The Michigan Benchmark: Towards XML Query Performance
Diagnostics

KandaRunapongsa Jignesh M. Patel

H. V. Jagadish

Yun Chen Shurug Al-Khalifa

University of Michigan
1301 Beal Avenue; Ann Arbor, M1 48109-2122; USA

{krunapon, jignesh, jag, yunc,

Abstract

We propose a micro-benchmark for XML data
management to aid engineers in designing im-
proved XML processing engines. This bench-
mark is inherently different from application-level
benchmarks, which are designed to help users
choose between alternative products. We primar-
ily attempt to capture the rich variety of data struc-
tures and distributions possible in XML, and to
isolate their effects, without imitating any particu-
lar application. The benchmark specifies a single
data set against which carefully specified queries
can be used to evaluate system performance for
XML data with various characteristics.

We have used the benchmark to analyze the per-
formance of three database systems: two native
XML DBMS, and a commercial ORDBMS. The
benchmark reveals key strengths and weaknesses
of these systems. We find that commercial rela-
tional techniques are effective for XML query pro-
cessing in many cases, but are sensitive to query
rewriting, and require better support for efficiently
determining indirect structural containment.

1 Introduction

XML query processing has taken on considerable impor-
tance recently, and several XML databases have been con-
structed on a variety of platforms. There has naturally been
an interest in benchmarking the performance of these sys-
tems, and a number of benchmarks have been proposed [4,
5,16]. The focus of currently proposed benchmarks is to
assess the performance of a given XML database in per-
forming a variety of representative tasks. Such benchmarks
are valuable to potential users of a database system in pro-
viding an indication of the performance that the user can

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 29th VL DB Conference,
Berlin, Germany, 2003

shurug}@ecs. um ch. edu

expect on their specific application. The challenge is to de-
vise benchmarks that are sufficiently representative of the
requirements of “most” users. The TPC series of bench-
marks accomplished this, with reasonable success, for rela-
tional database systems. However, no benchmark has been
successful in the realm of ORDBMS and OODBMS which
have extensibility and user defined functions that lead to
great heterogeneity in the nature of their use. It is too soon
to say whether any of the current XML benchmarks will be
successful in this respect - we certainly hope that they will.

One aspect that current XML benchmarks do not focus
on is the performance of the basic query evaluation opera-
tions such as selections, joins, and aggregations. A “micro-
benchmark” that highlights the performance of these ba-
sic operations can be very helpful to a database devel-
oper in understanding and evaluating alternatives for im-
plementing these basic operations. A number of questions
related to performance may need to be answered: What
are the strengths and weaknesses of specific access meth-
ods? Which areas should the developer focus attention
on? What is the basis to choose between two alternative
implementations? Questions of this nature are central to
well-engineered systems. Application-level benchmarks,
by their nature, are unable to deal with these important is-
sues in detail. For relational systems, the Wisconsin bench-
mark [8] provided the database community with an invalu-
able engineering tool to assess the performance of individ-
ual operators and access methods. The work presented in
this paper is inspired by the simplicity and the effective-
ness of the Wisconsin benchmark for measuring and under-
standing the performance of relational DBMSs. The goal of
this paper is to develop a comparable benchmark for XML
DBMSs. The benchmark that we propose to achieve this
goal is called the Michigan benchmark.

A challenging issue in designing any benchmark is the
choice of the benchmark’s data set. If the data is specified
to represent a particular “real application”, it is likely to be
quite uncharacteristic for other applications with different
data characteristics. Thus, holistic benchmarks can succeed
only if they are able to find a real application with data
characteristics that are reasonably representative for a large
class of different applications.

For a micro-benchmark, the challenges are different.
The benchmark data set must be complex enough to incor-
porate data characteristics that are likely to have an impact

on the performance of query operations. However, at the
same time, the benchmark data set must be simple so that
it is not only easy to pose and understand queries against
the data set, but also easy to pinpoint the component of the
system that is performing poorly. We attempt to achieve
this balance by using a data set that has a simple schema
but carefully orchestrated structure.
The main contributions of this paper are:
e The identification of XML data characteristics that
may impact the performance of XML query process-
ing engines.

e A single heterogeneous data set against which care-
fully specified queries can be used to evaluate system
performance for XML data with various characteris-
tics.

e Insights from running this benchmark on three
database systems: a commercial native XML database
system, a native XML database system that we have
been developing at the University of Michigan, and a
commercial object-relational DBMS.

The remainder of this paper is organized as follows: In
Section 2, we discuss related work. In Section 3, we present
the rationale for the benchmark data set design. In Section
4, we describe the benchmark queries. In Section 5, we
present results from using this benchmark on three systems.
We conclude with some final remarks in Section 6.

2 Redated Work

Several proposals for generating synthetic XML data have
been proposed [1, 3]. Aboulnaga et al. [1] proposed a data
generator that accepts as many as 20 parameters to allow a
user to control the properties of the generated data. Such
a large number of parameters adds a level of complexity
that may interfere with the ease of use of a data genera-
tor. Furthermore, this data generator does not make avail-
able the schema of the data which some systems could ex-
ploit. Most recently, Barbosa et al. [3] proposed a template-
based data generator for XML, ToXgene, which can gener-
ate multiple tunable data sets. The ToXgene user can spec-
ify the distribution of different element values in these data
sets. In contrast to these previous data generators, the data
generator in this proposed benchmark produces an XML
data set designed to test different XML data characteristics
that may affect the performance of XML engines. In addi-
tion, the data generator requires only a few parameters to
vary the scalability of the data set. The schema of the data
set is also available to exploit.

Four benchmarks [4, 5, 16, 21] have been proposed for
evaluating the performance of XML data management sys-
tems . XMach-1 [4] and XMark [16] generate XML data
that models data from particular Internet applications. In
XMach-1 [4], the data is based on a web application that
consists of text documents, schema-less data, and struc-
tured data. In XMark [16], the data is based on an In-
ternet auction application that consists of relatively struc-
tured and data-oriented parts. XOQO7 [5] is an XML ver-

sion of the OO7 Benchmark [7], which is a benchmark for
OODBMSs. The OO7 schema and instances are mapped
into a Document Type Definition (DTD), and the eight
OQ7 queries are translated into three respective languages
for query processing engines: Lore [10,13], Kweelt [14],
and an ORDBMS. Recognizing that different applications
requires different benchmarks, Yao et al. [21] have recently
proposed, Xbench, which is a family of a number of differ-
ent application benchmarks.

While each of these benchmarks provides an excellent
measure of how a test system would perform against data
and queries in their targeted XML application, it is difficult
to extrapolate the results to data sets and queries that are
different from ones in the targeted domain. Although the
queries in these benchmarks are designed to test different
performance aspects of XML engines, they cannot be used
to perceive the system performance change as the XML
data characteristics change. On the other hand, we have
different queries to analyze the system performance with
respect to different XML data characteristics, such as tree
fanout and tree depth; and different query characteristics,
such as predicate selectivity.

Finally, we note that [15] presents desiderata for an
XML database benchmark, identifies key components and
operations, and enumerates ten challenges that the XML
benchmark should address. The central focus of this
work is application-level benchmarks, rather than micro-
benchmarks of the sort we propose.

3 Benchmark Data Set

In this section, we first discuss the characteristics of XML
data sets that can have a significant impact on the perfor-
mance of query operations. Then, we present the schema
and the generation algorithm for the benchmark data.

3.1 A Discussion of the Data Characteristics

In a relational paradigm, the primary data characteristics
are the selectivity of attributes (important for simple selec-
tion operations) and the join selectivity (important for join
operations). In an XML paradigm, there are several com-
plicating characteristics to consider, as discussed in Sec-
tion 3.1.1 and Section 3.1.2.

3.1.1 Depth and Fanout

Depth and fanout are two structural parameters important
to tree-structured data. The depth of the data tree can have
a significant performance impact, for instance, when com-
puting indirect containment relationships between ancestor
and descendant nodes in the tree. Similarly, the fanout of
nodes can affect the way in which the DBMS stores the
data, and answers queries that are based on selecting chil-
dren in a specific order (for example, selecting the last child
of a node).

One potential way of evaluating the impact of fanout
and depth is to generate a number of distinct data sets
with different values for each of these parameters and then

Level | Fanout Nodes | % of Nodes
1 2 1 0.0
2 2 2 0.0
3 2 4 0.0
4 2 8 0.0
5 13 16 0.0
6 13 208 0.0
7 13 2,704 0.4
8 1/13 35,152 4.8
9 2 2,704 0.4

10 2 5,408 0.7
11 2 10,816 15
12 2 21,632 3.0
13 2 43,264 6.0
14 2 86,528 11.9
15 2 | 173,056 23.8
16 - | 346,112 47.6

Figure 1: Distribution of the Nodes in the Base Data Set

run queries against each data set. The drawback of this
approach is that the large number of data sets makes the
benchmark harder to run and understand. Instead, our ap-
proach is to fold these into a single data set.

We create a base benchmark data set of a depth of 16.
Then, using a “level” attribute, we can restrict the scope of
the query to data sets of certain depth, thereby, quantify-
ing the impact of the depth of the data tree. Similarly, we
specify high (13) and low (2) fanouts at different levels of
the tree as shown in Figure 1. The fanout of 1/13 at level
8 means that every thirteenth node at this level has a single
child, and all other nodes are childless leaves. This varia-
tion in fanout is designed to permit queries that focus iso-
lating the fanout factor. For instance, the number of nodes
is the same (2,704) at levels 7 and 9. Nodes at level 7 have
a fanout of 13, whereas nodes at level 9 have a fanout of
2. A pair of queries, one against each of these two levels,
can be used to isolate the impact of fanout. In the rightmost
column of Figure 1, “% of Nodes” is the percentage of the
number of nodes at each level to the number of total nodes
in a document.

3.1.2 Data Set Granularity

To keep the benchmark simple, we choose a single large
document tree as the default data set. If it is important
to understand the effect of document granularity, one can
modify the benchmark data set to treat each node at a given
level as the root of a distinct document. One can compare
the performance of queries on this modified data set against
queries on the original data set.

A good benchmark needs to be able to scale in order
to measure the performance of databases on a variety of
platforms. In the relational model, scaling a benchmark
data set is easy - we simply increase the number of tuples.
However, with XML, there are many scaling options, such
as increasing number of nodes, depth, or fanout. We would
like to isolate the effect of the number of nodes from the
effects due to other structural changes, such as depth and
fanout. We achieve this by keeping the tree depth constant

for all scaled versions of the data set and changing the num-
ber of fanouts of nodes at only a few levels, namely levels
5-8. In the design of the benchmark data sets, we deliber-
ately keep the fanout of the bottom few levels of the tree
constant. This design implies that the percentage of nodes
in the lower levels of the tree (levels 9-16) is nearly con-
stant across all the scaled data sets. This allows us to easily
express queries that focus on a specified percentage of the
total number of nodes in the database. For example, to se-
lect approximately 1/16 of all the nodes, irrespective of the
scale factor, we use the predicate alLevel = 13.

Due to space limitation, more details regarding the scal-
ing of the benchmark data set are suppressed here. An in-
terested reader can find more details at [20].

3.2 Schemaof Benchmark Data

The construction of the benchmark data is centered around
the element type BaseType. Each BaseType element has
the following attributes:
1. aUniquel: A unique integer generated by traversing
the entire data tree in a breadth-first manner. This at-
tribute also serves as the element identifier.

aUnique2: A unique integer generated randomly.
alLevel: An integer set to store the level of the node.
aFour: An integer set to aUnique2 mod 4.

aSixteen: An integer set to aUniquel + aUnique2
mod 16. This attribute is generated using both the
unique attributes to avoid a correlation between the
value of this attribute and other derived attributes.

6. aSixtyFour: An integer set to aUnique2 mod 64.

7. aString: A string approximately 32 bytes in length.

The content of each BaseType element is a long string
that is approximately 512 bytes in length. The generation
of the element content and the string attribute aString is
described in Section 3.3.

In addition to the attributes listed above, each Base-
Type element has two sets of subelements. The first is of
type BaseType. The number of repetitions of this subele-
ment is determined by the fanout of the parent element,
as described in Figure 1. The second subelement is an
OccasionalType, and can occur either 0 or 1 time. The
presence of the OccasionalType element is determined
by the value of the attribute aSixtyFour of the parent el-
ement. A BaseType element has a nested (leaf) element
of type OccasionalType if the aSixtyFour attribute has
the value 0. An OccasionalType element has content that
is identical to the content of the parent but has only one
attribute, aRef. The OccasionalType element refers to
the BaseType node with aUniquel value equal to the par-
ent’s aUniquel—11 (the reference is achieved by assign-
ing this value to aRef attribute.) In the case where there
is no BaseType element has the parent’s aUniquel—11
value (e.g., top few nodes in the tree), the OccasionalType
element refers to the root node of the tree.

The XML Schema specification of the benchmark data
set is available at [20].

SNl A A

3.3 String Attributesand Element Content

The element content of each BaseType element is a long
string. Since this string is meant to simulate a piece of
text in a natural language, it is not appropriate to gener-
ate this string from a uniform distribution. Selecting pieces
of text from real sources, however, involves many difficul-
ties, such as how to maintain roughly constant size for each
string, how to avoid idiosyncrasies associated with the spe-
cific source, and how to generate more strings as required
for a scaled benchmark. Moreover, we would like to have
benchmark results applicable to a wide variety of languages
and domain vocabularies.

To obtain string values that have a distribution similar
to the distribution of a natural language text, we generate
these long strings synthetically, in a carefully stylized man-
ner. We begin by creating a pool of 2'6 — 1 (over sixty
thousands) * synthetic words. The words are divided into
16 buckets, with exponentially growing bucket occupancy.
Bucket 4 has 2¢—1 words. For example, the first bucket has
only one word, the second has two words, the third has four
words, and so on. Each made-up word contains informa-
tion about the bucket from which it is drawn and the word
number in the bucket. For example, “15twentynineB14”
indicates that this is the 1,529th word from the fourteenth
bucket. To keep the size of the vocabulary in the last bucket
at roughly 30,000 words, words in the last bucket are de-
rived from words in the other buckets by adding the suffix
“ing” (to get exactly 215 words in the sixteenth bucket, we
add the dummy word “oneB0ing”).

The value of the long string is generated from the tem-
plate shown in Figure 2, where “PickWord” is actually
a placeholder for a word picked from the word pool de-
scribed above. To pick a word for “PickWord”, a bucket
is chosen, with each bucket equally likely, and then a word
is picked from the chosen bucket, with each word equally
likely. Thus, we obtain a discrete Zipf distribution of pa-
rameter roughly 1. We use the Zipf distribution since it
seems to reflect word occurrence probabilities accurately in
a wide variety of situations. The value of aString attribute
is simply the first line of the long string that is stored as the
element content.

4 Benchmark Queries

In creating the data set above, we make it possible to tease
apart data with different characteristics, and to issue queries
with well-controlled yet vastly differing data access pat-
terns. We are more interested in evaluating the cost of
individual pieces of core query functionality than in eval-
uating the composite performance of queries that are of
application-level. Knowing the costs of individual basic

1Roughly twice the number of entries in the second edition of the Ox-
ford English Dictionary. However, half the words that are used in the
benchmark are “derived” words, produced by appending “ing” to the end
of a word.

Sing a song of PickWord,
A pocket full of PickWord
Four and twenty PickWord
All baked in a PickWord.

When the PickWord was opened,
The PickWord began to sing;
Wasn’t that a dainty PickWord
To set before the PickWord?

The King was in his PickWord,
Counting out his PickWord;
The Queen was in the PickWord
Eating bread and PickWord.

The maid was in the PickWord
Hanging out the PickWord,;

When down came a PickWord,
And snipped off her PickWord!

Figure 2: Generation of the String Element Content

operations, we can estimate the cost of any complex query
by just adding up relevant piecewise costs (keeping in mind
the pipelined nature of evaluation, and the changes in sizes
of intermediate results when operators are pipelined).

We find it useful to refer to simple queries as “selection
queries”, “join queries” and the like, to clearly indicate the
functionality of each query. A complex query that involves
many of these simple operations can take time that varies
monaotonically with the time required for these simple com-
ponents.

In the following subsections, we describe the benchmark
queries in detail. In these query descriptions, the types of
the nodes are assumed to be BaseType unless specified
otherwise.

4.1 Selection

Relational selection identifies the tuples that satisfy a given
predicate over its attributes. XML selection is both more
complex and more important because of the tree struc-
ture. Consider a query, against a bibliographic database,
that seeks books, published in the year 2002, by an au-
thor with name including the string “Blake”. This appar-
ently straightforward selection query involves matches in
the database to a 4-node “query pattern”, with predicates
associated with each of these four (namely book, year, au-
thor, and name). Once a match has been found for this
pattern, we may be interested in returning only the book
element, all the nodes that participated in the match, or var-
ious other possibilities. We attempt to organize the various
sources of complexity in the following.

4.1.1 Returned Structure

In a relation, once a tuple is selected, the tuple is returned.
In XML, as we saw in the example above, once an element

is selected, one may return the element, as well as some
structure related to the element, such as the sub-tree rooted
at the element. Query performance can be significantly af-
fected by how the data is stored and when the returned re-
sult is materialized.

To understand the role of returned structure in query per-
formance, we use the query, “Select all elements with aSix-
tyFour = 2.” The selectivity of this query is 1/64 (1.6%)>.

This query is run in the following cases:

e QR1. Return only the elements in question, not in-
cluding any subelements.

e QR2. Return the elements and all their immediate
children.

e QR3. Return the entire sub-tree rooted at the ele-
ments.

e QRA4. Return the elements and their selected descen-
dants with aFour = 1.

The remaining queries in the benchmark simply return
the unique identifier attributes of the selected nodes (aU-
niquel for BaseType and aRef for OccasionalType),
except when explicitly specified otherwise. This design
choice ensures that the cost of producing the final result
is a small portion of the query execution cost.

4.1.2 Simple Selection

Even XML queries involving only one element and few
predicates can show considerable diversity. We examine
the effect of this simple selection predicate in this set of
queries.

e Exact Match Attribute Value Selection
Value-based selection on a string attribute.
QS1. Low selectivity. Select nodes with aString =
“Sing a song of oneB4”. Selectivity is 0.8%.

QS2. High selectivity. Select nodes with aString =
“Sing a song of oneB1”. Selectivity is 6.3%.

Value-based selection on an integer attribute.
These following queries have almost the same selec-
tivities as the above string attribute queries.

QS3. Low selectivity. Select nodes with aLevel =
10. Selectivity is 0.7%.

QS4. High selectivity. Select nodes with alLevel =
13. Selectivity is 6.0%.

Selection on range values.
QS5. Select nodes with aSixtyFour between 5 and
8. Selectivity is 6.3%.

Selection with sorting.

QS6. Select nodes with aLevel = 13 and have the
returned nodes sorted by aSixtyFour attribute. Selec-
tivity is 6.0%.

2Detailed computation of the query selectivities can be found in [20].

Multiple-attribute selection.
QS7. Select nodes with attributes aSixteen = 1 and
aFour = 1. Selectivity is 1.6%.

e Element Name Selection
QS8. Select nodes with the element name eOcca-
sional. Selectivity is 1.6%.

e Order-based Selection
QS9. High fanout. Select the second child of every
node with aLevel = 7. Selectivity is 0.4%.

QsS10. Low fanout. Select the second child of every
node with aLevel = 9. Selectivity is 0.4%.

Since the fraction of nodes in these two queries are
the same, the performance difference between them is
likely to be on account of fanout.

e Element Content Selection
QS11. Low selectivity. Select OccasionalType
nodes that have “oneB4” in the element content. Se-
lectivity is 0.2%.

QS12. High selectivity. Select nodes that have
“oneB4” as a substring of element content. Selectivity
is 12.5%.

e String Distance Selection
QS13. Low selectivity. Select all nodes with element
content that the distance between keyword “oneB5”
and keyword “twenty” is not more than four. Selectiv-
ity is 0.8%.
QS14. High selectivity. select all nodes with element
content that the distance between keyword “oneB2”
and keyword “twenty” is not more than four. Selectiv-
ity is 6.3%.

4.1.3 Structural Selection

Selection in XML is often based on patterns. Queries
should be constructed to consider multi-node patterns of
various sorts and selectivities. ~ All queries listed in this
section return only the root of the selection pattern, unless
specified otherwise. In these queries, the selectivity of a
predicate is noted following the predicate.
e Order-Sensitive Parent-Child Selection

QS15. Local ordering. Select the second element

below each element with aFour = 1 (sel=1/4) if that

second element also has aFour = 1 (sel=1/4). Selec-

tivity is 3.1%.

QS16. Global ordering. Select the second element

with aFour = 1 (sel=1/4) below any element with

aSixtyFour = 1 (sel=1/64). This query returns at most

one element, whereas the previous query returns one

for each parent.

QS17. Reverse ordering. Among the children with
aSixteen = 1 (sel=1/16) of the parent element with
alLevel = 13 (sel=6.0%), select the last child. Selec-
tivity is 0.7%.

e Parent-Child Selection

QS18. Medium selectivity of both parent and child.
Select nodes with aLevel = 13 (sel=6.0%, approx.
1/16) that have a child with aSixteen = 3 (sel=1/16).
Selectivity is approximately 0.7%.

QS19. High selectivity of parent and low selectivity
of child. Select nodes with aLevel = 15 (sel=23.8%,
approx. 1/4) that have a child with aSixtyFour = 3
(sel=1/64). Selectivity is approximately 0.7%.

QS20. Low selectivity of parent and high selectivity
of child. Select nodes with aLevel = 11 (sel=1.5%,
approx. 1/64) that have a child with aFour = 3
(sel=1/4). Selectivity is approximately 0.7%.

Ancestor-Descendant Selection

QS21. Medium selectivity of both ancestor and de-
scendant. Select nodes with aLevel = 13 (sel=6.0%,
approx. 1/16) that have a descendant with aSixteen
= 3 (sel=1/16). Selectivity is 3.5%.

QS22. High selectivity of ancestor and low selec-
tivity of descendant. Select nodes with aLevel = 15
(sel=23.8%, approx. 1/4) that have a descendant with
aSixtyFour = 3 (sel=1/64). Selectivity is 0.7%.

QS23. Low selectivity of ancestor and high selec-
tivity of descendant. Select nodes with aLevel = 11
(sel=1.5%, approx. 1/64) that have a descendant with
aFour = 3 (sel=1/4). Selectivity is 1.5%.

Ancestor Nesting in Ancestor-Descendant Selec-
tion

In the ancestor-descendant queries above (QS21-
QS23), ancestors are never nested below other ances-
tors. To test the performance of queries when ances-
tors are recursively nested below other ancestors, we
have three other ancestor-descendant queries. These
queries are variants of QS21-QS23.

QS24. Medium selectivity of both ancestor and de-
scendant. Select nodes with aSixteen = 3 (sel=1/16)
that have a descendant with aSixteen = 5 (sel=1/16).

QS25. High selectivity of ancestor and low selec-
tivity of descendant. Select nodes with aFour = 3
(sel=1/4) that have a descendant with aSixtyFour = 3
(sel=1/64).

QS26. Low selectivity of ancestor and high selec-
tivity of descendant. Select nodes with aSixtyFour
= 9 (sel=1/64) that have a descendant with aFour = 3
(sel=1/4).

QS27. Similar to query QS26, but return both the root
node and the descendant node of the selection pattern.

Thus, the returned structure is a pair of nodes with an
inclusion relationship between them.

The overall selectivities of these queries (QS24-QS26)

cannot be the same as that of the “equivalent” unnested

queries (QS21-QS23) for two situations — first, the same
descendants can now have multiple ancestors they match,
and second, the number of candidate descendants is dif-
ferent (fewer) since the ancestor predicate can be satisfied
by nodes at any level (and will predominantly be satisfied
by nodes at levels 15 and 16, due to their large numbers).
These two effects may not necessarily cancel each other
out. We focus on the local predicate selectivities and keep
these the same for all of these queries (as well as for the
parent-child queries considered before).

o Complex Pattern Selection

Complex pattern matches are common in XML
databases, and in this section, we introduce a number
of chain and twig queries that we use in this bench-
mark. Figure 3 shows an example for these query
types. In the figure, each node represents a predi-
cate such as an element tag name predicate, or an at-
tribute value predicate, or an element content match
predicate. A structural parent-child relationship in
the query is shown by a single line, and an ancestor-
descendant relationship is represented by a double-
edged line. The chain query shown in the Figure 4(i)
finds all nodes matching condition A, such that there is
a child matching condition B, such that there is a child
matching condition C, such that there is a child match-
ing condition D. The twig query shown in the Figure
4(ii) matches all nodes that satisfy condition A, and
have a child node that satisfies condition B, and also
have a descendant node that satisfies condition C.

(i) Chain Query (ii) Twig Query

Figure 3: Samples of Chain and Twig Queries

The benchmark uses the following complex queries:

e Parent-Child Complex Pattern Selection

QS28. One chain query with three parent-child
joins with the selectivity pattern: high-low-low-
high. The query is to test the choice of join order
in evaluating a complex query. To achieve the de-
sired selectivities, we use the following predicates:
aFour=3 (sel=1/4), aSixteen=3 (sel=1/16), aSix-
teen=5 (sel=1/16) and aLevel=16 (sel=47.6%).

QS29. Onetwig query with two parent-child joins
with the selectivity pattern: low-high, low-low. Se-
lect parent nodes with aLevel = 11 (sel=1.5%) that

have a child with aFour = 3 (sel=1/4), and another
child with aSixtyFour = 3 (sel=1/64).

QS30. Onetwig query with two parent-child joins
with the selectivity pattern: high-low, high-low. Se-
lect parent nodes with aFour = 1 (sel=1/4) that have a
child with aLevel = 11 (sel=1.5%) and another child
with aSixtyFour = 3 (sel=1/64).
e Ancestor-Descendant Complex Pattern Selection

QS31-QS33. Repeat queries QS28-QS30, but using
ancestor-descendant in place of parent-child.

QS34. Onetwig query with one parent-child join
and one ancestor-descendant join. Select nodes
with aFour = 1 (sel=1/4) that have a child of nodes
with aLevel = 11 (sel=1.5%) and a descendant with
aSixtyFour = 3 (sel=1/64).
o Negated Selection

In XML, some elements are optional and some queries
test the existence of these optional elements. Negated
selection query selects elements which does not con-
tain a descendant that is an optional element.

QS35. Find all BaseType elements below where
there is no OccasionalType element.

4.2 Value-Based Join

A value-based join involves comparing values at two differ-
ent nodes that need not be related structurally. In comput-
ing the value-based joins, one would naturally expect both
nodes participating in the join to be returned. As such, the
return structure is the pair of the aUniquel attributes of
nodes joined.

QJ1. Low selectivity. Select nodes with aSixtyFour =
2 (sel=1/64) and join with themselves based on the equal-
ity of aUniquel attribute. The selectivity of this query is
approximately 1.6%.

QJ2. High selectivity. Select nodes based on aSixteen
= 2 (sel=1/16) and join with themselves based on the equal-
ity of aUniquel attribute. The selectivity of this query is
approximately 6.3%.

4.3 Pointer-Based Join

These queries specify joins using references that are speci-
fied in the DTD or XML Schema, and the implementation
of references may be optimized with logical OIDs in some
XML databases.

QJ3. Low selectivity. Select all OccasionalType
nodes that point to a node with aSixtyFour = 3 (sel=1/64).
Selectivity is 0.02%.

QJ4. High selectivity. Select all OccasionalType
nodes that point to a node with aFour = 3 (sel=1/4). Se-
lectivity is 0.4%.

Both of these pointer-based joins are semi-join queries.
The returned elements are only the eOccasional nodes,
not the nodes pointed to.

4.4 Aggregation and Update Queries

The benchmark also contains three value-based aggregate
queries, four structure-based aggregate queries, and seven
update queries, which include point update and delete, bulk
insert and delete, bulk load, bulk reconstruction, and bulk
restructuring. In the interest of space, we omit these queries
in this paper and refer an interested reader to [20].

5 TheBenchmark in Action

In this section, we present and analyze the performance
of different databases using the Michigan benchmark. We
conducted experiments using one native commercial XML
DBMS, a university native XML DBMS, and one leading
commercial ORDBMS. Due to the nature of the licensing
agreement for the commercial systems, we can not disclose
the actual names of the system, and will refer to the com-
mercial native system as CNX, and the commercial OR-
DBMS as COR.

The native XML database is Timber [12], a univer-
sity native XML DBMS system that we are developing at
the University of Michigan. Timber uses the Shore stor-
age manager [6], and implements various join algorithms,
query size estimation, and query optimization techniques
that have been developed for XML DBMSs.

COR is provided by a leading database vendor, and we
used the Hybrid inlining algorithm to map the data into
a relational schema [19]. To generate good SQL queries,
we adopted the algorithm presented in [9]. The queries in
the benchmark were converted into SQL queries (sanitized
to remove any system-specific keywords in the query lan-
guage) which can be found at [20].

The commercial native XML system provides an XPath
interface and a recently released XQuery interface. We
started by writing the benchmark queries in XQuery. How-
ever, we found that the XQuery interface was unstable and
in most cases would hang up either the server or the Java
client, or run out of memory on the machine. Unfortu-
nately, no other interface is available for posing XQueries
to this commercial system. Consequently, we reverted to
writing the queries using XPath expression, which implies
that join queries are written as nested XPath expressions,
that get evaluated using a nested-loops paradigm. In all the
cases that we could run queries using the XQuery interface,
the XPath approach was faster. Consequently, all the num-
bers reported here are written as XPath queries. The ac-
tual queries for all these systems (sanitized to remove any
system-specific keywords in the query language) are avail-
able at the website for this benchmark [20].

5.1 Experimental Platform and Methodology

All experiments were run on a single-processor 550 MHz
Pentium 111 machine with 256 MB of main memory. The
benchmark machine was running the Windows2000 and

was configured with a 20 GB IDE disk. All three systems
were configured to use a 64 MB buffer pool size.

5.1.1 System Setup

For both commercial systems, we used default settings that
the system chooses during the software installation. The
only setting that we changed for COR was to enable the
use of hash joins, as we found that query response times
generally improved with this option turned on. For COR,
after loading the data we update all statistics to provide the
optimizer with the most current statistical information.

For CNX, we tried running the queries with and without
indices. CNX permits building both structure (i.e. path
indices), and value indices. Surprisingly, we found that
indexing did not help the performance of the benchmark
queries, and in fact in most cases actually reduced the per-
formance of the queries. In very few cases, the perfor-
mance improved but by less than 20% over the non-indexed
case. The reason for the ineffectiveness of the index is that
CNX indexing can not handle the “//” operator, which is
used often in the benchmark. Furthermore, the index is not
effective on BaseType element as it is recursively nested
below other BaseType elements. In the interest of space,
we only present the queries using the non-indexed version,
and refer the interested reader to [20] for a more detailed
analysis.

5.1.2 Data Sets

For this experiment we loaded the base data set (739K
nodes and 500MB of raw data). Although we wanted to
load larger scaled up data sets, we found that in many cases
the parsers are fragile and break down with large docu-
ments. Consequently, for this study, we decided to load
another scaled down version of the data. The scaled down
data set, which we call ds0.1x, is produced by changing the
fanouts of the nodes at levels 5, 6, 7and 8 to 4, 4, 4 and 1/4
respectively. This scaled down data set is approximately
1/10th the size of the dslx data set. Note that because of
the nature of the document tree, the percentage of nodes at
the levels close to the leaves remains the same, hence the
query selectivities stay roughly constant even in this scaled
down data set.

5.1.3 Measurements

In our experiments, each query was executed five times,
and the execution times reported in this section is an aver-
age of the middle three runs. Queries were always run in
“cold” mode, so the query execution times do not include
side-effects of cached buffer pages from previous runs.

5.1.4 Benchmark Results

In our own use of the benchmark, we have found it use-
ful to produce two kinds of tables: a summary table which

presents a single number for a group of related queries, and
a detail table that shows the query execution time for each
individual query. The summary table presents a high-level
view of the performance of the benchmark queries. It con-
tains one entry for a group of related queries, and shows the
geometric mean of the response times of the queries in that
group. Figure 4 shows the summary table for the systems
we benchmarked and also indicates the sections in which
the detailed numbers are presented and analyzed. In the
figures N/A indicates that queries could not be run with the
given configuration and system software.

From Figure 4, we observe that Timber is very efficient
at processing XML structural queries. The implementation
of “traditional” relational-style queries such as value-based
joins is not highly tuned in Timber. This is primarily be-
cause Timber is a research prototype and most of the de-
velopment attention has been paid to the XML query pro-
cessing issues that are not covered by traditional relational
techniques.

COR can execute almost all queries well, except for the
ancestor-descendant relationship queries. COR performs
very well on the parent-child queries, which are evaluated
using foreign key joins.

From Figure 4, we observe that CNX is usually slower
than the other two systems. A large query overhead, of
about 2 secs, is incurred by CNX, even for very small
queries. CNX is considerably slower than Timber, and
faster than COR only on the ancestor-descendant queries.

5.2 Detailed Performance Analysis

In this section, we analyze the impact of various factors on
the performance that was observed. The details of the per-
formance of the queries on each of the systems is shown in
Figure 5. In the interest of space, we only present the de-
tailed numbers for a subset of the queries in the benchmark.
A full analysis of these systems using the entire benchmark
can be found at [20].

5.21 Returned Structure (QR1-QR4)

Examining the performance of the returned structure
queries, QR1-QR4 in Figure 5, we observe that the returned
structure has an impact on all systems. Timber performs
the worst when the whole subtree is returned (QR3). This
is surprising since Timber stores elements in depth-first or-
der, so that retrieving a sub-tree should be a fast sequen-
tial scan. It turns out that Timber uses SHORE [6] for
low level storage and memory management, and the ini-
tial implementation of the Timber data manager makes one
SHORE call per element retrieved. The poor performance
of QR3 helped Timber designers identify this implementa-
tion weakness, and to begin taking steps to address it.
COR takes more time in selecting and returning descen-
dant nodes (QR3 and QR4), than returning children nodes

Discussed Geometric Mean Response Times (seconds)
Section Query Group (Queries in Group) ds0.1x ds1x

CNX | Timber | COR CNX | Timber | COR
5.2.1 Returned structure (QR1-QR4) 2.53 0.06 | 0.27 9.40 0.37 3.87
5.2.2 Exact match attribute value Selection (QS1-QS7) 2.25 0.04 | 0.04 6.73 0.48 0.28
See [20] Element name selection (QS8) 2.12 0.01 | 0.02 5.98 0.08 0.15
See [20] Order-based selection (QS9-QS10) 2.18 0.00 | 0.06 6.25 0.05 0.61
See [20] Element content selection (QS11-QS12) 2.47 0.07 | 0.12 7.01 0.69 2.75
See [20] String distance selection (QS13-QS14) N/A 3.00 | 112 N/A 32.92 | 39.52
See [20] Order-sensitive selection (QS15-QS17) 2.28 0.02 | 0.08 6.75 0.54 0.26
523 Parent-child (P-C) selection (QS18-QS20) 2.36 0.13 | 0.04 6.89 138 | 0.34
523 Ancestor-descendant (A-D) selection (QS21-QS23) 2.68 0.14 | 214 7.74 141 | 17.92
5.2.3 Ancestor nesting in A-D selection (QS24-QS26) 2.76 0.13 | 1.16 8.02 1.39 | 12.65
See [20] P-C complex pattern selection (QS27-QS30) 3.26 0.25 | 0.03 7.31 2.56 0.50
See [20] A-D complex pattern selection (QS31-QS34) 3.64 0.27 | 2.49 10.63 2.75 | 24.74
5.2.4 Negated selection (QS35) 2.84 1.29 | 210 66.15 12.58 | 23.38
525 Value-based join (QJ1-QJ2) 359.17 1.72 | 0.05 || 2537.92 18.82 | 0.42
5.25 Pointer-based join (QJ3-QJ4) 161.80 3.15 | 0.02 || 1339.54 19.73 | 0.14

Figure 4: Benchmark Numbers for Three DBMSs. CNX - a commercial native XML DBMS, Timber - a university native
XML DBMS, and COR - a commercial ORDBMS. N/A indicates that the queries could not be run on that system.

(QR2). This is because COR exploits the indices on the pri-
mary keys and the foreign keys when it retrieves the chil-
dren nodes. On the other hand, COR needs to call recursive
SQL statements in retrieving the descendant nodes.

CNX produces results in reasonably short times. Sur-
prisingly, returning the result element itself (QR1) takes a
little more time than returning the element and its immedi-
ate children (QR2). We suspect that CNX returns the entire
subtree by default, and then will carry out post-processing
selection to return the element itself, which takes more
time. This also explains why CNX incurs more query pro-
cessing time than the other DBMSs in most queries.

5.2.2 Exact Attribute Value Selection (QS1-Q$4)

Selectivity has an impact on both Timber and COR. The re-
sponse times of the high selectivity queries (QS2 and QS4)
are more than those of the low selectivity queries (QS1 and
QS3), with the response times growing linearly with the
increasing selectivity for both systems. In both systems,
selection on short strings is as efficient as selection on inte-
gers.

Overall, CNX does not perform as well as the other two
DBMSs. It is interesting to notice that although selectiv-
ity does have some impact on CNX, it’s not as strong as
on the other two DBMSs (this is true even with indexing
in CNX [20]). Although the response times of the high se-
lectivity queries (QS2, QS4) are higher than the response
times of the low selectivity queries (QS1, QS3), the differ-
ence does not reflect a linear growth. Selection on short
strings takes a little more time than that on integers, al-
though the difference is negligible.

Discussion of the queries QS5-QS7 is omitted here, and
can be found at [20].

Structural Selection (QS18-QS35)

Figure 5 shows the performance of selected structural se-
lection queries, QS18-QS26, and QS35. In this figure, “P-
C:low-high” refers to the join between a parent with low
selectivity and a child with high selectivity, whereas, “A-
D:high-low” refers to the join between an ancestor with
high selectivity and a descendant with low selectivity.

5.2.3 Simple Containment Selection (QS18-QS26)

As seen from the results for the direct containment queries
(QS18-QS20) in Figure 5, the COR processes direct con-
tainment queries better than Timber, but Timber handles
indirect containment queries (QS21-QS26) better.

CNX underperforms as compared to the other systems
on direct containment queries (QS18-QS20). However, on
indirect containment queries (QS21-QS26), it often per-
forms better than COR. CNX only has slightly performance
on direct containment queries (QS18-QS20) than on in-
direct containment queries (QS21-QS27). Examining the
effect of query selectivities on CNX query execution (see
QS21-QS23 as an example), we notice that the execution
times are relatively immune to the query selectivities, im-
plying that the system does not effectively exploit the dif-
ferences in query selectivities in picking query plans.

In Timber, structural joins [2] are used to evaluate both
types of containment queries. Each structural join reads
both inputs (ancestor/parent and descendant/child) once
from indices. It keeps potential ancestors in a stack and
joins them with the descendants as the descendants arrive.
Therefore, the cost of the ancestor-descendant queries is
not necessarily higher than the parent-child queries. From
the performance of these queries, we can deduce that the
higher selectivity of ancestors, the greater the delay in the

Response Times (seconds)

Query | Query Description Sel.(%) ds0.1x ds1x

CNX | Timber | COR CNX | Timber | COR
QR1 Return result element 1.6 2.18 0.01 | 0.02 6.19 0.08 0.16
QR2 Return element and immediate children 1.6 1.68 0.02 | 0.31 4.83 0.27 2.59
QR3 Return entire sub-tree 1.6 3.63 0.26 | 1.09 10.17 | > 1hr | 26.09
QR4 Return element and selected descendants 1.6 2.37 0.19 | 0.97 7.14 2.44 | 20.57
Qs1 Selection on string attribute value (low sel.) 0.8 1.99 0.003 | 0.02 6.06 0.05 0.08
QSs2 Selection on string attribute value (high sel.) 6.3 2.05 0.03 | 0.06 6.21 0.34 0.63
QS3 Selection on integer attribute value (low sel.) 0.7 2.25 0.01 | 0.02 6.76 0.04 0.08
QsS4 Selection on integer attribute value (high sel.) 6.0 2.28 0.03 | 0.06 6.82 0.30 0.57
QS18 | P-C: medium-medium 0.7 2.30 0.08 | 0.02 6.73 085 | 0.25
QS19 | P-C: high-low 0.7 2.55 0.17 | 0.05 7.40 179 | 0.44
QS20 | P-C: low-high 0.7 2.23 0.17 | 0.05 6.58 173 | 034
QS21 | A-D:medium-medium 35 2.73 0.09 | 2.22 7.77 0.93 | 20.15
QS22 | A-D:high-low 0.7 2.57 0.18 | 0.94 7.40 172 | 564
QS23 | A-D:low-high 15 2.73 0.16 | 4.69 8.06 1.74 | 50.65
QS24 | Ancestor nesting in A-D:medium-medium 1.0 2.56 0.08 | 2.16 7.32 0.87 | 20.03
QS25 | Ancestor nesting in A-D:high-low 1.7 3.68 0.19 | 0.95 10.44 1.94 8.83
QS26 | Ancestor nesting in A-D:low-high 0.5 2.23 0.15 | 0.92 6.74 161 | 11.73

|| QS35 | Negated selection | 932 284] 129] 210 6615 1258 | 23.38 ||

QJ1 Value-based join (low sel.) 16 || 1875 0.69 | 0.03 || 1268.4 18.82 0.21
QJ2 Value-based join (high sel.) 6.3 || 687.9 429 | 008 || >1hr | >1hr | 0.83
QJ3 Pointer-based join (low sel.) 0.02 || 160.1 0.73 | 0.01 || 1307.6 20.08 0.05
QJ4 Pointer-based join (high sel.) 0.4 || 163.5 13.63 | 0.05 || 1354.2 19.38 0.42

Figure 5: Detailed Benchmark Numbers for Selected Queries. (See [20] for a full list)

query performance (QS19 and QS22). Although the se-
lectivities of ancestors in QS20 and QS23 are lower than
those of QS18 and QS21, QS20 and QS23 perform worse
because of the high selectivities of descendants.

COR is very efficient for processing parent-child queries
(QS18-QS20), since these translate into foreign key joins,
which the system can evaluate every efficiently using in-
dices. On the other hand, the COR has much longer re-
sponse times for the ancestor-descendant queries (QS21-
QS23). The only way to answer these queries is by using
recursive SQL statements, which are expensive to evaluate.

We also found that the performance of the ancestor-
descendant queries was very sensitive to the SQL query that
we wrote. To answer an ancestor-descendant query with
predicates on both the ancestor and descendant nodes, the
SQL query must perform the following three steps: 1) Start
by selecting the ancestor nodes, which could be performed
by using an index to quickly evaluate the ancestor pred-
icate, 2) Use a recursive SQL to find all the descendants
of the selected ancestor nodes, and 3) Finally, check if the
selected descendants match the descendant predicate spec-
ified in the query. Note that one cannot perform step 3 be-
fore step 2 since it is possible that a descendant in the result
may be below another descendant that does not match the
predicate on the descendant node in the query. Another al-
ternative is to start step 1 by selecting the descendant nodes
and following these steps to find the matching ancestors. In

10

general, it is more effective to start from the descendants if
the descendant predicate has a lower selectivity than the
ancestor predicate. However, if the ancestor predicate has
a lower selectivity, then one needs to pick the strategy that
traverses fewer number of nodes. Traversing from the de-
scendants, the number of visited nodes grows proportional
to the distance between the descendants and the ancestors.
However, traversing from the ancestors, the number of vis-
ited nodes can grow exponentially at the rate of the fanout
of the ancestors.

The effect of the number of visited nodes in COR is
clearly seen by comparing queries QS23 and QS26. Both
queries have similar selectivities on both ancestors and de-
scendants, and are evaluated by starting from the ances-
tors. However, QS23 has a much higher response time. In
QS23, starting from the ancestors, the number of visited
nodes grow significantly since the ancestors are the nodes
at level 11 — each node at this level, and its expanded non-
leaf descendant nodes, has a fanout of 2. In contrast, in
QS26, the ancestor set is the set of nodes that satisfy the
predicate aSixtyFour = 9. Since half of these ancestors are
at the leaf level, when finding the descendants, the number
of visited nodes does not grow as quickly as it did in the
case of query QS23.

One may wonder whether QS23 would perform better
if the query was coded to start from the descendants. We
found that for the dslx data set, using this option nearly

doubles the response time to 126.01 seconds. Starting from
the ancestors results in better performance since the selec-
tivity of the descendants (sel=1/4) is higher than the selec-
tivity of the ancestors (sel=1/64), which implies that the
descendent candidate list is much larger than the ancestor
candidate list. Consequently, starting from the descendants
results in visiting more number of nodes.

All systems are immune to the recursive nesting of an-
cestor nodes below other ancestor nodes; the queries on
recursively nested ancestor nodes (QS24-QS26) have the
same response times as their non-recursive counterparts
(QS21-QS23), except QS26 and QS23 that have different
response times in COR.

5.2.4 Irregular Structure (QS35)

Since some parts of an XML document may have irregu-
lar data structure, such as missing elements, queries such
as QS35 are useful when looking for such irregularities.
Query QS35 looks for all BaseType elements below which
there is no OccasionalType element.

While looking for irregular data structures, CNX per-
forms reasonably well on the small scale database, but as
one might notice, it does not scale very well like with other
queries. The selectivity of this query if fairly high (93.2%),
and as the database size increases, the return result grows
dramatically. CNX seems to spends a large part of its exe-
cution time in processing the results at the client, and this
part does not seem to scale very well.

In Timber, this operation is very fast because it uses a
variation of the structural joins used in evaluating contain-
ment queries. This join outputs ancestors that do not have
a matching descendant.

In COR, there are two ways to implement this query.
A naive way is to use a set difference operation which re-
sults in a very long response time (1517.4 seconds for the
ds1x data set). This long response time is because the COR
first needs to find a set of elements that contain the miss-
ing elements (using a recursive SQL query), and then find
elements that are not in that set. The second alternative of
implementing this query is to use a left outer join. That
is first create a view that selects all BaseType elements
have some OccasionalType descendants (this requires a
recursive SQL statement). Then compute a left-outer join
between the view and the relation that holds all BaseType
elements, selecting only those BaseType elements that are
not present in the view (this can be accomplished by check-
ing for a null value). Compared to the response time of the
first implementation (1517.4 seconds), this rewriting query
results in much less response time (23.38 seconds) as re-
ported in Figure 5.

5.25 Value-Based and Pointer-Based Joins(QJ1-QJ4)

The performance of the value-based join queries, QJ1-QJ4,
is shown in Figure 5. Both CNX and Timber show poor

11

performance on these “traditional” join queries. In Timber,
a simple, unoptimized nested loop join algorithm is used
to evaluate value-based joins. Both QJ1 and QJ2 perform
poorly because of the high overhead in retrieving attribute
values through random accesses.

COR performs well on this class of queries, which are
evaluated using foreign-key joins which are very efficiently
implemented in traditional commercial database systems.

5.3 Performance Analysison Scaling Databases

In this Section, we discuss the performance of the three sys-
tems as the data set is scaled from ds0.1x to dslx. Please
refer to Figure 4 for the performance comparisons between
these two data sets.

5.3.1 Scaling Performance on CNX

In almost all of the queries, the ratios of the response times
when using ds0.1x over ds1x are less than or around 10, ex-
cept for QS35, which consists of nested aggregate count()
function.

5.3.2 Scaling Performance on Timber

Timber scales linearly for all queries, with a response time
ratio of approximately 10, with two exceptions. Where
large return result structures have to be constructed, Tim-
ber is inefficient, and scales poorly, as discussed above in
Sec. 5.2.1. Also, the value-based join implementation is
naive, and scales poorly.

5.3.3 Scaling Performanceon COR

Once more, with two exceptions, the ratios of the response
times when using ds0.1x over dslx are approximately 10,
showing linear scale-up.

QR3 and QR4 require result XML reconstruction with
descendant access, and have response times grow about 20
times as data size increases about 10 times. Recently, Shan-
mugasundaram et al. [17, 18] have addressed this problem
as they proposed techniques for efficiently publishing and
querying XML view of relational data. However, these
techniques were not implemented in COR.

6 Conclusions

We proposed a benchmark that can be used to identify in-
dividual data characteristics and operations that may af-
fect the performance of XML query processing engines.
With careful analysis of the benchmark queries, engineers
can diagnose the strengths and weaknesses of their XML
databases. In addition, engineers can try different query
processing implementations and evaluate these alternatives
with the benchmark. Thus, this benchmark is a simple
and effective tool to help engineers improve system per-
formance.

We have used the benchmark to evaluate three XML
systems: a commercial XML system, Timber, and a com-
mercial Object-Relational DBMS. The results show that
the commercial native XML system has substantial room
for performance improvement on most of the queries. The
benchmark has already become an invaluable tool in the
development of the Timber native XML database, helping
us identify portions of the system that need performance
tuning. Consequently, on most benchmark queries Timber
outperforms the other systems. A notable exception to this
behavior is the poor performance of Timber on traditional
value-based join queries.

This benchmarking effort also shows that the ORDBMS
is sensitive to the method used to translate an XML query to
SQL. While this has been shown to be true for some XML
queries in the past [9, 18], we show that this is also true
for simple indirect containment queries, and queries that
search for irregular structures. We also demonstrate that
using recursive SQL one can evaluate any structural query
in the benchmark, however, this is much more expensive in
the ORDBMS than the implementations in Timber, which
use efficient XML structural join algorithms.

Finally, we note that the proposed benchmark meets the
key criteria for a successful domain-specific benchmark
that have been proposed in [11]. These key criteria are: rel-
evant, portable, scalable, and simple. The proposed Michi-
gan benchmark is relevant to testing the performance of
XML engines because proposed queries are the core basic
components of typical application-level operations of XML
application. Michigan benchmark is portable because it is
easy to implement the benchmark on many different sys-
tems. In fact, the data generator for this benchmark data set
is freely available for download from the Michigan bench-
mark’s web site [20]. It is scalable through the use of a
scaling parameter. It is simple since it comprises only one
data set and a set of simple queries, each designed to test a
distinct functionality.

References

[1] A. Aboulnaga and J. Naughton and C. Zhang. Generating
Synthetic Complex-structured XML Data. In WebDB, 2001.

S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. Patel, D. Srivas-
tava, and Y. Wu. Strucutral Joins: A Primitive for Efficient
XML Query Processing Pattern Matching. In ICDE, 2002.

D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons.
ToXgene:An Extensible Templated-based Data Generator
for XML. In WebDB, 2002.

T. Béhme and E. Rahm. XMach-1: A Benchmark for XML
Data Management. In BTW, 2001.

S. Bressan and G. Dobbie and Z. Lacroix and M. L. Lee and
Y. G. Li and U. Nambiar and B. Wadhwa . XOO7: Apply-
ing OO7 Benchmark to XML Query Processing Tools. In
CIKM, 2001.

M. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall,
M. McAuliffe, J. F. Naughton, D. T. Schuh, and M. H.

(2]

(3]

(4]

[5]

(6]

12

[7]
(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Solomon. Shoring up Persistent Applications. In SGMOD,
1994.

M. J. Carey and D. J. DeWitt and J. F. Naughton. The OO7
Benchmark. SGMOD Record, 22(2):12-21, 1993.

D. J. DeWitt. The Wisconsin Benchmark:Past, Present, and
Future. In The Benchmark Handbook for Database and
Transaction Systems, editor J. Gray. Morgan Kaufmann, 2nd
edition, 1993.

M. F. Fernandez, A. Morishima, and D. Suciu. Efficient
Evaluation of XML Middle-ware Queries. In SGMOD,
2001.

R. Goldman, J. McHugh, and J. Widom. From Seminstruc-
tured Data to XML:Migrating to the Lore Data Model and
Query Language. In International Workshop on the Web and
Databases, 1999.

J. Gray. Introduction. In J. Gray, editor, The Benchmark
Handbook for Database and Transaction Systems. Morgan
Kaufmann, second edition, 1993.

H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lak-
shmanan, A. Nierman, S. Paparizos, J. M. Patel, D. Srivas-
tava, Y. Wu, and C. Yu. TIMBER: A Native XML Database,
2003. To appear in VLDB Journal.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Wid
om. Lore: A Database Management System for Semistruc-
tured Data. SIGMOD Record, 26(3):54-66, September
1997.

A. Sahuguet, L. Dupont, and T. L. Nguyen. Querying XML
in the New Millennium. http://db.cis. upenn.
edu/ KN\EELT/ .

A. Schmidt and F. Wass and M. Kersten and D. Florescu and
M. J. Carey and I. Manolescu and R. Busse. Why And How
To Benchmark XML Databases. SSGMOD Record, 30(3),
September 2001.

A.R. Schmidt, F. Wass, M.L. Kersten, D. Florescu,
I. Manolescu, M.J. Carey, and R. Busse. The XML Bench-
mark Project. Technical report, CWI, Amsterdam, The
Netherlands, April 2001.

J. Shanmugasundaram, J. Keirnan, E. J. Shekita, C. Fan, and
J. Funderburk. Querying XML Views of Relational Data. In
VLDB, 2001.

J. Shanmugasundaram and E. J. Shekita and R. Barr and
M.J. Carey and B.G. Lindsay and H.Pirahesh and B. Rein-
wald. Efficiently Publishing Relational Data as XML Doc-
uments. The VLDB Journal, 10(2-3):133-154, 2001.

J. Shanmugasundaram, K. Tufte, G. He, C. Zhang,
D.DeWitt, and J.Naughton. Relational Databases for Query-
ing XML Documents: Limitations and Opportunities. In
VLDB, 1999.

The Michigan Benchmark Team. The Michigan Bench-
mark: Towards XML Query Performance Diagnostics, Feb
2003. htt p: // ww. eecs. um ch. edu/ db/ mbench.
B. B. Yao and M. Tamer Ozsu and J. Keenleyside. XBench
— A Family of Benchmarks for XML DBMSs. In VLDB
EEXTT Workshop, 2002.

