm is an extension of these algorithms, and their notion
of partition is used extensively in the inter-relation FD dis-
covery algorithm. Several recent studies have also focused on
validating known XML Keys and FDs [6,24], which is a con-
siderably simpler problem than our problem of redundancy
detection through the discovery of FDs and Keys.

Designing normalization algorithms for schema refine-
ment is an important problem and was studied in [1,25]. We
follow their directions in this paper and design normalization
algorithms that are based on the our proposed normal form
GTT-XNF.

In many real world scenarios, FDs are not always satis-
fied—an FD may hold a large subset of the data, but not
on a small number of tuples. Several studies have looked at
this, most recently in [12]. While we do not consider this
in the current study, data structures similar to those in [12]
can potentially be adopted for the discovery of approximate
XML FDs.

9 Conclusion

XML data redundancies have a richer semantics than redun-
dancies in the relational context. We proposed generalized
tree tuple-based XML FD and Key notions that improve
upon previous proposals and capture a comprehensive set of
XML data redundancies, including in particular redundan-
cies involving set elements. Based on those new notions, we
proposed a new XML normal form GTT-XNF. We designed
and implemented DiscoverXFD, the first XML data redun-
dancy detection system through the discovery of XML FDs
and Keys. We further designed a normalization algorithm
that converts any XML schema into one in GTT-XNF given

123

XML schema refinement through redundancy detection and normalization

the set of detected redundancy-indicating XML FDs. Experi-
mental evaluation demonstrates that the system is practical in
detecting redundancies in real datasets and scales well with
increasing dataset size.

Acknowledgements This work was supported in part by the United
States National Science Foundation (NSF) under grant IIS- 0438909 and
by National Institutes of Health (NIH) under grant 1-U54- DA021519.
We would like to thank the anonymous reviewers for their constructive
suggestions.

References

1. Arenas, M., Libkin, L.: A normal form for XML docu-
ments. TODS 29(1), 195–232 (2004)

2. Armstrong, W.: Dependency structures of database relationships.
In: Proc. IFIP, pp. 580–583. North Holland (1974)

3. Atzeni, P., DeAntonellis, V.: Foundations of Databases. Benjamin
Cummings (1993)

4. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.-C.: Keys for
XML. In: Proc. WWW, pp. 201–210. Hong Kong, China (2001)

5. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.-C.: Reason-
ing about keys for XML. Inf. Syst. 28(8), 1037–1063 (2003)

6. Chen, Y., Davidson, S., Zheng, Y.: XKvalidator: a constraint vali-
dator for XML. In: Proc. CIKM, pp. 446–452. McLean, VA (2002)

7. Codd, E.F.: A relational model of data for large shared data
banks. Commun. ACM 13(6), 377–387 (1970)

8. Fagin, R.: Multivalued dependencies and a new normal form for
relational databases. TODS 3, 262–278 (1977)

9. Fan, W., Libkin, L.: On XML integrity constraints in the presence
of DTDs. J. ACM 49(3), 368–406 (2002)

10. Fan, W., Simeon, J.: Integrity constraints for XML. JCSS 66, 2554–
291 (2003)

11. Huhtala, Y., Karkkainen, J., Porkka, P., Toivonen, H.: TANE: an
efficient algorithm for discovering functional and approximate
dependencies. Comput. J. 42(2) (1999)

12. Ilyas, I., Markl, V., Haas, P., Brown, P., Aboulnaga, A.: CORDS:
automatic discovery of correlations and soft functional dependen-
cies. In: Proc. SIGMOD, pp. 647–658. Paris, France (2004)

13. Lee, M.L., Ling, T.W., Low, W.L.: Designing functional depen-
dencies for XML. In: Proc. EDBT, pp. 124–141. Prague, Czech
Republic (2002)

14. Ley, M.: DBLP Computer Science Bibliography. http://dblp.
uni-trier.de/

15. Lopes, S., Petit, J.-M., Lakhal, L.: Efficient discovery of functional
dependencies and Armstrong relations. In: Proc. EDBT, pp. 350–
364. Konstanz, Germany (2000)

16. Mannila, H., Raiha, K.-J.: Dependency inference. In: Proc. VLDB,
pp. 155–158. Brighton, England (1987)

17. May, W.: Information extraction and integration with Florid:
the Mondial case study, (1999). http://www.dbis.informatik.
uni-goettingen.de/lopix/lopix-mondial.html

18. Mok, W.Y., Ng, Y.-K., Embley, D.: A normal form for precisely
characterizing redundancy in nested relations. TODS 21(1), 77–
106 (1996)

19. Novelli, N., Cicchetti, R.: Functional and embedded dependency
inference: a data mining point of view. Inf. Syst. 26, 477–
506 (2001)

20. Ozsoyoglu, Z.M., Yuan, L.-Y.: A new normal form for nested rela-
tions. TODS 12(1), 111–136 (1987)

21. PIR International Protein Sequence Database. http://pir.
georgetown.edu/pirwww/search/textpsd.shtml (2006)

22. Popa, L., Velegrakis, Y., Miller, R., Hernández, M., Fagin, R.:
Translating Web data. In: Proc. VLDB, pp. 598–609. Hong Kong,
China (2002)

23. Sleepycat Software. http://www.sleepycat.com/ (2006)
24. Vincent, M., Liu, J.: Checking functional dependency satisfaction

in XML. In: Proc. XSym, pp. 4–17. Trondheim, Norway (2005)
25. Vincent, M., Liu, J., Liu, C.: Strong functional dependencies and

their application to normal forms in XML. TODS 29(3), 445–
462 (2004)

26. W3C. XML Schema. http://www.w3.org/TR/xmlschema-0/
(2004)

123

http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://www.dbis.informatik.uni-goettingen.de/lopix/lopix-mondial.html
http://www.dbis.informatik.uni-goettingen.de/lopix/lopix-mondial.html
http://pir.georgetown.edu/pirwww/search/textpsd.shtml
http://pir.georgetown.edu/pirwww/search/textpsd.shtml
http://www.sleepycat.com/
http://www.w3.org/TR/xmlschema-0/

	XML schema refinement through redundancy detectionand normalization
	Abstract
	Introduction
	Background and challenges
	Schema and data tree
	Example XML data redundancies
	Previous proposals
	Capturing XML data redundancy
	GTT-based XML FD
	Interesting XML FD
	Trivial XML FDs
	Essential tuple classes
	Structurally redundant XML FDs
	Interesting XML FDs
	XML data redundancy
	XML normal form: GTT-XNF
	Comparison with previous key notion
	Comparison with previous normal form notion
	Detecting XML data redundancy
	XML data representation
	Discovering intra-relation FDs
	Discovering inter-relation FDs
	Handling set elements
	Complexity analysis and discussion
	Schema normalization
	Eliminating redundancy-indicating FDs
	Normalization algorithm
	Experimental evaluation
	Real life datasets
	Benchmark dataset
	Related work
	Conclusion
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

