
Querying Structured Text in an XML Database ∗

Shurug Al-Khalifa
University of Michigan
Ann Arbor, MI 48109

shurug@eecs.umich.edu

Cong Yu
University of Michigan
Ann Arbor, MI 48109

congy@eecs.umich.edu

H. V. Jagadish
University of Michigan
Ann Arbor, MI 48109

jag@eecs.umich.edu

ABSTRACT
XML databases often contain documents comprising struc-
tured text. Therefore, it is important to integrate “informa-
tion retrieval style” query evaluation, which is well-suited for
natural language text, with standard “database style” query
evaluation, which handles structured queries efficiently. Rel-
evance scoring is central to information retrieval. In the case
of XML, this operation becomes more complex because the
data required for scoring could reside not directly in an ele-
ment itself but also in its descendant elements.

In this paper, we propose a bulk-algebra, TIX, and de-
scribe how it can be used as a basis for integrating informa-
tion retrieval techniques into a standard pipelined database
query evaluation engine. We develop new evaluation strate-
gies essential to obtaining good performance, including a
stack-based TermJoin algorithm for efficiently scoring com-
posite elements. We report results from an extensive exper-
imental evaluation, which show, among other things, that
the new TermJoin access method outperforms a direct im-
plementation of the same functionality using standard op-
erators by a large factor.

1. INTRODUCTION
Boolean style queries against an XML document collection

are useful when users are aware of the underlying schema
and can specify queries precisely. However, collections of
XML documents are frequently heterogeneous, with docu-
ments that do not share the same schema [23]. Moreover,
users may frequently be satisfied if they find items that are
relevant, even if not an exact match, particularly where el-
ements have large textual content. Traditional databases,
including XML databases, can efficiently compute answers
to very complex queries precisely stated in terms of logic
statements, but are not good at dealing with this fuzziness.

Relevance ranking is central to information retrieval, so
one may be inclined to turn toward IR to address these

∗Supported in part by NSF under grant IIS-0208852 and
IIS-0219513.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

problems. However, traditional IR has been “document-
centric”, where a document is assumed as the basic unit
of information to be queried and retrieved. XML gives the
user an ability to address into the specific elements of a doc-
ument, at a much finer granularity, making it important to
retrieve result elements at appropriate levels of granularity,
and making it important to take document structure into
account in ways that traditional IR cannot manage. Fur-
thermore, it is usually not possible to pose IR queries that
require more complex analysis beyond the determination of
(document) relevance.

In short, information retrieval and database queries have
hitherto followed two quite separate paths (with only a few
intersections [22, 13, 23, 21] discussed in Sec. 7). With XML
as a means of representing structured text, there is a need
to integrate these two strands of work. In this paper, we
make significant strides in this direction, in terms of both
query specification and query evaluation.

Specifically, in Sec. 3, we develop an algebra, TIX, for
querying Text In XML, based on the notion of a scored
tree. Each operator in this algebra manipulates collections
of scored trees. By this means, we are able to fold into
a database framework the notion of relevance scoring and
ranking. Deciding the granularity of elements to be returned
to the user is a brand new challenge for IR-style XML query
evaluation. By introducing a Pick operator, TIX provides a
way of specifying how to select appropriate elements among
all the relevant ones in an XML document. In Sec. 4, we
suggest simple extensions to the XQuery[7] language that
can effectively utilize these algebraic facilities.

Having a fancy framework is of little value unless efficient
manipulation is possible. In Sec. 5 we address this issue.
The core of XML query processing is generally believed to
be the containment join, and a series of recent efforts have
studied algorithms for this purpose [25, 2, 9, 6]. In particu-
lar, the stack-based family of structural join access methods
has been shown to be superior to others. We introduce a new
access method, TermJoin, that generalizes the stack-based
family of algorithms to support the IR-style query process-
ing model. We also propose an algorithm that can efficiently
evaluate the Pick operator, as well as a PhraseFinder algo-
rithm.

In Sec. 6, we present the results obtained from running ex-
periments with the new access methods proposed. Among
other things, we show that the TermJoin access method per-
forms over 30 times better than a combination of basic access
methods.

After discussion of related work in Sec. 7, we conclude in

Sec. 8. But, first, we begin with a motivating example and
defined the problem to be addressed.

2. MOTIVATION

EXAMPLE 2.1. Consider Query 1 in Figure 2 against
the XML database in Figure 1. Such a query may be posed by
a user looking for document components relevant to “search
engine”, and preferably also related to “internet” and “in-
formation retrieval”. �

Even such a simple query is not easily transformed into
a boolean specification. Choosing “OR” to relate term-
occurrence predicates, we retrieve document components
relevant only to the two secondary terms but not to the pri-
mary term “search engine” (e.g., #a15). Choosing “AND”
we lose the relevant paragraph (#a18) talking about “search
engine”. Choosing a mixture of “AND” and “OR” may
produce better results, but it is hard to determine a suit-
able query expression that will be applicable over all possible
database instances. In short, such queries require weighting
and ranking support in the boolean query engine.

Using traditional IR-style retrieval, however, has a differ-
ent kind of problem. While it can rank atomic elements
(considered as “documents”) according to the term prefer-
ences provided by the user, it is not clear which elements
should be considered. If we choose to rank article, then the
one article in the example is returned, with little additional
information. The user will have to go through the first two,
irrelevant, chapters before finally reaching the third, rele-
vant, chapter. It is also possible this article is discarded,
since it contains much irrelevant information, whereby the
highly matched information contained in the third chapter
is lost. Neither is a desirable outcome. If we choose to
rank p elements, the three paragraphs (#a18, #a19, #20)
under the third chapter, if returned, will be returned sep-
arately. The semantic linkage among the three is broken
during the process and has to be reconstructed by the user.
Furthermore, the section #a12 within the same chapter may
be ranked quite low and discarded. The user therefore will
not know that the entire third chapter is perhaps relevant.

Traditional IR approaches typically use an inverted docu-
ment index [20] to identify documents containing the spec-
ified query terms. One alternative would be using inverted
indexes to index a term for every ancestor element it is con-
tained in, all the way up to the root. This allows the query
engine to evaluate each possible document component and
decide which one to return. However, for a term that occurs
frequently in a document, the redundancy can quickly cause
the size of the index to explode. To address this problem,
Fuhr and Großjohann have suggested [13] selecting a subset
of the document components as the root of index objects,
which are treated as “atomic” units for returning. However,
choosing the right level of atomic unit is not straightforward,
and in fact, may not be possible given a sufficiently hetero-
geneous query mix. It is important to be able to enhance IR
systems to return results at an optimum level of granular-
ity, possibly heterogeneous, the response to the same query
could include both entire articles (where all of it is judged
relevant) and specific chapters and paragraphs (that are con-
sidered relevant even if the rest of the containing article is
not).

Furthermore, IR-style XML queries don’t have to be stand-
alone. A user having a better knowledge about the structure

articles.xml:
<article>#a1

<article-title>#a2
Internet Technologies

</article-title>
<author id=‘‘first’’>#a3

<fname>Jane</fname>#a4
<sname>Doe</sname>#a5

</author>
<chapter>#a6

<ct>Caching and Replication</ct>#a7
...

</chapter>
<chapter>#a8

<ct>Streaming Video</ct>#a9
...

</chapter>
<chapter>#a10

<ct>Search and Retrieval</ct>#a11
<section>#a12

<section-title>#a13
Search Engine Basics

</section-title>
...

</section>
<section>#a14

<section-title>#a15
Information Retrieval Techniques

</section-title>
...

</section>
<section>#a16

<section-title>Examples</section-title>#a17
<p> ... Here are some IR based

search engines: ... </p>#a18
<p> ... search engine NewsInEssence

uses a new information retrieval
technology ... </p>#a19

<p> ... semantic information retrieval
techniques are also being incorporated
into some search engines ... </p>#a20

</section>
</chapter>

</article>

reviews.xml:
<review id=‘‘1’’>#r1

<title>Internet Technologies</title>#r2
<reviewer>#r3

<fname>John</fname>#r4
<sname>Doe</sname>#r5

</reviewer>
<comments> ... </comments>#r6
<rating>5</rating>#r7

</review>
<review id=‘‘2’’>#r8

<title>WWW Technologies</title>#r9
<reviewer>Anonymous</reviewer>#r10
<comments> ... </comments>#r11
<rating>3</rating>#r12

</review>

Figure 1: Example XML Database. For the conve-

nience of reference in the paper, a unique identifier is

attached to each element at the opening bracket or, in

the case of text immediately following the open bracket,

at the closing bracket. Text not relevant in the context

of example queries is shown in the form of “...”.

Query 1: simple IR-style query
Find document components in articles.xml that are

about ‘‘search engine’’. Relevance to ‘‘internet’’ and
‘‘information retrieval’’ is desirable but not necessary.

Query 2: structured IR-style query
Find document components in articles.xml that are

part of an article written by an author with last
name ‘‘Doe’’ and are about ‘‘search engine’’.
Relevance to ‘‘internet’’ and ‘‘information retrieval’’
is desirable but not necessary.

Query 3: IR-style join query
Find relevant document components in articles.xml

as specified in Query 2 above. For articles containing
such components, find reviews from reviews.xml for
articles with similar titles.

Figure 2: Example IR-style Queries.

of the XML document should be able to put some structural
constraints into the query and therefore limit the number of
uninteresting results.

EXAMPLE 2.2. Consider Query 2 in Figure 2, which is
the same as Query 1, except the additional restriction that
the search be limited to articles with an author named “Doe”.
The author-name restriction is exactly the sort of predicate
databases are so good at evaluating. �

With the availability of structural information, IR perfor-
mance can be boosted by taking this structure into account.
For instance, a query that requires determining relevance
at the article level may best be performed by integrating
evidence over various components of the article, using a
complex integration function, for instance, one that weights
some elements (such as article-title) more heavily than oth-
ers. Such weighting heuristics are already used by search
engines, but are typically hard-wired into the search engine
code. We would like to make declarative specification of
such complex IR conditions possible in a structured text
query framework.

3. ALGEBRA
XML data is commonly modeled as an ordered labeled

tree, with each node in the tree corresponding to an XML
element and each edge corresponding to an inclusion rela-
tionship. To achieve algebraic closure, a query algebra for
XML must manipulate collections of such ordered labeled
trees.

To model IR-style processing, we introduce the notion of
a scored tree and define an algebra over collections of scored
(ordered, labeled) trees. We call our algebra TIX, for query-
ing Text In XML. We have chosen the name as a play on
TAX [17], a bulk algebra for querying XML data, after which
we have modeled our algebra for querying XML text. We
illustrate how common algebra operators like Selection, Pro-
jection, and Join can be defined over scored data trees. Fi-
nally, we introduce two new operators called Threshold and
Pick, which operate specifically on scored data trees and are
central to the introduction of IR facilities into XML query
processing.

T: $1

$2

$3

$4

ad*pc

pc

$1.tag = artilcle & $2.tag = author &
$3.tag = sname & $3.content = "Doe"

$4.score = {
 ScoreFoo({"search engine"},
 {"internet", "information retrieval"}) }
$1.score = $4.score

F:

S:

Figure 3: Scored Pattern Tree for Query 2: A Struc-
tured IR-style Query. ScoreFoo is a user defined scor-

ing function takes two sets of phrases as parameters and

assign a score to the input node. It can be found in

Figure 9.

3.1 Scored Trees

Definition 1. Scored Data Tree: a scored data tree is
a rooted ordered tree, such that each node carries data in
the form of a set of attribute-value pairs, including at least
a tag (indicating the type of the node) and a real number
valued score (indicating the score of the node). The score
of the tree is the score of the root node.

The traditional (unscored) data tree can be viewed as a
scored data tree with the scores of all nodes being null. The
score of a node becomes a non-null real number after it is
matched to a node within a scored pattern tree, introduced
below, where an IR-style predicate (and therefore a scoring
function) is imposed on the node.

Definition 2. Scored Pattern Tree: a scored pattern
tree is a triple P = (T, F, S), where T = (V, E) is a node-
labeled and edge-labeled tree such that:

• each node in V has a distinct integer as its label.

• each edge is labeled pc (for parent child relationship),
ad (for ancestor descendant relationship), or ad* (for
self-or-descendant relationship).

• F is a formula of boolean combination of predicates
applicable to nodes.

• S is a set of scoring functions specifying how to calcu-
late the scores of each node (and their ancestors) being
applied with an IR-style predicate, and the scores of
each IR-style join condition match.

The scored pattern tree constrains nodes in the normal
way: the pattern imposes structural requirements on the
nodes while the formula imposes value-based constraints.
In addition, the set of scoring functions, S, defines how the
scores of some nodes (specified in S), including the root
node, should be calculated. The traditional (TAX) pattern
tree can be viewed as a scored pattern tree with an empty S.
Figure 3 shows an example scored pattern tree correspond-
ing to Query 2 in Figure 2.

Some features of the scored pattern tree are illustrated in
the example. First, the notion of the ad* relationship. We
seek articles or more specific units (sections, paragraphs) rel-
evant to our IR query. While $1 binds to an article element,
$4 binds to this unit, which could be the article bound to
by $1 or any descendant thereof. This sort of relationship

is especially common in IR-style queries against XML. Sec-
ond, the notion of IR-nodes. A scoring function is defined
for each node where an IR-style predicate (relevance find-
ing) is applied to the node and we call those nodes primary
IR-nodes. In addition, a scoring function is mandatory on
a node that has primary IR-nodes in its subtree: the in-
clusion of a primary IR-node in the subtree automatically
converts the otherwise non-IR root node into an IR-node.
This ensures that the root of the scored pattern tree will
have a scoring function unless there is no IR-node at all in
the pattern tree. On the other hand, a node without any
primary IR-node node in its subtree can become an IR-node
once a scoring function is defined for it based on the scores
of other IR-nodes. We call these two kinds of IR-nodes sec-
ondary IR-nodes. In Figure 3, $4 is a primary IR node, $1
is a secondary IR node, while $2 and $3 are not IR nodes.
To distinguish IR-nodes in the pattern tree from those in
the data tree matching the scored pattern tree, we call the
former query IR-nodes and call the latter data IR-nodes.

To keep the arithmetic simple, we have chosen a rather
simplistic weighted-sum scoring function in the example for
node $4. In reality, we would expect the scoring function to
be quite complex. For example, a tf*idf computation, taking
into consideration the element size, may be more represen-
tative of what an IR system would do. We can also specify
complex conditions. For instance, that the score of node $4

is 0 unless the term “search engine” occurs at least once,
in which case the score is calculated using the weighted-
sum function. In many IR systems, the range of a scoring
function is restricted to be [0, 1]. We could certainly do the
same, and obtain all the attendant benefits. We have chosen
a scoring function with range [0,∞) just to make the point
that any such range restrictions on the scoring functions are
not required for our algebra.

Sometime a scoring function can also be defined on an
IR-style join condition. Figure 4 shows an example. The
scoring function ScoreSim evaluates the degree of similar-
ity between two title nodes based on the number of same
words occurred in both. (Once again, a real function would
be more complex, for example, using vector space [20] co-
sine similarity). The score generated by this function is
attached to the temporary variable $joinScore and used
subsequently in calculating the score of the root node just
like scores attached to the IR-nodes.

3.2 Extension of Existing Operators
Score generating in TIX is done primarily via pattern

matching, i.e., the matching of data trees to the scored pat-
tern tree to generate scored data trees. Pattern matching is
encapsulated in various operators in TIX, which also manip-
ulate the generated score. In this section, we extend three
existing operators for incorporating score manipulation ca-
pabilities.

3.2.1 Scored Selection
The scored selection operator (σ′

P(C)) operates on scored
trees. It takes a collection of data trees as input, and a
scored pattern tree as parameters, and returns a collection
of scored data trees as output. Each scored data tree in
the output collection matches the scored pattern tree. The
score of each data IR-node is calculated using the scoring
function on their corresponding query IR-node. Figure 5
shows three representative result trees (The full collection

$1

pc pc

pc

pc

ad*

ad ad

$2

$3
$4

$5

$6

$7

$8

T:
F:
$2.tag = article &
$3.tag = article−title &
$4.tag = author &
$5.tag = sname &
$5.content = "Doe" &
$7.tag = review &
$8.title = title &

$1.tag = tix_prod_root

$2.score = $6.score

$joinScore = ScoreSim($3.content, $8.content)

$1.score = ScoreBar($joinScore, $6.score)

S:
$6.score = ScoreFoo({"search engine"},
 {"internet", "information retrieval"})

Figure 4: Scored Pattern Tree for Query 3: An IR-
style Join Query. Like ScoreFoo, ScoreSim and Score-

Bar are user defined scoring functions can be found in

Figure 9.

of the result trees contains more than the three listed) after
applying the scored pattern tree of query 2 in Figure 3 to the
example XML database. Part (c) illustrates the case when
the matching data IR-node is exactly the ancestor node in
the ad* edge.

3.2.2 Scored Projection
The scored projection operator (π′

P,PL(C)) takes a collec-
tion of data trees as input, a scored pattern tree and a pro-
jection list PL (PL specifies the nodes to be retained in the
output.) as parameters, and returns a collection of scored
data trees as output. Each tree in the output collection can
be regarded as an input tree with nodes not matching the
scored pattern tree or not being preserved in the PL being
eliminated. Figure 6 shows the result of applying the same
scored pattern tree as in the previous example to the XML
database with PL = {$1, $3, $4} (zero-score nodes are re-
moved). It is important to note that the score of a data
IR-node in a projection is calculated in two different ways
based on which kind of query IR-nodes it matches. The
scores of data IR-nodes matching those primary query IR-
nodes are calculated in the same way as in the selection
operator using the scoring function. The score of the data
IR-nodes (e.g., the root <article> element) matching sec-
ondary query IR-nodes is obtained by selecting the highest
score it can possibly achieve using the scoring function. For
example, using the scoring function $1.score = $4.score,
the root <article> node ($1) will have the same score as the
highest scored data IR-node matching $4, which happens to
be <article> itself in this case. This score changes dynami-
cally when the set of $4-matching data IR-nodes is changed,
for example, due to the pruning by Pick operator, discussed
in Sec. 3.3.2.

3.2.3 Scored Join
The product operator (C1 × C2) takes two collections of

data trees as inputs and produces an output collection of
scored trees. Each data tree in the output has a root with

article[0.8] #a1

p[0.8] #a18
author #a3

sname #a5

(a)

author #a3

sname #a5

author #a3

sname #a5

(b) (c)

article[3.6] #a1 article[5.6] #a1

section[3.6] #a16 article[5.6] #a1

Figure 5: Three Representative Result Trees of Query 2 with Selection. This figure shows three of the results

obtained by applying query 2 to the example database in Figure 1. The score of the IR-nodes are calculated using

functions defined in Figure 9 and are indicated in the square bracket.

article[5.6] #a1sname #a5

article[5.6] #a1

chapter[5.0] #a10

section[0.8] #a12 section[0.6] #a14 section[3.6] #a16

section−title[0.6] #15section−title[0.8] #a13

p[0.8] #a18 p[1.4] #a19 p[1.4] #a20

article−title[0.6] #a2

Figure 6: Result Tree of Query 2 with Projection.
This figure shows the result tree obtained by applying

query 2 to the example database with PL = {$1, $3, $4}.
The node <author> is not retained in the result since it

is not in PL. Each data node matching the query IR-

node $4 are retained and assigned a score independent

of others.

tag = tix prod root and the two children of the root cor-
respond to the root nodes of every pair of trees from the
two input collections. A scored join operator (C1 ��′ C2)
can therefore be viewed as a selection on the product of two
input collections. In the scored pattern tree applied to the
product, the predicate conditions involving nodes in both
input collections are called join conditions and can be as-
signed a scoring function just like an atomic query IR-node.
Figure 7 shows one of the results obtained from applying the
scored pattern tree of query 3 in Figure 4 to the example
XML database.

3.3 New Operators
In this section, we introduce two new operators that ma-

nipulate scored data trees in ways that are frequently re-
quired in IR-style query processing.

3.3.1 Threshold
A Threshold operator τ ′

P,TC(C) takes a collection of scored
data trees as input, a scored pattern tree P and a thresh-
old condition TC as parameters, and returns a collection of
scored trees. TC is a set of conditions (either a real number
value V or an integer K) on one or more query IR-nodes in
P. The output comprises exactly those scored data trees in
the input that satisfy:

• for each query IR-node in P and a corresponding V in

article[0.8] #a1

article−title #a2 author #a3

sname #a5

review #r1

title #r2p[0.8] #a18

tix_prod_root[2.8]

Figure 7: One Result Tree of Query 3. This figure

shows one of the many result trees obtained by applying

query 3 to the example database. The score of the root

node <tix prod root> is the sum of the similarity score

between #a2 and #r2 and the score of #a18 (See ScoreBar

function in Figure 9).

TC, and each scored data tree in the result, at least
one data IR-node matching the query IR-node in the
result data tree has a score higher than V .

• for each query IR-node in P and a corresponding K in
TC, and each scored data tree in the result, at least
one data IR-node matching the query IR-node in the
result data tree has a rank higher than K, where the
rank is obtained by sorting the data IR-nodes (among
all the input data trees) based on the score.

The Threshold operator is very similar to the selection
operator, in fact, thresholding based on V can be directly
expressed in TIX as a selection on the score attribute of the
data IR-node. Expressing K-based thresholding, however, is
more complex. It requires a grouping on the data IR-nodes
using an empty grouping basis with the ordering function
based on the score. A projection is then applied to retain the
leftmost K subtrees, which correspond to the top-K results.
The introduction of the Threshold operator simplifies the
expression of irrelevance filtering, which is necessary for an
algebra targeting information retrieval, such as TIX.

3.3.2 Pick
The Pick operator ρ′

P,PC,AD(C) is the key operator that
removes the redundancy in the returned results for an IR-
style query. It takes a collection of scored data trees as
input, a scored pattern tree and a pick-criterion PC as pa-
rameters, and returns a collection of scored trees. PC is a
set of conditions on one or more query IR-nodes such that

sname #a5

article[5.0] #a1

chapter[5.0] #a10

p[1.4] #a20
p[0.8] #a18

p[1.4] #a19section−title[0.8] #a13

Figure 8: Result of Query 2 with Projection Fol-
lowed by Pick. The user defined PC, PickFoo, is
shown in Figure 9.

any data IR-node matching a query IR-node mentioned in
PC must satisfy in order to be returned.

Pick operates on the set of data IR-nodes that correspond
to the same query IR-node in the pattern tree and selects
the nodes that satisfy the PC. Though easily mistaken as
a special projection operator, Pick is quite different from
projection in that projection only needs information local
to the node being projected (e.g., the tag name), while Pick
needs information that may reside elsewhere in the data
tree (e.g., the ancestor nodes). Figure 8 shows the result of
applying a Pick operator to the projection result in Figure 6,
where the PC condition (see function PickFoo in Figure 9)
specifies that: 1) any data IR-node with a score at least 0.8
is considered relevant; 2) for any data IR-node (starting with
the one highest in the tree hierarchy), if more than 50% of
its child nodes are relevant; 3) and its direct parent node is
not picked or it has no parent node, then the data IR-node
is picked. The last condition implies that between a parent
node and a child node, only one of them will be returned,
thus we call this parent/child redundancy elimination. A
Pick operator is usually applied after a projection operator
to further eliminate nodes that are redundant in the output
(see Sec. 5.3 for details).

EXAMPLE 3.1. Having defined all the necessary opera-
tors, it is now possible for us to see how an IR-style query
such as example query 2 can return an appropriate set of
results back to the user though a combination of these op-
erators. Given the example database in Figure 1 and the
scored pattern tree in Figure 3, the top result (#a10) can be
obtained through the following 4 steps. First, a projection
operator is applied to generate a single scored data tree as
shown in Figure 6. Second, a Pick operator is applied on
the result and generates the data tree as shown in Figure 8.
Third, a selection operator (with appropriate modifications
in the pattern tree) takes the data tree and produces a col-
lection of five trees, corresponding to the five primary data
IR-nodes. Finally, a Threshold operator selects the highest
scored result, which contains the desired <chapter>(#a10)
node. The subtree rooted at #a10 can then be retrieved from
the database and returned to the user. �

4. EXTENSION OF XQUERY
We now illustrate how IR features can be incorporated

into XQuery, the de facto XML query language. Because

define function ScoreFoo(element* $a, term* A, term* B)
return void

{
For $x in $a

For each term α in A
i += count(α, $a/alltext()) × 0.8

For each term β in B
i += count(β, $a/alltext()) × 0.6

$x/@score = i
}

define function ScoreSim(element $a, element $b)
return decimal

{
return count-same($a/text(), $b/text())

}

define function ScoreBar(score1, score2)
return decimal

{
if score2 ≥ 0.0 return score1+score2
else return 0.0

}

define function PickFoo†(element $a)
return bool

{
x = count($a/*[@score≥0.8])
if (($a.parent == NULL OR $a.parent is not Picked)

AND (x
count($a/∗) ≥ 50%))

return TRUE
else return FALSE

}

Figure 9: Example User Functions. alltext() function

returns the entire textual content of the subtree root

at the node. In the examples throughout the paper, a

simple count of term occurrences is used in ScoreFoo, in

reality, it should use more sophisticated methods involv-

ing term frequency and inverted document frequency. †
See Figure 12 for an algorithm implementing a general-

ized version of this function.

most of the ideas are discussed in the previous two sections,
here we simply use the extended XQuery language to express
the three previous example queries in Figure 10 and discuss
some issues that are specific to the extension. The various
user defined functions are shown in Figure 9.

Query 2 illustrates how a basic structured IR-style query
can be expressed in XQuery. In particular, the Score clause
assigns a score to each node bound to $a and the Pick clause
eliminates redundant nodes based on the pick criterion. The
Threshold clause restricts the output to contain nodes with
sufficiently high score or rank. In addition, the expression
descendant-or-self::* is used to represent the ad* rela-
tionship in the pattern tree. Query 3 shows how a more
complex IR-style query involving a similarity join can be
expressed in XQuery. It first generates a product of the
two input documents with the join condition being scored.
The result are then scored based on the query phrases and
pruned using the pick criterion.

5. ACCESS METHODS
We have identified in the previous sections a number of

requirements for effective information retrieval from XML
databases. In this section, we study the effective evaluation
of operators with IR-style functionality within the context
of a set-oriented, pipelined, database-style query evaluation
engine. The primary issue is how to manipulate scores – how

XQuery For Query 1 structured IR-style query
For $a in document(‘‘articles.xml’’)//article/

descendant-or-self::*
Score $a using ScoreFoo($a, {‘‘search engine’’},

{‘‘internet’’, ‘‘information retrieval’’})
Pick $a using PickFoo($a))
Return

<result>
<score>$a/@score</score>
{ $a }

</result>
Sortby(score)
Threshold $a/@score ≥ 4 stop after 5

XQuery For Query 2 structured IR-style query
For $a := document(‘‘articles.xml’’)//

article[/author/sname/text()=‘‘Doe’’]/
descendant-or-self::*

Score $a using ScoreFoo($a, {‘‘search engine’’},
{‘‘internet’’, ‘‘information retrieval’’})

Pick $a using PickFoo($a))
Return

<result>
<score>$a/@score</score>
{ $a }

</result>
Sortby(score)
Threshold $a/@score ≥ 4 stop after 5

XQuery For Query 3 IR-style join query
Let $c :=

(<root>
For $a in document(‘‘articles.xml’’)//

article[/author/sname/text()=‘‘Doe’’]
For $b in document(‘‘reviews.xml’’)//review
For $at in $a/article-title
For $bt in $b/title
Return

<tix prod root>
<simScore>

ScoreSim($at/text(),$bt/text())
</simScore>

{ $a }
{ $b }

</tix prod root>
Threshold simScore ≥ 1

<root>)
For $d := $c//tix prod root/article/descendant-or-self::*
Score $d using ScoreFoo($d, {‘‘search engine’’},

{‘‘internet’’, ‘‘information retrieval’’})
Pick $d using PickFoo($d)
For $e := $c//tix prod root[//$d]
Score $e using ScoreBar(decimal($d/@score),

decimal($e/simScore))
Return

<tix prod root>
<score>$e/@score</score>
{ $d }
{ $e/review }

</tix prod root>
Sortby(score)

Figure 10: XQuery Expression of IR-style Queries.

to generate them, how to propagate and consolidate them.
In Sec. 5.1 we present new access methods that efficiently
generate scores from scratch. In Sec. 5.2, we describe how
standard access methods can be changed slightly to use and
modify scores. Finally, in Sec. 5.3, we consider the imple-
mentation of the two new score-utilizing operators Threshold
and Pick.

5.1 Score-Generating Methods
Scores are generated early in a query evaluation plan,

upon initial data or index access. An index look-up for an
individual indexed term would at the very least return iden-
tifiers of XML elements in which this term occurs. However,
one can easily return more, such as the number of occur-
rences of the term in the XML element, possibly normalized
in some way. Such auxiliary information can readily be used
to obtain a meaningful score, such as the popular tf*idf mea-
sure. Indeed, scores in typical information retrieval systems
are generated using just this sort of a technique.

Most queries may specify more than one term for IR rel-
evance scoring. The simple score generation procedure de-
scribed above can be composed with standard TIX opera-
tors, implemented as described in Sec. 5.2. However, there
are significant opportunities to do better, by developing new
access methods for operator combinations that are likely to
occur frequently. We have identified two such access meth-
ods, TermJoin and PhraseFinder, which we describe next.

5.1.1 TermJoin
The most common IR-style predicate is term matching,

where a node is scored based on how many terms in the
query it has in the textual content of itself and its descen-
dant nodes. The straightforward implementation is to use
an inverted index to obtain a set of term-containing text
nodes for each term in the query, find all their ancestor
nodes, group nodes within each set according to node id,
then union these sets. Initial scores are generated upon
individual term index look-up; these are propagated and
modified in the subsequent operators. We can express this
operator sequence in TIX as follows:

σ′
P(C) =

n⋃

1

(γ′
i(σ

′
Pi

(C)))

where each pattern tree Pi contains only one term in the
original pattern tree P, n is the number of total terms, and
γ′

i represents a grouping operation (based on node identifier)
to generate a final score for each node.

We propose a novel access method TermJoin (shown in
Figure 11) that efficiently implements score generation based
on term matching. The algorithm is inspired by the stack-
based family of algorithms for structural join described in
[2, 6, 9]. The basic notion is to make a single “merge” pass
through lists of leaf elements, one list for each term obtained
by looking up an index, ordered by (start) position in the
database tree. For each element in this “merged list”, we
first ensure that exactly all ancestors are placed on stack,
and then note the corresponding term occurrence for each el-
ement in the stack. When an element is popped from stack,
we would have accumulated information regarding term oc-
currences at itself and all descendant elements, permitting
us to assign a score to it (using the ComputeScore() function
provided) and output.

Algorithm TermJoin (P, I, s)

stack->Push(root)
For each term t in P

get Next occurrence of t from I.
While (at least one node exists in I)

let t-min = node from I with
smallest startkey

While (t-min.startkey >
stack->Top().endkey)

popped = stack->Pop()
top = stack->Top()
For each term t in P

top->IncrementCounterBy(t,
popped->GetCounter(t))

if (!s)
top->AppendToBufferAndList(

popped->GetBufferAndList)
popped-score = ComputeScore(

popped->GetAllCounters(),
popped->GetBufferAndList())

Output popped and popped-score
let A[] = ancestors of t-min, cnt = 0
While (A[cnt] != root ||

A[cnt] != stack->Top())
stack->Push(A[cnt++])

top = stack->Top()
top->IncrementCounterBy(t-min,1)
if (!s)

top->AddToBufferAndList(t-min)
read I for next t-min

While (stack != EMPTY)
popped = stack->Pop()
top = stack->Top()
For each term t in P

top->IncrementCounterBy(t,
popped->GetCounter(t))

if (!s)
top->AppendToBufferAndList(

popped->GetBufferAndList)
popped-score = ComputeScore(

popped->GetAllCounters(),
popped->GetBufferAndList())

Output popped and popped-score

Figure 11: Algorithm TermJoin. Algorithm finds all

ancestors that are common among the terms in a query.

Terms are read from an inverted index. Each of the

ancestors is assigned a score that is computed in a simple

or or complex way. Input P is a IR-style query phrase

consisting of terms. Input I is an inverted index that

is scanned for each of the terms in P. Parameter s is a

boolean that decides which scoring mechanism to use,

simple or complex.

Complex Scoring Function. Frequently, the score assigned
to an internal (non-leaf) node may depend not just on which
query terms were present in descendants, but also what pro-
portion of the descendants are relevant. Thus, an article
may be assigned a low score if there is only one paragraph
buried in it that contains the query terms, even if all the
query terms are present, and repeated many times, within
this one paragraph. Scoring functions that require this sort
of information regarding non-matches are called complex,
as opposed to simple scoring functions we have considered
hitherto. Evaluating such functions requires keeping around
some additional information for nodes on stack. This addi-
tional work is reflected in Figure 11 through the sections of
pseudo-code under the condition if(!s).

5.1.2 PhraseFinder
Sometimes, an IR specification may be interested in a spe-

cific phrase, such as “information retrieval” in our running
example. XML elements that contain the individual terms
“information” and “retrieval” are not relevant unless they
contain the specific phrase “information retrieval”. Typi-
cally, it is not feasible to have index information for all such
phrases. As such, the standard implementation would in-
volve looking up the index for each term in the phrase sepa-
rately, performing an intersection of the element identifiers
returned, and then verifying that the phrase of interest does
indeed occur in the candidate XML elements returned by
the intersection step.

IR systems often keep information regarding location in
document for each occurrence of an indexed term, and can
use this information to advantage. Following this idea, we
developed a PhraseFinder access method that uses word off-
set information in the index to verify phrase occurrence dur-
ing the intersection phase itself. Counts of phrase occur-
rences are then used to generate appropriate score values.

5.2 Score-Modifying Methods
Access methods for standard operators can be extended

in a straightforward way to manipulate scores. We present
two examples here, and move on.

EXAMPLE 5.1. Consider the value join access method.
It takes in two sets of scored witness trees and outputs a set
of scored witness trees where each witness tree is the merging
of two input witness trees that satisfied the join condition.
Formally, we write:

A �c,w1,w2 B =

{(x, s) | x ∈ A �c B ∧ s = f(w1, sA, w2, sB)}
c is the join condition. A and B are the non-scored versions
of input sets A and B. s is a score that gets assigned to an
output tree x. The value join may also take in two weights,
w1 and w2, each corresponds to one of the two input sets
of witness trees. The function f that calculates s can be
as simple as a weighted addition of the two scores, sA and
sB associated with the two input trees that composed x. A
possible IR value join condition is a similarity condition. �

EXAMPLE 5.2. Consider the set union access method.
It takes in two sets of scored witness trees and outputs a set
of scored witness trees where each witness tree belongs to at
least one of the input sets. Formally, we write:

A ∪w1,w2 B = {(x, s) | x ∈ A ∪ B ∧ s = f(w1, sA, w2, sB)}

A and B are the non-scored versions of input sets A and
B. s is a score that gets assigned to an output tree x. The
set union may also take in two weights, w1 and w2, each
corresponds to one of the two input sets of witness trees.
The function f that calculates s can be a weighted addition
of the two scores, sA and sB associated with the input trees
that composed x. Note that sA or sB can be a zero since we
may have the input witness tree be in only one input. Also,
another modification to f may be to have it give more weight
to x that belongs to both A and B than to an x that belongs
to only one of them. �

5.3 Score-Utilizing Methods
Yet another important set of access methods are the ones

that utilize the scores. Two such examples are the ones for
evaluating Threshold and Pick. As discussed before, those
two new TIX operators differ from existing operators in
that their evaluation requires information not just local to
the current node but also query-wide. For Threshold, the
information possibly required (e.g., global ranking) can be
efficiently generated from the input itself by employing tech-
niques proposed in [8, 5]. The Pick operator poses much of
a challenge. Let’s look back to the example PC condition
introduced in Sec. 3.3.2, where a predefined relevance score
threshold (0.8) is used to determine relevance of nodes and
a qualification percentage (50%) is used to decide whether
to return the node. While it is reasonable to let the users
define the qualification percentage, it is often unrealistic to
ask the users for the exact relevance score threshold since
they have no idea of the distribution of the scores for a
given query. Auxiliary data like histogram of the number of
data IR-nodes matching a query IR-node with respect to the
score, enables the user to specify such scores more flexibly
and allows the evaluation of Pick to be done more efficiently.

Although the PC conditions can be arbitrary, most of
them will have the following properties: First, a notion of
relevance score threshold for data IR-nodes in the input
collection. Second, removing redundancy in the input tree
either along the ancestor-descendant relationship (vertical,
e.g., parent/child redundancy elimination) or along the sib-
ling relationship (horizontal, e.g., returning only the first
author of the relevant article). While the horizontal redun-
dancy can be easily dealt with, the vertical redundancy is
more difficult to remove as it potentially requires an exam-
ination of all nodes to decide about any one. We present
a novel stack-based access method in Figure 12, which eval-
uates both cases efficiently with the help of auxiliary data.
As shown in the figure, the algorithm takes an input tree
collection, a DetWorth function that decides whether the
node is worth returning based on the auxiliary data, and
a IsSameClass function that decides whether two nodes be-
long to the same return class. The PickFoo function in Fig-
ure 9 is an instance of this algorithm, where the DetWorth

function returns true if a node has more than 50% child
nodes that are relevant (score ≥ 0.8) and the IsSameClass

returns true if the two nodes are either both at the odd-
numbered level or both at even-numbered level. Applying
it to the scored tree in Figure 6, we obtain a redundancy
eliminated scored tree shown in Figure 8. In particular, the
<article>(#a1) data IR-node (not the root node) is dropped
because less than 50% of it child nodes are relevant, and
the <section>(#a16) is dropped because its parent node
<chapter>(#a10) is determined to be returned. The algo-

Algorithm Pick (T, DetWorth, IsSameClass)

Let L be the list of all leaf nodes in T
in the order of their startkey

while (L != EMPTY)
while (L->current is not a descendant of

AnsStack->Top())
n = AnsStack->Pop()
stack->Push(n)

P = stack->Top().parent
if (P != NULL and P != L->current.parent)

AnsStack->Push(P)
P = L->current.parent

stack->Push(L->current)
L->advance
while (L->current is a child of P)

stack->Push(L->current)
L->advance

if (DetWorth(P) = TRUE)
stack->Push(P)

else /* P is not worth return */
while (stack->Top() is a descendant of P)

popped = stack->Pop()
if (IsSameClass(popped,P) = FALSE)

output popped
while ((n = AnsStack->Pop()) != NULL)

stack->Push(n)
P = stack->Pop()
output P
while (stack != EMPTY)

popped = stack->Pop()
if (IsSameClass(popped,P) = TRUE)

output popped

Figure 12: Algorithm Pick. Algorithm goes through

the input scored data tree T and selectively returns

the nodes according to the provided DetWorth and

I sSameClass functions. L can be easily generated from

T in linear time. After L is empty, all nodes on the stack

are potentially worth returning and we arbitrarily decide

to output the top node.

rithm presented here is blocking until some node is deter-
mined to be not worth returning, in which case, all the nodes
in the subtree rooted at it can be outputted. This is neces-
sary because the decision of whether to return a particular
node takes into consideration not only the local properties
of the node (e.g., number of child/descendant nodes, tag
name, etc.) but also information of the nodes outside the
subtree rooted at the node (e.g., whether the parent node is
returned).

6. EXPERIMENTAL EVALUATION
We ran an extensive set of experiments to evaluate the

performance of our new access methods. Experiments were
run on a 1.8 GHz PC-compatible machine with 256 MB of
RAM running WindowsXP. The data set used is from the
INEX [11] initiative. It comprises technical articles from
IEEE Transactions marked up in XML: 18 million XML
elements with a total size of 500 MB. After loading into
our database, the total size grew to 5 GB. We ran the
experiments using an XML database system [24] that was
available to us. Each experiment was run five times. The
lowest and highest readings were ignored and the remaining
three were averaged.

There are three new access methods to evaluate: Ter-

mJoin, PhraseFinder and Pick. For the last of these, we found
no alternative against which to compare. Therefore, we per-
formed a series of experiments to evaluate it. For the lack
of space, we merely report here that the algorithm took be-
tween 0.01 to 1.03 seconds for the parent/child redundancy
elimination pick criterion and with an input size ranging
from 200 nodes to 55,000 nodes.

6.1 TermJoin Evaluation
To evaluate the TermJoin algorithm, we compared it to

two other techniques: Composite and Meet. We also im-
plemented and evaluated a variant we called Enhanced Ter-
mJoin.

Composite: In Sec. 5.1.1, we showed how to express
TermJoin in terms of standard operators. This operator ex-
pression can be evaluated directly to obtain a baseline im-
plementation that is a composite of standard operators, we
refer to this as Comp1 in the tables. As advised by re-
cent studies, pushing structural joins further down in the
evaluation plan gives good performance. Therefore, we also
implemented this technique and referred to it as Comp2 in
the tables.

Generalized Meet: Recently, [22] proposed an algo-
rithm, Meet, to find the lowest common ancestor for a given
set of elements (with term occurrences). We are interested in
all common ancestors, which are easily obtained by travers-
ing up the ancestor chain from the lowest common ancestor.
We are also interested in ancestors that contain only some
of the query terms but not all (with an appropriately lower
score, of course). These are produced as intermediate results
in the algorithm, and can be output. With these changes,
the algorithm of [22] can be adapted to compute a Term
Join. We call the resulting algorithm Generalized Meet. It
recursively obtains the ancestors of the text node contain-
ing any of the terms and output them along with the term
occurrences after grouping based on node id. The term oc-
currences are then used for calculating the score of the node.

Enhanced TermJoin: This is a slightly modified algo-
rithm from the original TermJoin. It uses an index structure
to get a parent of a given node. Along with the parent in-
formation, the number of children of this parent is returned.
In the original algorithm, a data access to the database is
performed and some navigation is needed to get the number
of children. Therefore, we expect savings when using this
index structure.

We use two different scoring functions: The simple scor-
ing function is a weighted sum of the occurrences of each
term under a given ancestor. The Complex scoring func-
tion examines the term distribution among child nodes. It
assigns higher scores to nodes where the distances between
terms are smaller. A distance between two terms is the
offset difference if they are in the same text node or mul-
tiples of node-to-node distance if they are in different text
nodes. The score is further multiplied by the ratio between
the number of non-zero scored children and the number of
total children.

6.1.1 Increasing Term Frequencies
We evaluated the TermJoin algorithm using two-term phrases

with increasing term frequencies. Table 1 shows run times
for the different techniques with varying frequencies of terms
in the phrase. For example, the first line in the table shows
run times of the different algorithms using a query with two

Approx. Generalized
term freq. Comp1 Comp2 Meet TermJoin

20 0.01 283.70 0.01 0.01
100 0.09 414.40 0.03 0.02
200 0.36 468.76 0.05 0.03
300 1.66 523.78 0.17 0.11
500 2.92 536.42 2.01 1.45

1,000 18.37 613.15 7.92 5.77
2,000 42.64 644.60 27.29 12.16
3,000 93.37 655.87 28.52 16.34
5,500 492.98 732.49 30.28 18.01
7,000 955.94 766.07 36.22 19.42
10,000 1641.63 840.53 96.68 20.55

Table 1: Performance (in seconds) of the different
techniques using a query with two index terms of
different term frequencies. The simple scoring func-
tion has been used to calculate score.

terms each occurring around 20 times in the database. We
kept selecting different pairs of terms, one for each two in
the table, with increasing term frequency until it reached
10,000. With the simple scoring function, as shown in Ta-
ble 1, TermJoin outperforms the Generalized Meet algorithm
by up to four times. And it typically outperforms Comp1
and Comp2 by 2 to 4 orders of magnitude. We did not run
Enhanced TermJoin here because it is not applicable in the
context of simple scoring function. In Table 2, we compare
TermJoin with Comp1, Comp2, Generalized Meet, and the
Enhanced TermJoin using the complex scoring function. As
expected, the run time of all algorithms increase compared
with using the simple scoring function because we are keep-
ing and maintaining more data with the ancestor in order to
calculate its complex score. We can see from Table 2 that
TermJoin still outperforms Comp1 and Comp2 by 2 to 4 or-
ders of magnitude and Generalized Meet by up to 8 times.
The Enhanced TermJoin performs better than the TermJoin
by up to 8 times because the information can be obtained
from index directly. In Table 3, we fixed the frequency of the
first term at 1,000 and varied the frequency of the second
term. We observe similar trends to those in previous tables.
It is also interesting to see that Comp1 does not scale as well
as the other techniques.

6.1.2 Increasing Phrase Size
We chose two terms of roughly the same overall occur-

rence frequency at around 1,500 and kept adding terms of
the same frequency to it. We started with a two-term query
and kept adding one term at a time until we reached seven
terms. In Table 4, we show the performance of different
techniques. This time, the TermJoin performs two times
better than Generalized Meet and up to 2 orders of magni-
tude better than Comp1 and Comp2. The Enhanced Ter-
mJoin performs better than the TermJoin by up to 4 times.
We used the complex scoring function because it is more
accurate than the simple one. The reason for this is that
the complex scoring function makes a better use of XML’s
structure to enhance the quality of the score.

6.2 PhraseFinder Evaluation
In order to evaluate the performance of the PhraseFinder,

we again compared it to a sequence of basic access methods
supported by the database engine.

Composite of Access Methods: To achieve the same

Approx. Gen. Term Enhanced
term freq. Comp1 Comp2 Meet Join TermJoin

20 0.02 285.56 0.02 0.02 0.04
100 0.10 417.89 0.10 0.06 0.08
200 0.40 474.73 0.29 0.15 0.11
300 1.68 543.28 1.05 0.59 0.21
500 3.08 547.15 4.14 2.37 0.45

1,000 18.96 622.58 14.53 7.65 1.16
2,000 43.75 675.57 56.71 24.67 4.13
3,000 94.33 688.06 83.39 27.94 6.84
5,500 519.82 742.09 319.59 28.32 10.65
7,000 1070.95 781.00 331.79 48.61 15.46
10,000 1717.91 852.35 722.88 81.60 21.93

Table 2: Performance (in seconds) of the different
techniques using a query with two index terms of dif-
ferent term frequencies. The complex scoring func-
tion has been used to calculate score.

Approx. Gen. Term Enhanced
term2 freq. Comp1 Comp2 Meet Join TermJoin

20 3.72 321.47 3.45 0.93 0.48
200 5.30 576.21 4.29 1.44 0.64

1,000 18.96 622.58 14.53 7.65 1.16
3,000 39.81 655.10 38.85 11.87 3.52
7,000 113.06 735.98 184.99 29.51 11.78

Table 3: Performance (in seconds) of the different
techniques using a query with two index terms. Fre-
quency of term1 is fixed at 1,000. The complex scor-
ing function has been used to calculate score.

result as in the PhraseFinder, we perform an index access
for each term in the phrase to get its occurrences in the
database. Then, we intersect these occurrences to obtain a
list of text nodes with at least one occurrence of each term.
Each text node subsequently goes through a filter to make
sure that the offsets of the terms in the phrase are exactly 1
apart and that they are in the same order in the text node
as they are in the phrase. We refer to this as Comp3.

Table 5 shows the performances of Comp3 and PhraseFinder
using thirteen different two-term phrases. The PhraseFinder
performs up to 9 times better than Comp3. The reason for
this is the extra work done at the filter level in the Access
Methods to check offsets especially if the result of the inter-
section is big.

7. RELATED WORK
A number of studies focusing on supporting ranked or

preference queries have been done in the relational con-
text [1, 16, 8]. In the framework proposed in [1], a prefer-
ence function is a mapping from a record (tuple) of a given
record type (relation) to a score based on user preferences
and a meta-combine function is a way of combining such
functions to compute a new score based on those original
scores. The scoring functions for the primary IR-nodes and
secondary IR-nodes in our system resemble those two func-
tions respectively. The PREFER [16] system utilizes mate-
rialized views of precomputed preference queries to compute
the current query more efficiently. The preference function,
however, is limited to the linear format, where each attribute
of the record is assigned a weight and the total score is the
sum of the scores of some weighted attributes. The MPro

of terms Gen. Term Enhanced
in query Comp1 Comp2 Meet Join TermJoin

2 20.49 638.69 22.39 8.06 2.08
3 41.91 801.82 40.99 14.13 3.88
4 53.53 1072.16 44.35 16.09 6.56
5 71.56 1342.76 58.32 23.84 9.86
6 225.60 1625.05 79.48 34.59 13.69
7 329.70 1892.78 97.58 45.44 16.60

Table 4: Performance (in seconds) of the different
techniques using queries with different number of
terms. Frequencies of each term is around 1,500.

Term1 Term2 Result Phrase-
Query freq. freq. size Comp3 Finder

1 121,076 44,930 27,991 10.15 1.33
2 121,076 79,677 462 3.04 1.06
3 107,269 146,477 1,219 5.98 2.04
4 107,269 79,677 1,212 6.36 1.49
5 98,405 146,477 877 4.30 1.98
6 121,076 146,477 1,189 5.84 2.15
7 90,482 68,801 116 5.10 1.30
8 121,076 45,988 34 3.22 1.34
9 121,076 107,269 320 4.56 1.82
10 98,405 28,044 455 3.82 1.02
11 146,477 68,801 1,372 8.75 1.74
12 121,076 68,801 249 4.12 1.52
13 98,405 107,269 17 5.84 1.65

Table 5: Performance (in seconds) of the
PhraseFinder and Composite of Access Methods us-
ing 13 different phrases each is 2 terms long.

algorithm [8] by Chang and Hwang takes a different ap-
proach and minimizes the number of expensive user-defined
predicates being evaluated. It requires the preference func-
tion to be “monotonic” and assumes that a ceiling value
of the function can be easily derived. Sideway Value Alge-
bra (SVA) [19], on the other hand, focuses on the algebraic
representation of those preference scores without worrying
about how they are generated. It keeps the preference scores
as sideway values and propagate them during the evaluation
of the algebraic operators. Our study distinguishes itself
from those previous studies by focusing on ranked queries
on the XML data model, where the queries are structured
and inherently more complex. Like SVA, we provide a theo-
retical framework for ranked queries in the form of extension
to an existing algebra. Unlike SVA, where the scores are as-
sumed to be stored in the database, we provide means of
generating them efficiently from a database with no prior
preference scores using the user specified functions.

XXL [23] and XIRQL [13] are two query languages sup-
porting ranked queries on XML data. XXL incorporates
special operators, like similar, into the query language and
uses ontological information to automatically calculate the
scores. Our system, on the other hand, enables the user to
specify scoring function by providing them with language ex-
tensions with which user-defined functions can be plugged.
XIRQL is the first to address the result duplication problem
in the IR-style structured query where element type is not
specified. They choose to return only those nodes of prede-
termined types. We decide not to impose such a limitation
and present both a default way and a user-defined way of

picking elements to be returned through a stack-based algo-
rithm. The meet operator proposed in [22] finds the lowest
common ancestor in the XML tree for all phrases given in
the query. It recursively retrieves ancestor nodes containing
individual phrases until it finds one node that contains all
the phrases. Although useful in finding the nearest concept
of multiple phrases, meet is not adequate in the context of
IR queries since it lacks the support for relevance ranking
and does not tolerate missing phrases.

Cohen [10] proposed a logic system called WHIRL where
data from heterogeneous databases can be compared and
integrated using a pure natural language based approach
without the assumption of a common domain. At the core of
WHIRL is the ability to determine the degree of similarity
between two “name constants”, which can potentially be
adopted by the scoring function for the join condition in
our system. Our work can also be applied to the field of
probabilistic data storage and querying [18, 14], where the
probability can be viewed as the equivalence of the score
and be manipulated similarly.

8. CONCLUSIONS
In this paper we have devised a bulk algebra, TIX, that

permits the integration of information-retrieval style query
processing into a traditional pipelined query evaluator for an
XML database. The major advances in TIX include (i) the
ability to manage relevance scores, including score genera-
tion, manipulation, and use; and (ii) facilities for manage-
ment of result granularity (necessitated because relevance
may be associated with nested elements at multiple granu-
larities). The algorithms TermJoin and PhraseFinder effec-
tively implement the score generation by using a stack-based
approach. Experiments show that they typically improve
the performance by 2 times to 4 orders of magnitude. Sim-
ilarly, the algorithm Pick uses a stack-based strategy to at-
tack the result granularity problem through user-specified
redundancy elimination. With the help of auxiliary data, it
is able to efficiently determine the most appropriate irredun-
dant set of results to return from among a larger set of rel-
evant but redundant elements found in the XML database.

A tantalizing vision with XML is that of (partially) struc-
tured documents being managed and queried within a data-
base. This paper describes significant steps toward making
that vision a reality.

9. REFERENCES
[1] R. Agrawal and E. L. Wimmers. A framework for

expressing and combining preferences. In SIGMOD,
2000.

[2] S. Al-Khalifa, H. V. Jagadish, N. Kouda, J. Patel,
D. Srivastava, and Y. Wu. Structural joins: A primitive
for efficient XML query pattern matching. In ICDE,
2001.

[3] D. Beech, A. Malhotra, and M. Rys. A formal data
model and algebra for XML. W3C XML Query
Working Group Note, September 1999.

[4] C. Beeri and Y. Tzaban. SAL: An algebra for
semi-structured data and XML. In ACM SIGMOD
Workshop on the Web and Databases, pages 37–42,
Philadelphia, PA, June 1999.

[5] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k
queries over web-accessible databases. In ICDE, 2002.

[6] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig
joins: Optimal XML pattern matching. In SIGMOD,
2002.

[7] D. D. Chamberlin, J. Clark, D. Florescu, J. Robie,
J. Simon, and M. Stefanescu. XQuery 1.0: An XML
query language. W3C working draft, June 2001.
http://www.w3.org/TR/xquery/.

[8] K. C.-C. Chang and S. won Hwang. Minimal probing:
Supporting expensive predicates for top-k queries. In
SIGMOD, 2002.

[9] S.-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and
C. Zaniolo. Efficient structural joins on indexed XML
documents. In VLDB, 2002.

[10] W. Cohen. Integration of heterogeneous databases
without common domains using queries based on
textual similarity. In SIGMOD, 1998.

[11] DELOS. Initiative for the evaluation of XML retrieval.
http://qmir.dcs.qmw.ac.uk/inex/.

[12] P. Fankhauser, M. Fernandez, A. Malhotra, M. Rys,
J. Simeon, and P. Wadler. The XML query algebra.
W3C Working Draft, Feburary 2001.

[13] N. Fuhr and K. Großjohann. XIRQL: A query
language for information retrieval in XML documents.
In International Conference on Information Retrieval
(SIGIR), 2001.

[14] N. Fuhr and T. Rölleke. A probabilistic relational
algebra for the integration of information retrieval and
database system. ACM Transactions on Information
Systems (TOIS), 15(1), January 1997.

[15] C. M. Hoffmann and M. J. O’Donnell.
Pattern-matching in trees. JACM, 29:68–95, 1982.

[16] V. Hristidis, N. Koudas, and Y. Papakonstantinou.
PREFER: A system for the efficient execution of
multiparametric ranked queries. In SIGMOD, 2001.

[17] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava,
and K. Thompson. TAX: A tree algebra for XML. In
International Workshop on Database Programming
Languages (DBPL), Marino, Italy, September 2001.

[18] A. Nierman and H. V. Jagadish. ProTDB:
Probabilistic data in XML. In VLDB, 2002.

[19] G. Ozsoyoglu, A. Al-Hamdani, I. S. Altingovde, S. A.
Ozel, O. Ulusoy, and Z. M. Ozsoyoglu. Sideway value
algebra for object-relational databases. In VLDB, 2002.

[20] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, New York, 1983.

[21] T. Schlieder and H. Meuss. Result ranking for
structured queries against XML documents. In DELOS
Workshop on Information Seeking, Searching and
Querying in Digital Libraries, 2000.

[22] A. Schmidt, M. Kersten, and M. Windhouwer.
Querying XML documents made easy: Nearest concept
queries. In ICDE, 2001.

[23] A. Theobald and G. Weikum. The index-based XXL
search engine for querying XML data with relevance
ranking. In EDBT, 2002.

[24] U. of Michigan. The Timber system.
http://www.eecs.umich.edu/db/timber/.

[25] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and
G. Lohman. On supporting containment queries in
relational database management systems. In SIGMOD,
2001.

