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Abstract

We propose a micro-benchmark for XML data management to aid engineers in designing improved XML
processing engines. This benchmark is inherently different from application-level benchmarks, which are de-
signed to help users choose between alternative products. We primarily attempt to capture the rich variety of
data structures and distributions possible in XML, and to isolate their effects, without imitating any particular
application. The benchmark specifies a single data set against which carefully specified queries can be used
to evaluate system performance for XML data with various characteristics.

We have used the benchmark to analyze the performance of three database systems: two native XML
DBMS, and a commercial ORDBMS. The benchmark reveals key strengths and weaknesses of these sys-
tems. We find that commercial relational techniques are effective for XML query processing in many cases,
but are sensitive to query rewriting, and require better support for efficiently determining indirect structural
containment.

1 Introduction

XML query processing has taken on considerable importance recently, and several XML databases [3,9–11,13,
25, 27] have been constructed on a variety of platforms. There has naturally been an interest in benchmarking
the performance of these systems, and a number of benchmarks have been proposed [7, 20, 22]. The focus of
currently proposed benchmarks is to assess the performance of a given XML database in performing a variety
of representative tasks. Such benchmarks are valuable to potential users of a database system in providing an
indication of the performance that the user can expect on their specific application. The challenge is to devise
benchmarks that are sufficiently representative of the requirements of “most” users. The TPC series of bench-
marks accomplished this, with reasonable success, for relational database systems. However, no benchmark has
been successful in the realm of ORDBMS and OODBMS which have extensibility and user defined functions
that lead to great heterogeneity in the nature of their use. It is too soon to say whether any of the current XML
benchmarks will be successful in this respect - we certainly hope that they will.

One aspect that current XML benchmarks do not focus on is the performance of the basic query evaluation
operations such as selections, joins, and aggregations. A “micro-benchmark” that highlights the performance
of these basic operations can be very helpful to a database developer in understanding and evaluating alterna-
tives for implementing these basic operations. A number of questions related to performance may need to be
answered: What are the strengths and weaknesses of specific access methods? Which areas should the devel-
oper focus attention on? What is the basis to choose between two alternative implementations? Questions of
this nature are central to well-engineered systems. Application-level benchmarks, by their nature, are unable
to deal with these important issues in detail. For relational systems, the Wisconsin benchmark [12] provided
the database community with an invaluable engineering tool to assess the performance of individual operators
and access methods. The work presented in this paper is inspired by the simplicity and the effectiveness of the
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Wisconsin benchmark for measuring and understanding the performance of relational DBMSs. The goal of this
paper is to develop a comparable benchmark for XML DBMSs. The benchmark that we propose to achieve this
goal is called the Michigan benchmark.

A challenging issue in designing any benchmark is the choice of the benchmark’s data set. If the data is
specified to represent a particular “real application”, it is likely to be quite uncharacteristic for other applications
with different data characteristics. Thus, holistic benchmarks can succeed only if they are able to find a real
application with data characteristics that are reasonably representative for a large class of different applications.

For a micro-benchmark, the challenges are different. The benchmark data set must be complex enough
to incorporate data characteristics that are likely to have an impact on the performance of query operations.
However, at the same time, the benchmark data set must be simple so that it is not only easy to pose and
understand queries against the data set, but also easy to pinpoint the component of the system that is performing
poorly. We attempt to achieve this balance by using a data set that has a simple schema but carefully orchestrated
structure. In addition, random number generators are used sparingly in generating the benchmark’s data set. The
Michigan benchmark uses random generators for only two attribute values, and derives all other data parameters
from these two generated values. Furthermore, as in the Wisconsin benchmark, we use appropriate attribute
names to reflect the domain and distribution of the attribute values.

When designing benchmark data sets for relational systems, the primary data characteristics that are of in-
terest are the distribution and domain of the attribute values and the cardinality of the relations. Moreover,
there may be a few additional secondary characteristics, such as clustering and tuple/attribute size. In XML
databases, besides the distribution and domain of attribute values and cardinality, there are several other charac-
teristics, such as tree fanout and tree depth, that are related to the structure of XML documents and contribute to
the rich structure of XML data. An XML benchmark must incorporate these additional features into the bench-
mark data and query set design. The Michigan benchmark achieves this by using a data set that incorporates
these characteristics without introducing unnecessary complexity into the data set generation, and by carefully
designing the benchmark queries that test the impact of these characteristics on individual query operations

The main contributions of this paper are:
� The identification of XML data characteristics that may impact the performance of XML query processing

engines.
� A single heterogeneous data set against which carefully specified queries can be used to evaluate system

performance for XML data with various characteristics.
� Insights from running this benchmark on three database systems: a commercial native XML database

system, a native XML database system that we have been developing at the University of Michigan, and
a commercial object-relational DBMS.

The remainder of this paper is organized as follows: In Section 2, we discuss related work. In Section 3, we
present the rationale for the benchmark data set design. In Section 4, we describe the benchmark queries. In
Section 5, we present results from using this benchmark on three systems. We conclude with some final remarks
in Section 6.

2 Related Work

Several proposals for generating synthetic XML data have been proposed [1, 6]. Aboulnaga et al. [1] proposed
a data generator that accepts as many as 20 parameters to allow a user to control the properties of the generated
data. Such a large number of parameters adds a level of complexity that may interfere with the ease of use
of a data generator. Furthermore, this data generator does not make available the schema of the data which
some systems could exploit. Most recently, Barbosa et al. [6] proposed a template-based data generator for
XML, ToXgene, which can generate multiple tunable data sets. The ToXgene user can specify the distribution
of different element values in these data sets. In contrast to these previous data generators, the data generator
in this proposed benchmark produces an XML data set designed to test different XML data characteristics that
may affect the performance of XML engines. In addition, the data generator requires only a few parameters to
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vary the scalability of the data set. The schema of the data set is also available to exploit.
Four benchmarks [5,7,20,22] have been proposed for evaluating the performance of XML data management

systems. XMach-1 [7] and XMark [22] generate XML data that models data from particular Internet applica-
tions. In XMach-1 [7], the data is based on a web application that consists of text documents, schema-less
data, and structured data. In XMark [22], the data is based on an Internet auction application that consists of
relatively structured and data-oriented parts. XOO7 [20] is an XML version of the OO7 Benchmark [18], which
is a benchmark for OODBMSs. The OO7 schema and instances are mapped into a Document Type Definition
(DTD), and the eight OO7 queries are translated into three respective languages for query processing engines:
Lore [15, 19], Kweelt [21], and an ORDBMS. Recognizing that different applications requires different bench-
marks, Yao et al. [5] have recently proposed, Xbench, which is a family of a number of different application
benchmarks.

While each of these benchmarks provides an excellent measure of how a test system would perform against
data and queries in their targeted XML application, it is difficult to extrapolate the results to data sets and queries
that are different from ones in the targeted domain. Although the queries in these benchmarks are designed to
test different performance aspects of XML engines, they cannot be used to perceive the system performance
change as the XML data characteristics change. On the other hand, we have different queries to analyze the
system performance with respect to different XML data characteristics, such as tree fanout and tree depth; and
different query characteristics, such as predicate selectivity.

Finally, we note that [2] presents desiderata for an XML database benchmark, identifies key components and
operations, and enumerates ten challenges that the XML benchmark should address. The central focus of this
work is application-level benchmarks, rather than micro-benchmarks of the sort we propose.

3 Benchmark Data Set

In this section, we first discuss the characteristics of XML data sets that can have a significant impact on the
performance of query operations. Then, we present the schema and the generation algorithm for the benchmark
data.

3.1 A Discussion of the Data Characteristics

In a relational paradigm, the primary data characteristics are the selectivity of attributes (important for simple
selection operations) and the join selectivity (important for join operations). In an XML paradigm, there are
several complicating characteristics to consider, as discussed in Section 3.1.1 and Section 3.1.2.

3.1.1 Depth and Fanout

Depth and fanout are two structural parameters important to tree-structured data. The depth of the data tree can
have a significant performance impact, for instance, when computing indirect containment relationships between
ancestor and descendant nodes in the tree. Similarly, the fanout of nodes can affect the way in which the DBMS
stores the data, and answers queries that are based on selecting children in a specific order (for example, selecting
the last child of a node).

One potential way of evaluating the impact of fanout and depth is to generate a number of distinct data sets
with different values for each of these parameters and then run queries against each data set. The drawback of
this approach is that the large number of data sets makes the benchmark harder to run and understand. Instead,
our approach is to fold these into a single data set.

We create a base benchmark data set of a depth of 16. Then, using a “level” attribute, we can restrict the
scope of the query to data sets of certain depth, thereby, quantifying the impact of the depth of the data tree.
Similarly, we specify high (13) and low (2) fanouts at different levels of the tree as shown in Figure 1. The
fanout of 1/13 at level 8 means that every thirteenth node at this level has a single child, and all other nodes are
childless leaves. This variation in fanout is designed to permit queries that focus isolating the fanout factor. For
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Level Fanout Nodes % of Nodes
1 2 1 0.0
2 2 2 0.0
3 2 4 0.0
4 2 8 0.0
5 13 16 0.0
6 13 208 0.0
7 13 2,704 0.4
8 1/13 35,152 4.8
9 2 2,704 0.4

10 2 5,408 0.7
11 2 10,816 1.5
12 2 21,632 3.0
13 2 43,264 6.0
14 2 86,528 11.9
15 2 173,056 23.8
16 – 346,112 47.6

Figure 1: Distribution of the Nodes in the Base Data Set

instance, the number of nodes is the same (2,704) at levels 7 and 9. Nodes at level 7 have a fanout of 13, whereas
nodes at level 9 have a fanout of 2. A pair of queries, one against each of these two levels, can be used to isolate
the impact of fanout. In the rightmost column of Figure 1, “% of Nodes” is the percentage of the number of
nodes at each level to the number of total nodes in a document.

3.1.2 Data Set Granularity

To keep the benchmark simple, we choose a single large document tree as the default data set. If it is important
to understand the effect of document granularity, one can modify the benchmark data set to treat each node at
a given level as the root of a distinct document. One can compare the performance of queries on this modified
data set against queries on the original data set.

3.1.3 Scaling

A good benchmark needs to be able to scale in order to measure the performance of databases on a variety of
platforms. In the relational model, scaling a benchmark data set is easy – we simply increase the number of
tuples. However, with XML, there are many scaling options, such as increasing number of nodes, depths, or
fanouts. We would like to isolate the effect of the number of nodes from effects due to other structural changes,
such as depth and fanout. We achieve this by keeping the tree depth constant for all scaled versions of the data
set and changing the numbers of fanouts of nodes at only a few levels, namely levels 5-8. In the design of the
benchmark data set, we deliberately keep the fanout of the bottom few levels of the tree constant. This design
implies that the percentage of nodes in the lower levels of the tree (levels 9–16) is nearly constant across all
the data sets. This allows us to easily express queries that focus on a specified percentage of the total number
of nodes in the database. For example, to select approximately 1/16. of all the nodes, irrespective of the scale
factor, we use the predicate aLevel = 13.

We propose to scale the Michigan benchmark in discrete steps. The default data set, called DSx1, has 728K
nodes, arranged in a tree of a depth of 16 and a fanout of 2 for all levels except levels 5, 6, 7 and 8, which have
fanouts of 13, 13, 13, 1/13 respectively. From this data set we generate two additional “scaled-up” data sets,
called DSx10 and DSx100 such that the numbers of nodes in these data sets are approximated 10 and 100 times
the number of nodes in the base data set, respectively. We achieve this scaling factor by varying the fanout of
the nodes at levels 5-8. For the data set DSx10 levels 5–7 have a fanout of 39, whereas level 8 has a fanout of
1/39. For the data set DSx100 levels 5–7 have a fanout of 111, whereas level 8 has a fanout of 1/111. The total
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number of nodes in the data sets DSx10 and DSx100 is 7,180K and 72,351K respectively 1.

3.2 Schema of Benchmark Data

The construction of the benchmark data is centered around the element type BaseType. Each BaseType
element has the following attributes:

1. aUnique1: A unique integer generated by traversing the entire data tree in a breadth-first manner. This
attribute also serves as the element identifier.

2. aUnique2: A unique integer generated randomly.

3. aLevel: An integer set to store the level of the node.

4. aFour: An integer set to aUnique2 mod 4.

5. aSixteen: An integer set to aUnique1 + aUnique2 mod 16. This attribute is generated using both the
unique attributes to avoid a correlation between the value of this attribute and other derived attributes.

6. aSixtyFour: An integer set to aUnique2 mod 64.

7. aString: A string approximately 32 bytes in length.
The content of each BaseType element is a long string that is approximately 512 bytes in length. The

generation of the element content and the string attribute aString is described in Section 3.3.
In addition to the attributes listed above, each BaseType element has two sets of subelements. The first is of

type BaseType. The number of repetitions of this subelement is determined by the fanout of the parent element,
as described in Figure 1. The second subelement is an OccasionalType, and can occur either 0 or 1 time. The
presence of the OccasionalType element is determined by the value of the attribute aSixtyFour of the parent
element. A BaseType element has a nested (leaf) element of type OccasionalType if the aSixtyFour attribute
has the value 0. An OccasionalType element has content that is identical to the content of the parent but has
only one attribute, aRef. The OccasionalType element refers to the BaseType node with aUnique1 value
equal to the parent’s aUnique1 � ���

(the reference is achieved by assigning this value to aRef attribute.) In the
case where there is no BaseType element has the parent’s aUnique1 � ���

value (e.g., top few nodes in the tree),
the OccasionalType element refers to the root node of the tree.

The XML Schema specification of the benchmark data set is shown in Figure 2.

3.3 String Attributes and Element Content

The element content of each BaseType element is a long string. Since this string is meant to simulate a piece
of text in a natural language, it is not appropriate to generate this string from a uniform distribution. Selecting
pieces of text from real sources, however, involves many difficulties, such as how to maintain roughly constant
size for each string, how to avoid idiosyncrasies associated with the specific source, and how to generate more
strings as required for a scaled benchmark. Moreover, we would like to have benchmark results applicable to a
wide variety of languages and domain vocabularies.

To obtain string values that have a distribution similar to the distribution of a natural language text, we
generate these long strings synthetically, in a carefully stylized manner. We begin by creating a pool of �

���
� �

(over sixty thousands) 2 synthetic words. The words are divided into 16 buckets, with exponentially growing
bucket occupancy. Bucket � has �	��


�
words. For example, the first bucket has only one word, the second has

two words, the third has four words, and so on. Each made-up word contains information about the bucket from
which it is drawn and the word number in the bucket. For example, “15twentynineB14” indicates that this is the
1,529th word from the fourteenth bucket. To keep the size of the vocabulary in the last bucket at roughly 30,000
words, words in the last bucket are derived from words in the other buckets by adding the suffix “ing” (to get
exactly �

���
words in the sixteenth bucket, we add the dummy word “oneB0ing”).

1this translates into a scale factor of 9.9x and 99.4x.
2Roughly twice the number of entries in the second edition of the Oxford English Dictionary. However, half the words that are used

in the benchmark are “derived” words, produced by appending “ing” to the end of a word.
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� ?xml version=“1.0”? �
� xsd:schema

xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
targetNamespace=“http://www.eecs.umich.edu/db/mbench/bm.xsd”
xmlns=“http://www.eecs.umich.edu/db/mbench/bm.xsd”
elementFormDefault=“qualified” �

� xsd:element name=“eNest” type=“BaseType” �
� xsd:complexType name=“BaseType” mixed=“true” �
� xsd:sequence �

� xsd:element name=“eNest” type=“BaseType” minOccurs=“0” maxOccurs=“unbounded” �
� xsd:key name=“aU1PK” �

� xsd:selector xpath=“.//eNest”/ �
� xsd:field xpath=“@aUnique1”/ �

� /xsd:key �
� xsd:unique name=“aU2” �

� xsd:selector xpath=“.//eNest”/ �
� xsd:field xpath=“@aUnique2”/ �

� /xsd:unique �
� /xsd:element �
� xsd:element name=“eOccasional” type=“OccasionalType” minOccurs=“0” �

� xsd:keyref name=“aU1FK” refer=“aU1PK” �
� xsd:selector xpath=“.”/ �
� xsd:field xpath=“@aRef”/ �

� /xsd:keyref �
� /xsd:element �

� /xsd:sequence �
� xsd:attributeGroup ref=“BaseTypeAttrs”/ �
� /xsd:complexType �
� xsd:complexType name=“OccasionalType” �

� xsd:simpleContent �
� xsd:extension base=“xsd:string” �

� xsd:attribute name=“aRef” type=“xsd:integer” use=“required”/ �
� /xsd:extension �

� /xsd:simpleContent �
� /xsd:complexType �
� xsd:attributeGroup name=“BaseTypeAttrs” �

� xsd:attribute name=“aUnique1” type=“xsd:integer” use=“required”/ �
� xsd:attribute name=“aUnique2” type=“xsd:integer” use=“required”/ �
� xsd:attribute name=“aLevel” type=“xsd:integer” use=“required”/ �
� xsd:attribute name=“aFour” type=“xsd:integer” use=“required”/ �
� xsd:attribute name=“aSixteen” type=“xsd:integer” use=“required”/ �
� xsd:attribute name=“aSixtyFour” type=“xsd:integer” use=“required”/ �
� xsd:attribute name=“aString” type=“xsd:string” use=“required”/ �

� /xsd:attributeGroup �
� /xsd:schema �

Figure 2: Benchmark Specification in XML Schema
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The value of the long string is generated from the template shown in Figure 3, where “PickWord” is actually
a placeholder for a word picked from the word pool described above. To pick a word for “PickWord”, a bucket
is chosen, with each bucket equally likely, and then a word is picked from the chosen bucket, with each word
equally likely. Thus, we obtain a discrete Zipf distribution of parameter roughly 1. We use the Zipf distribution
since it seems to reflect word occurrence probabilities accurately in a wide variety of situations. The value of
aString attribute is simply the first line of the long string that is stored as the element content.

Sing a song of PickWord,
A pocket full of PickWord
Four and twenty PickWord
All baked in a PickWord.

When the PickWord was opened,
The PickWord began to sing;
Wasn’t that a dainty PickWord
To set before the PickWord?

The King was in his PickWord,
Counting out his PickWord;
The Queen was in the PickWord
Eating bread and PickWord.

The maid was in the PickWord
Hanging out the PickWord;
When down came a PickWord,
And snipped off her PickWord!

Figure 3: Generation of the String Element Content

Through the above procedures, we now have the data set that has the structure that facilitates the study of the
impact of data characteristics on system performance, and the element/attribute content that simulates a piece of
text in a natural language.

4 Benchmark Queries

In creating the data set above, we make it possible to tease apart data with different characteristics, and to issue
queries with well-controlled yet vastly differing data access patterns. We are more interested in evaluating the
cost of individual pieces of core query functionality than in evaluating the composite performance of queries
that are of application-level. Knowing the costs of individual basic operations, we can estimate the cost of any
complex query by just adding up relevant piecewise costs (keeping in mind the pipelined nature of evaluation,
and the changes in sizes of intermediate results when operators are pipelined).

We find it useful to refer to simple queries as “selection queries”, “join queries” and the like, to clearly
indicate the functionality of each query. A complex query that involves many of these simple operations can
take time that varies monotonically with the time required for these simple components.

In the following subsections, we describe the benchmark queries in detail. In these query descriptions, the
types of the nodes are assumed to be BaseType unless specified otherwise.

4.1 Selection

Relational selection identifies the tuples that satisfy a given predicate over its attributes. XML selection is both
more complex and more important because of the tree structure. Consider a query, against a bibliographic
database, that seeks books, published in the year 2002, by an author with name including the string “Blake”.
This apparently straightforward selection query involves matches in the database to a 4-node “query pattern”,
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with predicates associated with each of these four (namely book, year, author, and name). Once a match
has been found for this pattern, we may be interested in returning only the book element, all the nodes that
participated in the match, or various other possibilities. We attempt to organize the various sources of complexity
in the following.

4.1.1 Returned Structure

In a relation, once a tuple is selected, the tuple is returned. In XML, as we saw in the example above, once an
element is selected, one may return the element, as well as some structure related to the element, such as the
sub-tree rooted at the element. Query performance can be significantly affected by how the data is stored and
when the returned result is materialized.

To understand the role of returned structure in query performance, we use the query, “Select all elements
with aSixtyFour = 2.” The selectivity of this query is 1/64 (1.6%)3

� QR1. Return only the elements in question, not including any subelements.
� QR2. Return the elements and all their immediate children.
� QR3. Return the entire sub-tree rooted at the elements.
� QR4. Return the elements and their selected descendants with aFour = 1.

The remaining queries in the benchmark simply return the unique identifier attributes of the selected nodes
(aUnique1 for BaseType and aRef for OccasionalType), except when explicitly specified otherwise. This
design choice ensures that the cost of producing the final result is a small portion of the query execution cost.

4.1.2 Simple Selection

Even XML queries involving only one element and few predicates can show considerable diversity. We examine
the effect of this simple selection predicate in this set of queries.

� Exact Match Attribute Value Selection
Value-based selection on a string attribute.
QS1. Low selectivity. Select nodes with aString = “Sing a song of oneB4”. Selectivity is 0.8%.

QS2. High selectivity. Select nodes with aString = “Sing a song of oneB1”. Selectivity is 6.3%.

Value-based selection on an integer attribute.
These following queries have almost the same selectivities as the above string attribute queries.
QS3. Low selectivity. Select nodes with aLevel = 10. Selectivity is 0.7%.

QS4. High selectivity. Select nodes with aLevel = 13. Selectivity is 6.0%.

Selection on range values.
QS5. Select nodes with aSixtyFour between 5 and 8. Selectivity is 6.3%.

Selection with sorting.
QS6. Select nodes with aLevel = 13 and have the returned nodes sorted by aSixtyFour attribute. Selec-
tivity is 6.0%.

Multiple-attribute selection.
QS7. Select nodes with attributes aSixteen = 1 and aFour = 1. Selectivity is 1.6%.

� Element Name Selection
QS8. Select nodes with the element name eOccasional. Selectivity is 1.6%.

� Order-based Selection
QS9. High fanout. Select the second child of every node with aLevel = 7. Selectivity is 0.4%.

QS10. Low fanout. Select the second child of every node with aLevel = 9. Selectivity is 0.4%.

3Detailed computation of the query selectivities can be found in Appendix A.
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Since the fraction of nodes in these two queries are the same, the performance difference between them is
likely to be on account of fanout.

� Element Content Selection
QS11. Low selectivity. Select OccasionalType nodes that have “oneB4” in the element content. Selec-
tivity is 0.2%.

QS12. High selectivity. Select nodes that have “oneB4” as a substring of element content. Selectivity is
12.5%.

� String Distance Selection
QS13. Low selectivity. Select all nodes with element content that the distance between keyword “oneB5”
and keyword “twenty” is not more than four. Selectivity is 0.8%.

QS14. High selectivity. select all nodes with element content that the distance between keyword “oneB2”
and keyword “twenty” is not more than four. Selectivity is 6.3%.

4.1.3 Structural Selection

Selection in XML is often based on patterns. Queries should be constructed to consider multi-node patterns of
various sorts and selectivities. These patterns often have “conditional selectivity.” Consider a simple two node
selection pattern. Given that one of the nodes has been identified, the selectivity of the second node in the pattern
can differ from its selectivity in the database as a whole. Similar dependencies between different attributes in
a relation could exist, thereby affecting the selectivity of a multi-attribute predicate. Conditional selectivity is
complicated in XML because different attributes may not be in the same element, but rather in different elements
that are structurally related.

All queries listed in this section return only the root of the selection pattern, unless specified otherwise. In
these queries, the selectivity of a predicate is noted following the predicate.

� Order-Sensitive Parent-Child Selection
QS15. Local ordering. Select the second element below each element with aFour = 1 (sel=1/4) if that
second element also has aFour = 1 (sel=1/4). Selectivity is 3.1%.

QS16. Global ordering. Select the second element with aFour = 1 (sel=1/4) below any element with
aSixtyFour = 1 (sel=1/64). This query returns at most one element, whereas the previous query returns
one for each parent.

QS17. Reverse ordering. Among the children with aSixteen = 1 (sel=1/16) of the parent element with
aLevel = 13 (sel=6.0%), select the last child. Selectivity is 0.7%.

� Parent-Child Selection
QS18. Medium selectivity of both parent and child. Select nodes with aLevel = 13 (sel=6.0%, approx.
1/16) that have a child with aSixteen = 3 (sel=1/16). Selectivity is approximately 0.7%.

QS19. High selectivity of parent and low selectivity of child. Select nodes with aLevel = 15 (sel=23.8%,
approx. 1/4) that have a child with aSixtyFour = 3 (sel=1/64). Selectivity is approximately 0.7%.

QS20. Low selectivity of parent and high selectivity of child. Select nodes with aLevel = 11 (sel=1.5%,
approx. 1/64) that have a child with aFour = 3 (sel=1/4). Selectivity is approximately 0.7%.

� Ancestor-Descendant Selection
QS21. Medium selectivity of both ancestor and descendant. Select nodes with aLevel = 13 (sel=6.0%,
approx. 1/16) that have a descendant with aSixteen = 3 (sel=1/16). Selectivity is 3.5%.

QS22. High selectivity of ancestor and low selectivity of descendant. Select nodes with aLevel = 15
(sel=23.8%, approx. 1/4) that have a descendant with aSixtyFour = 3 (sel=1/64). Selectivity is 0.7%.

QS23. Low selectivity of ancestor and high selectivity of descendant. Select nodes with aLevel = 11
(sel=1.5%, approx. 1/64) that have a descendant with aFour = 3 (sel=1/4). Selectivity is 1.5%.
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� Ancestor Nesting in Ancestor-Descendant Selection
In the ancestor-descendant queries above (QS21-QS23), ancestors are never nested below other ancestors.
To test the performance of queries when ancestors are recursively nested below other ancestors, we have
three other ancestor-descendant queries. These queries are variants of QS21-QS23.

QS24. Medium selectivity of both ancestor and descendant. Select nodes with aSixteen = 3 (sel=1/16)
that have a descendant with aSixteen = 5 (sel=1/16).

QS25. High selectivity of ancestor and low selectivity of descendant. Select nodes with aFour = 3
(sel=1/4) that have a descendant with aSixtyFour = 3 (sel=1/64).

QS26. Low selectivity of ancestor and high selectivity of descendant. Select nodes with aSixtyFour =
9 (sel=1/64) that have a descendant with aFour = 3 (sel=1/4).

QS27. Similar to query QS26, but return both the root node and the descendant node of the selection
pattern. Thus, the returned structure is a pair of nodes with an inclusion relationship between them.

The overall selectivities of these queries (QS24-QS26) cannot be the same as that of the “equivalent”
unnested queries (QS21-QS23) for two situations – first, the same descendants can now have multiple ancestors
they match, and second, the number of candidate descendants is different (fewer) since the ancestor predicate
can be satisfied by nodes at any level (and will predominantly be satisfied by nodes at levels 15 and 16, due
to their large numbers). These two effects may not necessarily cancel each other out. We focus on the local
predicate selectivities and keep these the same for all of these queries (as well as for the parent-child queries
considered before).

� Complex Pattern Selection
Complex pattern matches are common in XML databases, and in this section, we introduce a number of
chain and twig queries that we use in this benchmark. Figure 4 shows an example for these query types.
In the figure, each node represents a predicate such as an element tag name predicate, or an attribute value
predicate, or an element content match predicate. A structural parent-child relationship in the query is
shown by a single line, and an ancestor-descendant relationship is represented by a double-edged line.
The chain query shown in the Figure 4(i) finds all nodes matching condition A, such that there is a child
matching condition B, such that there is a child matching condition C, such that there is a child matching
condition D. The twig query shown in the Figure 4(ii) matches all nodes that satisfy condition A, and have
a child node that satisfies condition B, and also have a descendant node that satisfies condition C.

(i) Chain Query (ii) Twig Query

A

B C

A

B

C

D

Figure 4: Samples of Chain and Twig Queries

The benchmark uses the following complex queries:
� Parent-Child Complex Pattern Selection

QS28. One chain query with three parent-child joins with the selectivity pattern: high-low-low-
high. The query is to test the choice of join order in evaluating a complex query. To achieve the desired
selectivities, we use the following predicates: aFour=3 (sel=1/4), aSixteen=3 (sel=1/16), aSixteen=5
(sel=1/16) and aLevel=16 (sel=47.6%).

QS29. One twig query with two parent-child joins with the selectivity pattern: low-high, low-low.
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Select parent nodes with aLevel = 11 (sel=1.5%) that have a child with aFour = 3 (sel=1/4), and another
child with aSixtyFour = 3 (sel=1/64).

QS30. One twig query with two parent-child joins with the selectivity pattern: high-low, high-low.
Select parent nodes with aFour = 1 (sel=1/4) that have a child with aLevel = 11 (sel=1.5%) and another
child with aSixtyFour = 3 (sel=1/64).

� Ancestor-Descendant Complex Pattern Selection
QS31-QS33. Repeat queries QS28-QS30, but using ancestor-descendant in place of parent-child.

QS34. One twig query with one parent-child join and one ancestor-descendant join. Select nodes
with aFour = 1 (sel=1/4) that have a child of nodes with aLevel = 11 (sel=1.5%) and a descendant with
aSixtyFour = 3 (sel=1/64).

� Negated Selection
In XML, some elements are optional and some queries test the existence of these optional elements.
Negated selection query selects elements which does not contain a descendant that is an optional element.

QS35. Find all BaseType elements below where there is no OccasionalType element.

4.2 Value-Based Join

A value-based join involves comparing values at two different nodes that need not be related structurally. In
computing the value-based joins, one would naturally expect both nodes participating in the join to be returned.
As such, the return structure is the pair of the aUnique1 attributes of nodes joined.

QJ1. Low selectivity. Select nodes with aSixtyFour = 2 (sel=1/64) and join with themselves based on the
equality of aUnique1 attribute. The selectivity of this query is approximately 1.6%.

QJ2. High selectivity. Select nodes based on aSixteen = 2 (sel=1/16) and join with themselves based on
the equality of aUnique1 attribute. The selectivity of this query is approximately 6.3%.

4.3 Pointer-Based Join

These queries specify joins using references that are specified in the DTD or XML Schema, and the implemen-
tation of references may be optimized with logical OIDs in some XML databases.

QJ3. Low selectivity. Select all OccasionalType nodes that point to a node with aSixtyFour = 3
(sel=1/64). Selectivity is 0.02%.

QJ4. High selectivity. Select all OccasionalType nodes that point to a node with aFour = 3 (sel=1/4).
Selectivity is 0.4%.

Both of these pointer-based joins are semi-join queries. The returned elements are only the eOccasional
nodes, not the nodes pointed to.

4.4 Aggregation and Update Queries

The benchmark also contains three value-based aggregate queries, four structure-based aggregate queries, and
seven update queries, which include point update and delete, bulk insert and delete, bulk load, bulk reconstruc-
tion, and bulk restructuring.

4.5 Aggregation

Aggregate queries are very important for data warehousing applications. In XML, aggregation also has richer
possibilities due to the structure. These are explored in the next set of queries.

QA1. Value aggregation. Compute the average value of the aSixtyFour attribute of all nodes at level 15
(have aLevel = 15 (sel=23.8%)). The number of returned nodes is 1.

QA2. Value aggregation with groupby. Compute the average value of the aSixtyFour attribute of all
nodes at each level. The return structure is a tree, with a dummy root and a child for each group. Each leaf
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(child) node has one attribute for the level and one attribute for the average value. The number of returned trees
is 16.

QA3. Value aggregate selection. Select elements that have at least two occurrences of keyword “oneB1”
(sel=1/16) in their content. Selectivity is 0.3%.

QA4. Structural aggregation. Amongst the nodes at level 11 (have aLevel = 11 (sel=1.5%)), find the
node(s) with the largest fanout. Selectivity is 0.02%.

QA5. Structural aggregate selection. Select elements that have at least two children that satisfy aFour =
1 (sel=1/4). Selectivity is 3.1%.

QA6. Structural exploration. For each node at level 7 (have aLevel = 7 (sel=0.4%)), determine the height
of the sub-tree rooted at this node. Selectivity is 0.4%.

There are also other functionalities, such as casting, which can be significant performance factors for engines
that need to convert data types. However, in this benchmark, we focus on testing the core functionality of the
XML engines.

4.6 Update

The benchmark also contains seven update queries, which include point update and delete, bulk insert and delete,
bulk load, bulk reconstruction, and bulk restructuring.

QU1. Point Insert. Insert a new node below the node with aUnique1 = 10102.
QU2. Point Delete. Delete the node with aUnique1 = 10102 and transfer all its children to its parent.
QU3. Bulk Insert. Insert a new node below each node with aSixtyFour = 1. Each new node has attributes

identical to its parent, except for aUnique1, which is set to some new large, unique value, not necessarily
contiguous with the values already assigned in the database.

QU4. Bulk Delete. Delete all leaf nodes with aSixteen = 3.
QU5. Bulk Load. Load the original data set from a (set of) document(s).
QU6. Bulk Reconstruction. Return a set of documents, one for each sub-tree rooted at level 11 (have

aLevel = 11) and with a child of type OccasionalType.
QU7. Restructuring. For a node � of type OccasionalType, let � be the parent of � , and � be the parent

of � in the database. For each such node � , make � a direct child of � in the same position as � , and place �

(along with the sub-tree rooted at � ) under � .

5 The Benchmark in Action

In this section, we present and analyze the performance of different databases using the Michigan benchmark.
We conducted experiments using one native commercial XML DBMS, a university native XML DBMS, and
one leading commercial ORDBMS. Due to the nature of the licensing agreement for the commercial systems,
we can not disclose the actual names of the system, and will refer to the commercial native system as CNX, and
the commercial ORDBMS as COR.

The native XML database is Timber [27], a university native XML DBMS system that we are develop-
ing at the University of Michigan [27]. Timber uses the Shore storage manager [8], and implements various
join algorithms, query size estimation, and query optimization techniques that have been developed for XML
DBMSs.

The COR is provided by a leading database vendor, and we used the Hybrid inlining algorithm to map
the data into a relational schema [24]. To generate good SQL queries, we adopted the algorithm presented
in [14]. The queries in the benchmark were converted into SQL queries (sanitized to remove any system-specific
keywords in the query language) which can be found in the Appendix B.

The commercial native XML system provides an XPath interface and a recently released XQuery interface.
We started by writing the benchmark queries in XQuery. However, we found that the XQuery interface was un-
stable and in most cases would hang up either the server or the Java client, or run out of memory on the machine.
Unfortunately, no other interface is available for posing XQueries to this commercial system. Consequently,
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we reverted to writing the queries using XPath expression, which implies that join queries are written as nested
XPath expressions, that get evaluated using a nested-loops paradigm. In all the cases that we could run queries
using the XQuery interface, the XPath approach was faster. Consequently, all the numbers reported here are
written as XPath queries. The actual queries for the commercial native XML system (sanitized to remove any
system-specific keywords in the query language) can be found in the Appendix C.

5.1 Experimental Platform and Methodology

All experiments were run on a single-processor 550 MHz Pentium III machine with 256 MB of main memory.
The benchmark machine was running the Windows2000 and was configured with a 20 GB IDE disk. All three
systems were configured to use a 64 MB buffer pool size.

5.1.1 System Setup

For both commercial systems, we used default settings that the system chooses during the software installation.
The only setting that we changed for COR was to enable the use of hash joins, as we found that query response
times generally improved with this option turned on. For COR, after loading the data we update all statistics to
provide the optimizer with the most current statistical information.

For CNX, we tried running the queries with and without indices. CNX permits building both structure
(i.e., path indices), and value indices. Surprisingly, we found that indexing did not help the performance of the
benchmark queries, and in fact in most cases actually reduced the performance of the queries. In very few cases,
the performance improved but by less than 20% over the non-indexed case. The reason for the ineffectiveness
of the index is that CNX indexing can not handle the “//” operator, which is used often in the benchmark.
Furthermore, the index is not effective on BaseType elements as it is recursively nested below other BaseType
elements.

5.1.2 Data Sets

For this experiment we loaded the base data set (739K nodes and 500MB of raw data). Although we wanted to
load larger scaled up data sets, we found that in many cases the parsers are fragile and break down with large
documents. Consequently, for this study, we decided to load another scaled down version of the data. The scaled
down data set, which we call ds0.1x, is produced by changing the fanouts of the nodes at levels 5, 6, 7 and 8
to 4, 4, 4 and 1/4 respectively. This scaled down data set is approximately

��� ���
th the size of the ds1x data set.

Note that because of the nature of the document tree, the percentage of nodes at the levels close to the leaves
remains the same, hence the query selectivities stay roughly constant even in this scaled down data set.

For the purpose of the experiment, we loaded and wrote queries against the scaled down set before using
the base data set. The smaller data set size reduced the time to set up the queries and load the scripts, for all
systems. The same queries and scripts were then reused for the base data set. Since we expect that this strategy
may also be useful to other users of this benchmark, the data generator for this benchmark, which is available
for free download from the benchmark’s website [26], allows generation of this scaled down data set.

5.1.3 Measurements

In our experiments, each query was executed five times, and the execution times reported in this section is an
average of the middle three runs. Queries were always run in “cold” mode, so the query execution times do not
include side-effects of cached buffer pages from previous runs.

5.1.4 Benchmark Results

In our own use of the benchmark, we have found it useful to produce two kinds of tables: a summary table which
presents a single number for a group of related queries, and a detail table that shows the query execution time
for each individual query. The summary table presents a high-level view of the performance of the benchmark
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queries. It contains one entry for a group of related queries, and shows the geometric mean of the response
times of the queries in that group. Figure 5 shows the summary table for the systems we benchmarked and also
indicates the sections in which the detailed numbers are presented and analyzed. In the figures N/A indicates
that queries could not be run with the given configuration and system software.

Geometric Mean Response Times (seconds)
Discussed Query Group ds0.1x ds1x
Section (Queries in Group) CNX Timber COR CNX Timber COR

Idx No Idx Idx No Idx
5.2.1 Returned structure 2.95 2.53 0.06 0.27 10.35 9.40 0.37 3.87

(QR1-QR4)
5.2.2 Exact match attribute value 2.64 2.25 0.04 0.04 7.61 6.73 0.48 0.28

selection (QS1-QS7)
5.2.3 Element name selection 2.72 2.12 0.01 0.02 7.21 5.98 0.08 0.15

(QS8)
5.2.4 Order-based selection 2.53 2.18 0.00 0.06 7.25 6.25 0.05 0.61

(QS9-QS10)
5.2.5 Element content selection 2.84 2.47 0.07 0.12 8.23 7.01 0.69 2.75

(QS11-QS12)
5.2.5 String distance selection N/A N/A 3.00 1.12 N/A N/A 32.92 39.52

(QS13-QS14)
5.2.6 Order-sensitive selection 2.65 2.28 0.02 0.08 7.76 6.75 0.54 0.26

(QS15-QS17)
5.2.7 Parent-child (P-C) selection 2.72 2.36 0.13 0.04 7.65 6.89 1.38 0.34

(QS18-QS20)
5.2.7 Ancestor-descendant (A-D) 3.21 2.68 0.23 2.14 8.76 7.74 1.41 17.92

selection (QS21-QS23)
5.2.7 Ancestor nesting in A-D 3.31 2.76 0.13 1.16 8.96 8.02 1.39 12.65

selection (QS24-QS26)
5.2.8 P-C complex pattern 3.85 3.26 0.25 0.03 8.19 7.31 2.56 0.50

selection (QS27-QS30)
5.2.8 A-D complex pattern 6.13 3.64 0.27 2.49 11.60 10.63 2.75 24.74

selection (QS31-QS34)
5.2.9 Negated selection 3.19 2.84 1.29 2.10 82.06 66.15 12.58 23.38

(QS35)
5.2.10 Value-based join 359.14 359.17 1.72 0.05 2497.50 2537.92 18.82 0.42

(QJ1-QJ2)
5.2.10 Pointer-based join 163.55 161.80 3.15 0.02 1330.69 1339.54 19.73 0.14

(QJ3-QJ4)
5.2.11 Value aggregation N/A N/A 11.07 0.23 N/A N/A 1184.69 2.31

(QA1-QA3)
5.2.11 Structural aggregation N/A N/A 0.36 1.06 N/A N/A 209.84 11.97

(QA4-QA6)
5.2.12 Update (QU1-QU7) N/A N/A N/A 2.71 N/A N/A N/A 78.18

Figure 5: Benchmark Numbers for Three DBMSs. CNX - a commercial native XML DBMS, Timber - a
university native XML DBMS, and COR - a commercial ORDBMS. N/A indicates that the queries could not be
run on that system.

From Figure 5, we observe that Timber is very efficient at processing XML structural queries. The imple-
mentation of “traditional” relational-style queries such as value-based joins is not highly tuned in Timber. This
is primarily because Timber is a research prototype and most of the development attention has been paid to the
XML query processing issues that are not covered by traditional relational techniques.

COR can execute almost all queries well, except for the ancestor-descendant relationship queries. COR
performs very well on the parent-child queries, which are evaluated using foreign key joins.
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From Figure 5, we observe that CNX is usually slower than the other two systems. A large query overhead,
of about 2 secs, is incurred by CNX, even for very small queries. CNX is considerably slower than Timber, and
faster than COR only on the ancestor-descendant queries.

We suspect that the reason for this to happen is fourfold. First, although we had structure indexes built
in the schemas of the database, most of the queries involve the “//” operator, which incurs post-processing on
the server that dominates the major chunk of the query processing time. Second, we suspect that CNX only
builds tag indexes for its structural indexes. As a result, since all elements in the benchmark data set are either
eNest elements or eOccasional elements, tag indexes are essentially useless. Furthermore, when the system is
forced to follow the tag indexes, random accesses occur and it results in compromised performance. Third, the
value indexes set on the attributes of the eNest nodes may cause random disk access at query time if not all the
documents can fit into memory, in which we naturally incur a much higher disk access overhead than in the
non-indexed data sets where we simply do a sequential scan on the disk to retrieve the matching nodes. Finally,
in the above situation, the optimizer should have been able to evaluate different query plans and choose the
optimal plan, which in this case should be the sequential scan plan, while obviously it was not the case in our
experiments.

5.2 Detailed Performance Analysis

In this section, we analyze the impact of various factors on the performance that was observed.

5.2.1 Returned Structure (QR1-QR4)

Figure 6 shows the performance of returned structure queries, QR1-QR4.

Response Times (seconds)
Query Query Description Sel.(%) ds0.1x ds1x

CNX Timber COR CNX Timber COR
Idx No Idx Idx No Idx

QR1 Return result element 1.6 2.52 2.18 0.01 0.02 7.43 6.19 0.08 0.16
QR2 Return element 1.6 2.03 1.68 0.02 0.31 5.96 4.83 0.27 2.59

and immediate children
QR3 Return entire sub-tree 1.6 3.97 3.63 0.26 1.09 11.36 10.17 387.23 26.09
QR4 Return element 1.6 2.73 2.37 0.19 0.97 8.31 7.14 2.44 20.57

and selected descendants

Figure 6: Benchmark Numbers for Three DBMSs on Returned Structure Queries

Examining the performance of the returned structure queries, QR1-QR4 in Figure 6, we observe that the
returned structure has an impact on all systems. Timber performs the worst when the whole subtree is returned
(QR3). This is surprising since Timber stores elements in depth-first order, so that retrieving a sub-tree should be
a fast sequential scan. It turns out that Timber uses SHORE [8] for low level storage and memory management,
and the initial implementation of the Timber data manager makes one SHORE call per element retrieved. The
poor performance of QR3 helped Timber designers identify this implementation weakness, and to begin taking
steps to address it.

COR takes more time in selecting and returning descendant nodes (QR3 and QR4), than returning children
nodes (QR2). This is because COR exploits the indices on the primary keys and the foreign keys when it retrieves
the children nodes. On the other hand, COR needs to call recursive SQL statements in retrieving the descendant
nodes.

CNX produces results in reasonably short times. Surprisingly, returning the result element itself (QR1) takes
a little more time than returning the element and its immediate children (QR2). We suspect that CNX returns
the entire subtree by default, and then will carry out post-processing selection to return the element itself, which
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takes more time. This also explains why CNX incurs more query processing time than the other DBMSs in most
queries.

Simple Selection (QS1-QS10)

In this section, we examine the performance of the three systems for the simple selection queries. The perfor-
mance numbers are shown in Figure 7.

Response Times (seconds)
Query Query Description Sel.(%) ds0.1x ds1x

CNX Timber COR CNX Timber COR
Idx No Idx Idx No Idx

QS1 Selection on string attribute 0.8 2.36 1.99 0.03 0.02 6.96 6.06 0.05 0.08
value (low sel.)

QS2 Selection on string attribute 6.3 2.40 2.05 0.03 0.06 7.08 6.21 0.34 0.63
value (high sel.)

QS3 Selection on integer attribute 0.7 2.62 2.25 0.01 0.02 7.71 6.76 0.04 0.08
value (low sel.)

QS4 Selection on integer attribute 6.0 2.64 2.28 0.03 0.06 7.75 6.82 0.30 0.57
value (high sel.)

QS5 Selection on range values 6.3 3.21 2.81 0.03 0.06 9.24 8.23 0.23 0.60
QS6 Selection with sorting 6.0 2.72 N/A 1.83 0.06 7.53 N/A 71.71 0.58
QS7 Multiple-attribute selection 1.6 2.60 2.23 0.16 0.02 7.25 6.50 1.70 0.17

QS8 Element name selection 1.6 2.72 2.21 0.01 0.02 7.21 5.98 0.08 0.15

QS9 Order-based selection 0.4 2.53 2.19 0.003 0.06 7.71 6.31 0.05 0.61
(high fanout)

QS10 Order-based selection 0.4 2.52 2.18 0.003 0.06 7.43 6.19 0.06 0.62
(low fanout)

Figure 7: Benchmark Numbers for Three DBMSs on Simple Selection Queries

5.2.2 Exact Attribute Value Selection (QS1-QS7)

Single Attribute Selection (QS1-QS4) Selectivity has an impact on both Timber and COR. The response
times of the high selectivity queries (QS2 and QS4) are more than those of the low selectivity queries (QS1 and
QS3), with the response times growing linearly with the increasing selectivity for both systems. In both systems,
selection on short strings is as efficient as selection on integers.

Overall, CNX does not perform as well as the other two DBMSs. It is interesting to notice that although
selectivity does have some impact on CNX, it is not as strong as on the other two DBMSs (this is true even
with indexing in CNX). Although the response times of the high selectivity queries (QS2, QS4) are higher than
the response times of the low selectivity queries (QS1, QS3), the difference does not reflect a linear growth.
Selection on short strings takes a little more time than that on integers, although the difference is negligible.

Range Selection (QS5) Both Timber and COR systems handle a range predicate just as well as an equality
predicate. In both systems, the performance of the range predicate query (QS5) is almost the same as that of
the comparable equality selection queries (QS2 and QS4). On the other hand, CNX takes a little more time to
evaluate the range predicate query than the comparable equality selection queries.

Multiple-attribute Selection and Sorting (QS6-QS7) Currently, Timber does not support multiple-attribute
indices. This is why it has high response times for QS6 and QS7 than for QS3. To evaluate QS6, Timber needs
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to use an unclustered index to access all nodes that satisfy the predicate aLevel = 13; then it has to retrieve the
actual nodes and sort these nodes on the value of the aSixtyFour attribute. To evaluate QS7, Timber requires
two index accesses (one for each predicate) and a set intersection between them. On the other hand, the COR
performs well on QS6 and QS7, since it uses the appropriate multiple-attribute indices. CNX does not perform as
well as other databases. Note that since the data sets were loaded in small partitions, it made sorting impossible
for COR on data without index.

5.2.3 Element Name Selection (QS8)

Both Timber and COR resolve the query request for a given element name very well. This is because Timber
uses an index on element names, and COR simply requests all tuples from the table corresponding to the given
element name. Like other selection queries, CNX does not perform as well as the other databases.

5.2.4 Fanout (QS9-QS10)

The response times of QS9 and QS10 indicate that the small difference in fanout does not have an impact on the
performance of any system. This is because CNX and Timber do not need to access all the children to determine
the fanout; it just accesses the node in question. COR exploits an index on the child order attribute in both
cases.

5.2.5 Text Processing (QS11-QS14)

Figure 8 shows the performance of text processing queries, QS11-QS14.

Response Times (seconds)
Query Query Description Sel.(%) ds0.1x ds1x

CNX Timber COR CNX Timber COR
Idx No Idx Idx No Idx

QS11 Element content selection 0.2 2.03 1.68 0.08 0.02 5.96 4.83 0.78 0.17
(low sel.)

QS12 Element content selection 12.5 3.97 3.63 0.06 0.97 11.36 10.17 0.61 43.85
(high sel.)

QS13 String distance selection 0.8 N/A N/A 2.49 0.95 N/A N/A 27.23 42.79
(low sel.)

QS14 String distance selection 6.3 N/A N/A 3.61 1.31 N/A N/A 39.79 45.42
(high sel.)

Figure 8: Benchmark Numbers for Three DBMSs on Simple Selection Queries

In COR, processing long strings (QS11-QS12) is more expensive than processing short ones (QS1-QS2)
because there is no index on the long strings. The large difference between the response times of QS11 and
of QS12 is due to the large difference between the scan costs of two different tables. To measure the distance
between words stored in a long string (QS13-QS14), we need to use a user-defined function, which cannot make
use of an index; as a result, the efficiency of the query is the same regardless of the selectivity of the string
distance selection predicate.

CNX supports element content selection (QS11 and QS12), but does not support string distance selection yet
(QS13 and QS14). Although processing long strings (QS11 and QS12) is supposed to be more expensive than
processing short ones (QS1 and QS2), the query performance of CNX on the former two queries is not affected
much in this case. Two other points are worth noticing: selectivity does not affect much the performance of
CNX; CNX seems to scale up to the database size better than COR and Timber, especially concerning high
selectivity queries (QS12).
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Structural Selection (QS15-QS35)

5.2.6 Order-Sensitive Parent-Child Selection (QS15-QS17)

The performance of the order selection queries, QS15-QS17, is shown in Figure 9.

Response Times (seconds)
Query Query Description Sel.(%) ds0.1x ds1x

CNX Timber COR CNX Timber COR
Idx No Idx Idx No Idx

QS15 Local ordering 3.1 2.73 2.37 1.45 0.08 8.31 7.14 14.58 1.02
QS16 Global ordering 1 node 2.56 2.19 0.00 0.01 7.32 6.39 0.01 0.03
QS17 Reverse ordering 0.7 2.65 2.29 0.08 0.07 7.67 6.75 1.06 0.55

Figure 9: Benchmark Numbers for Three DBMSs on Simple Selection Queries

In CNX, local ordering (QS15), global ordering (QS16), and reverse ordering (QS17) are not so much
different from each other.

In Timber, local ordering (QS15) results in considerably worse performance than global ordering (QS16) and
reverse ordering (QS17) because it requires many random accesses. On the other hand, global ordering (QS16)
performs well because it requires only one random access, and reverse ordering (QS17) requires a structural join
and no random access.

In COR, local ordering (QS15) and reverse ordering (QS17) are more expensive than global ordering (QS16).
This is because local ordering (QS15) needs to access a number of nodes that satisfy the given order, and reverse
ordering (QS17) needs to first find the order that is the largest and then retrieve the element that has that order.
On the other hand, QS16 quickly returns as soon as it finds the first tuple that satisfies the given order and
predicates.

5.2.7 Simple Containment Selection (QS18-QS26)

Figure 10 shows the performance of selected structural selection queries, QS18-QS26, and QS35. In this figure,
“P-C:low-high” refers to the join between a parent with low selectivity and a child with high selectivity, whereas,
“A-D:high-low” refers to the join between an ancestor with high selectivity and a descendant with low selectivity.

As seen from the results for the direct containment queries (QS18-QS20) in Figure 10, COR processes direct
containment queries better than Timber, but Timber handles indirect containment queries (QS21-QS26) better.

CNX underperforms as compared to the other systems on direct containment queries (QS18-QS20). How-
ever, on indirect containment queries (QS21-QS26), it often performs better than COR. CNX only has slightly
performance on direct containment queries (QS18-QS20) than on indirect containment queries (QS21-QS27).
Examining the effect of query selectivities on CNX query execution (see QS21-QS23 as an example), we no-
tice that the execution times are relatively immune to the query selectivities, implying that the system does not
effectively exploit the differences in query selectivities in picking query plans.

In Timber, structural joins [4] are used to evaluate both types of containment queries. Each structural join
reads both inputs (ancestor/parent and descendant/child) once from indices. It keeps potential ancestors in a stack
and joins them with the descendants as the descendants arrive. Therefore, the cost of the ancestor-descendant
queries is not necessarily higher than the parent-child queries. From the performance of these queries, we can
deduce that the higher selectivity of ancestors, the greater the delay in the query performance (QS19 and QS22).
Although the selectivities of ancestors in QS20 and QS23 are lower than those of QS18 and QS21, QS20 and
QS23 perform worse because of the high selectivities of descendants.

COR is very efficient for processing parent-child queries (QS18-QS20), since these translate into foreign
key joins, which the system can evaluate every efficiently using indices. On the other hand, COR has much
longer response times for the ancestor-descendant queries (QS21-QS23). The only way to answer these queries
is by using recursive SQL statements, which are expensive to evaluate.
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Response Times (seconds)
Query Query Description Sel.(%) ds0.1x ds1x

CNX Timber COR CNX Timber COR
Idx No Idx Idx No Idx

QS18 P-C: medium-medium 0.7 2.67 2.30 0.08 0.02 7.55 6.73 0.85 0.25
QS19 P-C: high-low 0.7 2.92 2.55 0.17 0.05 8.10 7.40 1.79 0.44
QS20 P-C: low-high 0.7 2.59 2.23 0.17 0.05 7.32 6.58 1.73 0.34

QS21 A-D:medium-medium 3.5 3.26 2.73 0.09 2.22 8.79 7.77 0.93 20.15
QS22 A-D:high-low 0.7 3.11 2.57 0.18 0.94 8.44 7.40 1.72 5.64
QS23 A-D:low-high 1.5 3.26 2.73 0.16 4.69 9.07 8.06 1.74 50.65

QS24 Ancestor nesting in 1.0 3.10 2.56 0.08 2.16 8.27 7.32 0.87 20.03
A-D:medium-medium

QS25 Ancestor nesting in 1.7 4.22 3.68 0.19 0.95 11.44 10.44 1.94 8.83
A-D:high-low

QS26 Ancestor nesting in 0.5 2.77 2.23 0.15 0.92 7.59 6.74 1.61 11.73
A-D:low-high

QS27 Ancestor nesting in 5.0 3.77 2.95 0.16 0.97 9.81 8.67 1.76 12.35
A-D:low-high
(a pair of nodes returned)

QS28 P-C chain:high-low-low-high 0.0 2.75 2.39 0.57 0.06 7.98 7.01 10.61 0.77
QS29 P-C twig:low-high, low-low 0.0 2.61 2.24 0.19 0.02 7.45 6.71 3.57 0.48
QS30 P-C twig:high-low, high-low 0.0 8.10 7.14 0.21 0.02 7.73 6.98 3.89 0.34

QS31 A-D chain:high-low-low-high 0.4 18.00 4.04 0.56 20.22 16.20 16.59 10.56 190.19
QS32 A-D twig:low-high, low-low 0.9 4.16 3.29 0.20 2.64 10.64 9.56 3.67 33.04
QS33 A-D twig:high-low, high-low 0.4 6.22 5.35 0.21 1.24 12.49 11.21 3.84 10.86
QS34 Twig with one P-C (high-low) 0.2 3.04 2.47 0.21 0.58 8.43 7.16 3.90 5.49

and one A-D (high-low)

QS35 Negated selection 93.2 3.19 2.84 1.29 2.10 82.06 66.15 12.58 23.38

Figure 10: Benchmark Numbers for Three DBMSs on Simple Selection Queries

We also found that the performance of the ancestor-descendant queries was very sensitive to the SQL query
that we wrote. To answer an ancestor-descendant query with predicates on both the ancestor and descendant
nodes, the SQL query must perform the following three steps: 1) Start by selecting the ancestor nodes, which
could be performed by using an index to quickly evaluate the ancestor predicate, 2) Use a recursive SQL to
find all the descendants of the selected ancestor nodes, and 3) Finally, check if the selected descendants match
the descendant predicate specified in the query. Note that one cannot perform step 3 before step 2 since it is
possible that a descendant in the result may be below another descendant that does not match the predicate on
the descendant node in the query. Another alternative is to start step 1 by selecting the descendant nodes and
following these steps to find the matching ancestors. In general, it is more effective to start from the descendants
if the descendant predicate has a lower selectivity than the ancestor predicate. However, if the ancestor predicate
has a lower selectivity, then one needs to pick the strategy that traverses fewer number of nodes. Traversing
from the descendants, the number of visited nodes grows proportional to the distance between the descendants
and the ancestors. However, traversing from the ancestors, the number of visited nodes can grow exponentially
at the rate of the fanout of the ancestors.

The effect of the number of visited nodes in COR is clearly seen by comparing queries QS23 and QS26.
Both queries have similar selectivities on both ancestors and descendants, and are evaluated by starting from the
ancestors. However, QS23 has a much higher response time. In QS23, starting from the ancestors, the number
of visited nodes grow significantly since the ancestors are the nodes at level 11 – each node at this level, and its
expanded non-leaf descendant nodes, has a fanout of 2. In contrast, in QS26, the ancestor set is the set of nodes
that satisfy the predicate aSixtyFour = 9. Since half of these ancestors are at the leaf level, when finding the
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descendants, the number of visited nodes does not grow as quickly as it did in the case of query QS23.
One may wonder whether QS23 would perform better if the query was coded to start from the descendants.

We found that for the ds1x data set, using this option nearly doubles the response time to 126.01 seconds.
Starting from the ancestors results in better performance since the selectivity of the descendants (sel=1/4) is
higher than the selectivity of the ancestors (sel=1/64), which implies that the descendent candidate list is much
larger than the ancestor candidate list. Consequently, starting from the descendants results in visiting more
number of nodes.

All systems are immune to the recursive nesting of ancestor nodes below other ancestor nodes; the queries on
recursively nested ancestor nodes (QS24-QS26) have the same response times as their non-recursive counterparts
(QS21-QS23), except QS26 and QS23 that have different response times in the COR.

5.2.8 Complex Pattern Containment Selection (QS28-QS34)

Overall, Timber performs well on complex queries. It breaks the chain pattern queries (QS28 and QS31) or
twig queries (QS29-QS30, QS32-QS34) into a series of binary containment joins. The performance of direct
containment joins (QS28-QS30) is close to that of indirect containment joins (QS31-QS33). This is because all
containment joins use efficient structural join algorithms as described in [4].

COR takes much more time to answer ancestor-descendant chain joins (QS31-QS33) than parent-child chain
joins (QS28-QS30). Again, the high response times of ancestor-descendant queries are due to the recursive
SQL, which is expensive to compute. In constructing the SQL queries for the COR, we followed the techniques
described in [14] for choosing the order of the joins; as expected choosing a good join order resulted in a
substantial reduction in performance in some case.

As shown in the Figure 10, even though QS31 and QS33 have similar result selectivities, it is much more
expensive to evaluate query QS31, in both systems. This is because QS31 has more joins than QS33. The
increase in the number of joins has a greater negative effect on COR than on Timber.

CNX does not perform as well as Timber and COR. Like Timber, CNX also breaks the complex pattern
queries into a series of binary containment joins. Unlike Timber, indirect containment joins in CNX take more
time than direct containment joins over all, for which the reason may be inefficient implementation of structural
join algorithms in CNX. Notice that for QS31, the indexed version of the ds0.1x data set takes considerably more
than the non-indexed version. This might be because the inefficient implementation of the structural indexing in
CNX caused the system to chase each level of nesting in order to find the nodes in question. The index access is
likely to take more than the sequential scan that occurs in the non-indexed database. This is not the case for the
ds1x data set because both the index access and the sequential scan probably take the same amount of time.

5.2.9 Irregular Structure (QS35)

Since some parts of an XML document may have irregular data structure, such as missing elements, queries
such as QS35 are useful when looking for such irregularities. Query QS35 looks for all BaseType elements
below which there is no OccasionalType element.

While looking for irregular data structures, CNX performs reasonably well on the small scale database, but
as one might notice, it does not scale very well like with other queries. The selectivity of this query if fairly high
(93.2%), and as the database size increases, the return result grows dramatically. CNX seems to spends a large
part of its execution time in processing the results at the client, and this part does not seem to scale very well.

In Timber, this operation is very fast because it uses a variation of the structural joins used in evaluating
containment queries. This join outputs ancestors that do not have a matching descendant.

In COR, there are two ways to implement this query. A naive way is to use a set difference operation which
results in a very long response time (1517.4 seconds for the ds1x data set). This long response time is because
COR first needs to find a set of elements that contain the missing elements (using a recursive SQL query), and
then find elements that are not in that set. The second alternative of implementing this query is to use a left outer
join. That is first create a view that selects all BaseType elements have some OccasionalType descendants (this
requires a recursive SQL statement). Then compute a left-outer join between the view and the relation that holds
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Response Times (seconds)
Query Query Description Sel.(%) ds0.1x ds1x

CNX Timber COR CNX Timber COR
Idx No Idx Idx No Idx

QJ1 Value-based join 1.6 188.88 187.5 0.69 0.03 1247.59 1268.4 18.82 0.21
(low sel.)

QJ2 Value-based join 6.3 682.87 687.9 4.29 0.08 � 1 hr � 1 hr � 1 hr 0.83
(high sel.)

QJ3 Pointer-based join 0.02 161.50 160.09 0.73 0.01 1307.6 1320.52 20.08 0.05
(low sel.)

QJ4 Pointer-based join 0.4 165.52 163.5 13.63 0.05 1354.2 1358.83 19.38 0.42
(high sel.)

Figure 11: Benchmark Numbers for Three DBMSs on Traditional Join Queries

all BaseType elements, selecting only those BaseType elements that are not present in the view (this can be
accomplished by checking for a null value). Compared to the response time of the first implementation (1517.4
seconds), this rewriting query results in much less response time (23.38 seconds) as reported in Figure 10.

5.2.10 Value-Based and Pointer-Based Joins (QJ1-QJ4)

The performance of the value-based join queries, QJ1-QJ4, is shown in Figure 11.
Both CNX and Timber show poor performance on these “traditional” join queries. In Timber, a simple,

unoptimized nested loop join algorithm is used to evaluate value-based joins. Both QJ1 and QJ2 perform poorly
because of the high overhead in retrieving attribute values through random accesses.

CNX has poor overall performance compared to the other two databases on the value based join queries
(QJ1-QJ2) for the small scale version of the database, which is due to the fact that the joins are carried out in a
naive nested loop join. Thus, the complexity of the queries is ��������� . The selectivity factor has much impact on
the value based joins in CNX. Notice that CNX scales up better than Timber on QJ1 and QJ2, where CNX results
in super linear scale up, while Timber scales up very poorly and COR has linear scale-up. For pointer based join
queries (QJ3 and QJ4), CNX compares poorly to the COR, although it still shows a super-linear scale-up curve
with respect to the size of the database.

COR performs well on this class of queries, which are evaluated using foreign-key joins which are very
efficiently implemented in traditional commercial database systems.

5.2.11 Structural Aggregation vs. Value Aggregation (QA1-QA6)

Figure 12 shows the performance of aggregation queries, QA1-QA6.
In Timber, a native XML database, the structure of the XML data is maintained and reflected throughout

the system. Therefore, a structural aggregation query, such as QA4, performs well. On the other hand, a value
aggregation query, such as QA2, performs worse due to a large number of random accesses. To resolve QA2,
Timber first retrieves the nodes sorted by level through accessing the level index, then retrieves the attributes of
these nodes through random database accesses. The high response time of queries that request random accesses,
such as QR3 and QA2, prompted the re-design of parts of the data manager in Timber to support sequential scan.

In COR, evaluating the structural aggregation is much more expensive than evaluating the value aggregation.
This is because in the relational representation the structure of XML data has to be reconstructed using expensive
join operations, whereas attribute values can be quickly accessed using indices.

With CNX being a native XML database, on ewould expect it to perform reasonably well on structural
aggregation queries, such as QA4. The reason for the poor performance of CNX on QA4 is due to the strategy
of the query execution: it is essentially two levels of nested loops join involving three aggregate functions (two
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Response Times (seconds)
Query Query Description Sel.(%) ds0.1x ds1x

CNX Timber COR CNX Timber COR
Idx No Idx Idx No Idx

QA1 Value aggregation 1 node 15.35 12.32 12.12 0.01 170.04 154.31 1184.69 0.11
QA2 Value aggregation 16 N/A N/A 10.11 0.06 N/A N/A N/A 0.54

with groupby nodes
QA3 Value aggregate 0.3 N/A N/A N/A 18.14 N/A N/A N/A 201.43

selection
QA4 Structural aggregation 0.02 358.46 357.75 0.04 0.39 1298.22 1282.51 N/A 3.55
QA5 Structural aggregate 3.1 3.03 2.70 15.38 0.26 8.19 7.45 1288.67 3.65

selection
QA6 Structural exploration 0.4 N/A N/A 0.07 12.00 N/A N/A 34.17 132.59

Figure 12: Benchmark Numbers for Three DBMSs on Aggregate Queries

Response Times (seconds)
Query Query Description ds0.1x ds1x

CNX Timber COR CNX Timber COR
Idx No Idx Idx No Idx

QU1 Point insert N/A N/A N/A 0.55 N/A N/A N/A 5.72
QU2 Point delete N/A N/A N/A 2.31 N/A N/A N/A 163.94
QU3 Bulk insert N/A N/A N/A 4.67 N/A N/A N/A 41.84
QU4 Bulk delete N/A N/A N/A 0.79 N/A N/A N/A 43.76
QU5 Bulk load N/A N/A N/A 60.00 N/A N/A N/A 807.33
QU6 Bulk Construction N/A N/A N/A 0.83 N/A N/A N/A 2.48
QU7 Restructuring N/A N/A N/A 13.81 N/A N/A N/A 728.61

Figure 13: Benchmark Numbers for Three DBMSs on Update Queries

count() functions and one max() function), which dramatically increase the response time. For other simpler
queries (QA1, QA5), the performance of CNX is better than that of Timber, but worse than than that of COR.

5.2.12 Update (QU1-QU7)

Figure 13 shows the performance of update queries, QU1-QU7.
In COR, the query time for the point insert query (QU1) is less than the query time for the point delete

query (QU2) because the children of the deleted node is needed to be update while there is no children of the
newly inserted node. This is also true for the performance difference between the delete query (QU2) and the
bulk delete query (QU4). In the bulk delete query (QU4), we simply delete all leaf nodes with aSixteen =
3. The bulk loading (QU5) takes a long time because each row corresponding to each element needs to be
inserted. The time for the query QU6 does not entirely reflect the actual bulk reconstruction since COR does not
yet have a function available to group the content of elements together to reconstruct an XML document. The
restructuring query (QU7) takes an excessive amount of time because finding and updating the descendants of
the given element require nested loop joins and a large number of row scans.

Updates are not supported in CNX and Timber.

5.3 Performance Analysis on Scaling Databases

In this Section, we discuss the performance of the three systems as the data set is scaled from ds0.1x to ds1x.
Please refer to Figure 5 for the performance comparison between these two data sets.
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5.3.1 Scaling Performance on CNX

In almost all of the queries, the ratios of the response times when using ds0.1x over ds1x are less than or around
10, except for QS35, which consists of nested aggregate count() function. This indicates that CNX scales at least
linearly, and sometimes super-linearly with respect to the database size growth. The reason for long response
time of the join queries QJ1 - QJ4 is that the XPath expressions executed on CNX invoke a nested loop join,
which its the complexity is the order of � � .

5.3.2 Scaling Performance on Timber

Timber scales linearly for all queries, with a response time ratio of approximately 10, with two exceptions.
Where large return result structures have to be constructed, Timber is inefficient, and scales poorly, as discussed
above in Section 5.2.1. Also, the value-based join implementation is naive, and scales poorly.

5.3.3 Scaling Performance on COR

Once more, with two exceptions, the ratios of the response times when using ds0.1x over ds1x are approximately
10, showing linear scale-up. Exceptions to this occur in two types of queries: a) the returned structure with
descendants queries, b) the text processing queries, and c) the update queries.

QR3 and QR4 require result XML reconstruction with descendant access, and have response times grow
about 20 times as data size increases about 10 times. Recently, Shanmugasundaram et al. [17,23] have addressed
this problem as they proposed techniques for efficiently publishing and querying XML view of relational data.
However, these techniques were not implemented in COR.

Text-processing queries also scale poorly. There are two types of text processing queries: element content
selection (QS11-QS12), and string distance selection (QS13-QS14). Queries QS11 and QS12 are single table
queries that use a LIKE predicate. The attribute being queried does not have an index in both data sets (the
index wizard chose not to build an index on this attribute). Consequently, in both cases a full scan of the table is
required. The same behavior is seen for queries QS13 and QS14, which also use table scans. However, instead
of using a LIKE predicate (as QS12 did), they use a user-defined function. The costs of these queries also
increases faster than the table size.

Figure 13 indicates that the performance gets worse as data size increases for most of the update queries.
This is because of the complexity of finding and updating the elements that are related to the deleted or inserted
elements. Most of joins used in these update queries are nested loop joins which grow exponentially respective
to the input sizes.

6 Conclusions

We proposed a benchmark that can be used to identify individual data characteristics and operations that may
affect the performance of XML query processing engines. With careful analysis of the benchmark queries,
engineers can diagnose the strengths and weaknesses of their XML databases. In addition, engineers can try
different query processing implementations and evaluate these alternatives with the benchmark. Thus, this
benchmark is a simple and effective tool to help engineers improve system performance.

We have used the benchmark to evaluate three XML systems: a commercial XML system, Timber, and a
commercial Object-Relational DBMS. The results show that the commercial native XML system has substantial
room for performance improvement on most of the queries. The benchmark has already become an invaluable
tool in the development of the Timber native XML database, helping us identify portions of the system that
need performance tuning. Consequently, on most benchmark queries Timber outperforms the other systems. A
notable exception to this behavior is the poor performance of Timber on traditional value-based join queries.

This benchmarking effort also shows that the ORDBMS is sensitive to the method used to translate an XML
query to SQL. While this has been shown to be true for some XML queries in the past [14, 17], we show that
this is also true for simple indirect containment queries, and queries that search for irregular structures. We also
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demonstrate that using recursive SQL one can evaluate any structural query in the benchmark, however, this is
much more expensive in the ORDBMS than the implementations in Timber, which use efficient XML structural
join algorithms.

Finally, we note that the proposed benchmark meets the key criteria for a successful domain-specific bench-
mark that have been proposed in [16]. These key criteria are: relevant, portable, scalable, and simple. The
proposed Michigan benchmark is relevant to testing the performance of XML engines because proposed queries
are the core basic components of typical application-level operations of XML application. Michigan benchmark
is portable because it is easy to implement the benchmark on many different systems. In fact, the data generator
for this benchmark data set is freely available for download from the Michigan benchmark’s web site [26]. It
is scalable through the use of a scaling parameter. It is simple since it comprises only one data set and a set of
simple queries, each designed to test a distinct functionality.
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A Query Selectivity Computation

Each of the benchmark queries was carefully chosen to have a desired selectivity. In this appendix, we describe
the computation of these selectivities, analytically.

For this purpose, we will frequently need to determine the probability of “PickWord”, based on the uniform
distribution of buckets and words in each bucket, as described in Section 3.3. For example, if “PickWord” is
“oneB1”, this indicates that this “PickWord” is the first word in bucket 1. Since there are 16 buckets, and there
is only one word in the first bucket the probability of “oneB1” being picked is 1/16 � ��� ����� � � . Since there are
eight words in the fourth bucket ( ��� 
 � ), the probability of “oneB4” being picked is 1/128 � ��� ����� ����� � .

QR1-QR4. Select all elements with aSixtyFour =1. These queries have a selectivity of 1/64 (1.6%) since
they are selected based on aSixtyFour attribute which has a probability of 1/64.

QS1. Select nodes with aString = “Sing a song of oneB4”. Selectivity is 1/128 (0.8%) since the probability
of “oneB4” is 1/128.

QS2. Select nodes with aString = “Sing a song of oneB1”. Selectivity is 1/16 (6.3%) since the probability
of “oneB1” is 1/16.

QS3. Select nodes with aLevel = 10. Selectivity is 0.7% since the number of nodes at level 10 is 0.7% of
the number of total nodes in the document.

QS4. Select nodes with aLevel = 13. Selectivity is 6.0% since the number of nodes at level 13 is 6.0% of
the number of total nodes in the document.

QS5. Select nodes with aSixtyFour between 5 and 8. Selectivity is 	 � ����� 	�
 ��� ��� � ������ � .
QS6. Select nodes with aLevel = 13 and have the returned nodes sorted by aSixtyFour attribute. Selectivity

is 6.0%.
QS7. Select nodes with attributes aSixteen = 1 and aFour = 1. Selectivity is

��� ����� ��� 	�
 ����� 	 (1.6%)
since the selectivity of nodes with aLevel = 13 is 6.0%.

QS8. Select nodes based on the element name, eOccasional. Selectivity is
����� 	 � ������� � since eOccasional

appears nested under the element with aSixtyFour = 0 and the probability of aSixtyFour = 0 is 1/16.
QS9. Select the second child of every node with aLevel = 7. At level 7, each node has thirteen children.

These children are at level 8 which has the number of nodes = 4.8% of all nodes. Thus, the selectivity of this
query is 4.8%

�
1/13 = 0.4%.

QS10. Select the second child of every node with aLevel = 9. At level 9, each node has two children. These
children are at level 10 which has the number of nodes = 0.7% of all nodes. Thus, the selectivity of this query is
0.7%

�
1/2 = 0.4%.

QS11. Select OccasionalType nodes that have “oneB4” in the element content. Since there is approxi-
mately one OccasionalType node in every 64 BaseType nodes, the overall selectivity is � ��� � � � � � � � ����� 	 ��
����� � � (0.2%).

QS12. Select nodes that have “oneB4” as substring in element content. The probability of “oneB4” being
picked 1/128. Although this string can also arise in bucket 16, the probability there is much smaller � 


���
, and

hence can be ignored. There are 16 “PickWord”s in the content of each element, so 16 opportunities for this
predicate to be satisfied at each element, giving an overall selectivity of 16/128 (12.5%).

QS13. Select all nodes with element content that the distance between keyword “oneB5” and keyword
“twenty” is not more than four. The probability of any one occurrence of “oneB5” being selected is 1/256.
There are two placeholders that “oneB5” can be at and that has the distance to “twenty” not more than four.
Thus, the overall selectivity is � ��� � ��� � � ��
 ��� � � � (0.8%).

QS14. Select all nodes with element content that the distance between keyword “oneB2” and keyword
“twenty” is not more than four. There are two occurrences of “PickWord” within four words of “twenty” and
14 occurrences that are further away. The probability of any one occurrence of “oneB2” being selected is 1/32.
Thus, the overall selectivity is � ����� � � � ��
 ��� ���

(6.3%).
QS15. Select the second element below each element with aFour = 1 if that second element also has aFour

= 1. Let ��� is the number of nodes at level � and ��� 
 � is the number of fanout at level � � �
. Then, the number

of the second element nodes is � ��� ������ � ��� � � � � ��� ��� 
 � �"!
��� � . Since the selectivity of the element with aFour
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=1 is 1/4, then probability that the second element that has aFour = 1 and that its parent has aFour = 1 is 1/16.
Thus, the overall selectivity of this query is � ��� � � � � ��� ��� � 
 ����� � (3.1%).

QS16. Select the second element with aFour = 1 below any element with aSixtyFour = 1. This query
returns at most one element.

QS17. Among the children with aSixteen = 1 of the parent element with aLevel = 13, select the last one.
Approximately 5.95% of the nodes are at level 13, and each has two children. Almost 1/8 of these will have at
least one child that satisfies the former predicate (from among whom the last one must be returned in this query).
Thus, the overall query selectivity is

� � ��������� �����
= 0.7%.

QS18. Select nodes with aLevel = 13 that have a child with aSixteen = 3. The first predicate has a
selectivity of 5.95%, and the second predicate has a selectivity of 1/16. Since each node at level 13 has two
children, there are two opportunities to satisfy the child predicate. Therefore the overall selectivity of this query
is

� � ��������� � ��� ��� � � � = 0.7%.
QS19. Select nodes with aLevel = 15 that have a child with aSixtyFour = 3. The first predicate has a

selectivity of 23.78%, and the second predicate has a selectivity of 1/64. Following the same argument as above,
the selectivity of the query as a whole is still 0.7%.

QS20. Select nodes with aLevel = 11 that have a child with aFour = 3. The first predicate has a selectivity
of 1.49%, and the second predicate has a selectivity of 1/4. Following the same argument as above, the selectivity
of the query as a whole is still 0.7%.

QS21. Select nodes with aLevel = 13 that have a descendant with aSixteen = 3. The first predicate has
selectivity of 0.0595. Since each node at level 13 has 14 descendants, the probability that none of these 14 nodes
satisfy the second predicate is � � � � ��� ��� � � � � . Thus, the probability that a given selected ancestor node has
any descendant that satisfies the second predicate is

� � � � � � ��� ��� � � � � � . Therefore, the overall selectivity is
� � ��������� � � � � � � � ��� ��� � � � � � = 3.5%.

QS22. Select nodes with aLevel = 15 that have a descendant with aSixtyFour = 3. The first predicate
has selectivity of 0.24. Since a node at level 15 only has no descendant other than its own two children, the
probability that none of these two nodes satisfy the second predicate is � � � � ����� 	 � � � . The overall selectivity is
� � � 	 � � � � � � � � ����� 	 � � � � = 0.7%.

QS23. Select nodes with aLevel = 11 that have a descendant with aFour = 3. The first predicate has
selectivity of 1.5. Since each level 11 node has 62 descendants, the probability that none of these 62 nodes
satisfy the second predicate is � � � � ��� 	 � � � � . The selectivity of the query as a whole is

����� � � � � � � � � ��� 	 � � � � �
= 1.5%.

QS28. This query is to test the choice of join order in evaluating a complex query. To achieve the desired
selectivities, we use the following predicates: aFour =3, aSixteen=3, aSixteen=5 and aLevel=16. The prob-
ability of aFour = 3 is 1/4, and of aSixteen = 3(5) is 1/16, and the probability of aLevel = 16 is 0.47. Thus,
the selectivity of this query is

��� 	 � ��� ����� ��� ��� � � � 	�� = 0.0%.
QS29. Select parent nodes with aLevel=11 that have a child with aFour=3, and another child with

aSixtyFour=3. The probability of aLevel=11 is 0.015, that of aFour=3 is 1/4, and that of aSixtyFour=3 is
1/64. Thus, the selectivity of this query is

� � � ����� ��� 	 � ����� 	 = 0.0%.
QS30. Select parent nodes with aFour=1 that have a child with aLevel=11 and another child with aSix-

tyFour=3. The probability of aFour=1 is 0.25, that of aLevel=11 is 0.015, and that of aSixtyFour=3 is 1/64.
Thus, the selectivity of this query is

� � � � � � � � ����� ����� 	 = 0.0%.
QS32. Select nodes with aLevel = 11 that have a descendant with aFour =3 and another descendant with

aSixtyFour = 3. The first predicate has selectivity of 0.015. Since a node at level 11 has 62 descendants.
The probability that none of these descendants satisfy aFour=3 and aSixtyFour = 3 are � � � � � � ��� 	 � � � � and
( � � � � � � ����� 	 � � � � ), respectively. Thus, the overall selectivity is

� � � ��� � � � � � � � � ��� 	 � � � � � � � � � � � ����� 	 � � � �
= 0.9%.

QJ1. Select nodes with aSixtyFour = 2 and join with themselves based on the equality of aUnique1
attribute. The probability of aSixtyFour = 2 is 1/64, thus the selectivity of this query is 1/64 (1.6%).

QJ2. Select nodes with aSixteen = 2 and join with themselves based on the equality of aLevel attribute.
The probability of aSixteen = 2 is 1/16, thus the selectivity of this query is 1/16 (6.3%).
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QJ3. Select all OccasionalType nodes that point to a node with aSixtyFour =3. This query returns 1/64
of all the OccasionalType nodes, and the probability of OccasionalType nodes is 1/64. Thus, the selectivity
of this query is

����� 	 � ����� 	�
 ��� 	 � ��� (0.02%).
QJ4. Select all OccasionalType nodes that point to a node with aFour =3. This query returns 1/4 of all the

eOccasional nodes, and the probability of OccasionalType nodes is 1/64. Thus, the selectivity of this query
is

��� 	 � ����� 	 
 ��� � ��� (0.4%).
QA1. Compute the average value for the aSixtyFour attribute for all nodes at level 15. This query returns

only one node which contains the average value.
QA2. Compute the average value for the aSixtyFour attribute for all nodes at each level. This query returns

16 nodes which contains the average values for 16 levels.
QA3. Select elements that have at least two occurrences of keyword “oneB1” in their content. There are

16 “PickWord”s in the element content. The probability that “PickWord” is replaced with “oneB1” is 1/16, and
the probability that “PickWord” is not replaced with “oneB1” is 15/16. Let

���
(“oneB1”) be the probability that

there are � occurrences of “oneB1.” Then,
���

(“oneB1”) = � ������ � � ��� ��� �
� � � ��� � ��� � ��� 


�
. The probability that

there are at least two occurrences of “oneB1” is
� �

�	�
(“oneB1”) -

� � (“oneB1”) = 1 - 0.36 - 0.38 = 0.3. Thus,
the selectivity of this query is 0.3%.

QA4. Amongst the nodes at level 11, find the node(s) with the largest fanout. 1/64 of the nodes are at level
11. Most nodes at this level have exactly two children. But 1/64 of these nodes also have a third child, of type
eOccasional. These are the nodes that must be returned. Thus, selectivity is

����� 	 � ����� 	�
 ��� 	 � ��� (0.02%).
QA5. Select elements that have at least two children that satisfy aFour = 1. About 50% of the database

nodes are at level 16 and have no children. Except about 2% of the remainder, all have exactly two children,
and both must satisfy the predicate for the node to qualify. The selectivity of the predicate is 1/4. So the overall
selectivity of this query is � ��� � � � � ��� 	 � � � ��� 	 � 
 ����� � (3.1%)

QA6. For each node at level 7, determine the height of the sub-tree rooted at this node. Nodes at level 7 are
0.4% of all nodes, thus the selectivity of this query is 0.4%.

B SQL Queries for Mbench

First, we show the SQL schema for the SQL queries and then we present each SQL query.
The SQL schema is as follows:

CREATE TABLE eNest(eNest_ID integer not null,
eNest_parentID integer not null,
eNest_parentCODE varchar(50),
eNest_childOrder integer not null,
eNest_aUnique1 integer not null,
eNest_aUnique2 integer not null,
eNest_aLevel integer not null,
eNest_aFour integer not null,
eNest_aSixteen integer not null,
eNest_aSixtyFour integer not null,
eNest_aString varchar(40),
eNest_val varchar(600),
primary key (eNest_ID));

CREATE TABLE eOccasional(eOccasional_ID integer not null,
eOccasional_parentID integer not null,
eOccasional_parentCODE varchar(50),
eOccasional_childOrder integer not null,
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eOccasional_aRef integer not null,
eOccasional_val varchar(550),
primary key (eOccasional_ID));

� QR1: Select all elements with aSixtyFour = 2 (Return only the element in question

select eNest_aUnique1
from eNest
where eNest_aSixtyFour = 2;

� QR2: Select all elements with aSixtyFour = 2 (Return the element and all its immediate children)

create table tmp2_qr2(aUnique1ID integer, ID integer);
create table tmp1_qr2(parentID integer, childID integer);

-- contains all elements with aSixtyFour = 2
delete from tmp2_qr2;
insert into tmp2_qr2
select eNest_aUnique1, eNest_ID
from eNest
where eNest_aSixtyFour = 2;

-- contains elements with aSixtyFour = 2 that have eNest children
delete from tmp1_qr2;
insert into tmp1_qr2
select p.aUnique1ID as parentID, c.eNest_aUnique1 as childID
from tmp2_qr2 p
left outer join

eNest c
on p.ID = c.eNest_parentID;

insert into tmp1_qr2
select p.aUnique1ID as parentID, c.eOccasional_aRef as childID
from tmp2_qr2 p,

eOccasional c
where p.ID = c.eOccasional_parentID;

select parentID, count(childID)
from tmp1_qr2
group by parentID;

� QR3: Select all elements with aSixtyFour = 2 (Return the entire subtree)

drop view tmp1_qr3;
create view tmp1_qr3 as
-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’ancestor’ to
-- store the descendants of ’eNest’ nodes with
-- ’aSixtyFour’ = 2
select rootID, ID
from ancestor;

select r.eNest_aUnique1, count(d.eNest_aUnique1)
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from eNest r, eNest d, tmp1_qr3
where r.eNest_ID = tmp1_qr3.rootID
and d.eNest_ID = tmp1_qr3.ID
group by r.eNest_aUnique1;

� QR4: Select all elements with aSixtyFour = 2 and selected descendants with aFour = 1

create table tmp2_qr4(aUnique1 integer, numD integer);
create table tmp3_qr4(aUnique1 integer, numD integer);

drop view tmp1_qr4;
create view tmp1_qr4 as
-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’ancestor’ to
-- store the descendants with ’aFour’ = 1 with
-- ’eNest’ nodes with ’aSixtyFour’ = 2
select rootID, ID
from ancestor;

delete from tmp2_qr4;
insert into tmp2_qr4
select r.eNest_aUnique1, count(d.eNest_aUnique1)
from eNest r, eNest d, tmp1_qr4
where r.eNest_ID = tmp1_qr4.rootID
and d.eNest_ID = tmp1_qr4.ID
and d.eNest_aFour = 1
group by r.eNest_aUnique1;

delete from tmp3_qr4;
insert into tmp3_qr4
select eNest_aUnique1,0
from eNest
where eNest_aSixtyFour = 2;

select t1.aUnique1, t2.numD
from tmp3_qr4 t1
left outer join
tmp2_qr4 t2
on t1.aUnique1 = t2.aUnique1;

� QS1: Select elements with aString = ’Sing a song of oneB4’

select eNest_aUnique1
from eNest e
where eNest_aString = ’Sing a song of oneB4’;

� QS2: Select elements with aString = ’Sing a song of oneB1’

select eNest_aUnique1
from eNest e
where eNest_aString = ’Sing a song of oneB1’;

� QS3: Select elements with aLevel = 10
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select eNest_aUnique1
from eNest e
where eNest_aLevel = 10;

� QS4: Select elements with aLevel = 13

select eNest_aUnique1
from eNest e
where eNest_aLevel = 13;

� QS5: Select nodes that have aSixtyFour between 5 and 8.

select eNest_aUnique1
from eNest
where eNest_aSixtyFour between 5 and 8;

� QS6: Select nodes with aLevel = a13 and have the returned nodes sorted by aSixtyFour attribute.

select eNest_aUnique1
from eNest
where eNest_aLevel = 13
order by eNest_aSixtyFour;

� QS7: Select nodes with aSixteen = 1 and aFour = 1.

select eNest_aUnique1
from eNest e
where eNest_aFour = 1
and eNest_aSixteen = 1;

� QS8: Select nodes with the element name, eOccasional

select eOccasional_aRef
from eOccasional e;

� QS9: Select the second child of every node with aLevel = 7

select eChild.eNest_aUnique1
from eNest eParent, eNest eChild
where eParent.eNest_aLevel = 7
and eChild.eNest_childOrder = 2
and eParent.eNest_ID = eChild.eNest_parentID
and eParent.eNest_parentCODE = ’eNest’;

� QS10: Select the second child of every node with aLevel = 9

select eChild.eNest_aUnique1
from eNest eParent, eNest eChild
where eParent.eNest_aLevel = 9
and eChild.eNest_childOrder = 2
and eParent.eNest_ID = eChild.eNest_parentID
and eParent.eNest_parentCODE = ’eNest’;

� QS11: Get ‘eOccasional’ nodes that have element content contains “oneB4”

select eOccasional_aRef
from eOccasional e
where eOccasional_val like ’%oneB4%’;
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� QS12: Get nodes that have element content contains “oneB4”

select eNest_aUnique1
from eNest e
where eNest_val like ’%oneB4%’;

� QS13: select all nodes with element content that the distance between keyword “oneB5” and the keyword
“twenty” is not more than four

select eNest_aUnique1
from eNest
where eNest_val like ’%oneB5%’
and isRightDist(eNest_val, ’twenty ’, ’oneB5’,4) = 1;

� QS14: select all nodes with element content that the distance between keyword “oneB2” and the keyword
“twenty” is not more than four

select eNest_aUnique1
from eNest
where eNest_val like ’%oneB2%’
and isRightDist(eNest_val, ’twenty ’, ’oneB2’,4) = 1;

� QS15: Select the second element below each element with aFour = 1 if that second element also has aFour
= 1.

select eParent.eNest_aUnique1
from eNest eParent, eNest eChild
where eParent.eNest_aFour = 1
and eChild.eNest_aFour = 1
and eParent.eNest_ID = eChild.eNest_parentID
and eParent.eNest_parentCODE = ’eNest’
and eChild.eNest_childOrder = 2;

� QS16: Select the second element with aFour = 1 below any element with aSixtyFour = 1

-- 1) Select element with aSixtyFour = 1 -- 2) Select the second
element of the element in 1) -- and fetch only the first row

select eChild.eNest_aUnique1
from eNest eChild,
(select eParent.eNest_ID
from eNest eParent
where eParent.eNest_aSixtyFour = 1) as tmp(eParentID)
where eChild.eNest_aFour = 1
and eChild.eNest_childOrder = 2
and eChild.eNest_parentID = eParentID
and eChild.eNest_parentCODE = ’eNest’ fetch first 1 rows only;

� QS17: Reverse ordering. Among the children with aSixteen = 1 of the parent element with aLevel = 13,
select the last child.

-- 1) find the ID of element that has the last order -- 2) get the
element that has the matching ID -- found in 1) and that has
aSixteen = 1

drop view tmp1_qs20;
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create view tmp1_qs20(parentID, ID, cOrder)
as select eChild.eNest_parentID, eChild.eNest_ID,

eChild.eNest_childOrder
from eNest eParent, eNest eChild
where eParent.eNest_aLevel = 13
and eChild.eNest_aSixteen = 1
and eChild.eNest_parentID = eParent.eNest_ID
and eChild.eNest_parentCODE = ’eNest’;

drop view tmp3_qs20;
create view tmp3_qs20(parentID, ID) as
select t1.parentID, ID
from tmp1_qs20 t1,
(select parentID, max(cOrder)
from tmp1_qs20 t2
group by t2.parentID) as tmp2_qs20(parentID, order)
where t1.parentID = tmp2_qs20.parentID
and t1.cOrder = tmp2_qs20.order;

select eNest_aUnique1
from eNest c, tmp3_qs20
where c.eNest_ID = tmp3_qs20.ID;

� QS18: Select nodes with aLevel = 13 that have a child with aSixteen = 3

select eParent.eNest_aUnique1
from eNest eParent, eNest eChild
where eParent.eNest_aLevel = 13
and eChild.eNest_aSixteen = 3
and eParent.eNest_ID = eChild.eNest_parentID
and eParent.eNest_parentCODE = ’eNest’;

� QS19: Select nodes with aLevel = 15 that have a child with aSixtyFour = 3

select eParent.eNest_aUnique1
from eNest eParent, eNest eChild
where eParent.eNest_aLevel = 15
and eChild.eNest_aSixtyFour = 3
and eParent.eNest_ID = eChild.eNest_parentID
and eParent.eNest_parentCODE = ’eNest’;

� QS20: Select nodes with aLevel = 11 that have a child with aFour = 3

select eParent.eNest_aUnique1
from eNest eParent, eNest eChild
where eParent.eNest_aLevel = 11
and eChild.eNest_aFour = 3
and eParent.eNest_ID = eChild.eNest_parentID
and eParent.eNest_parentCODE = ’eNest’;

� QS21: Select nodes with aLevel = 13 that have a descendant with aSixteen = 3

-- vendor specific call for recursive query removed
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-- recursive join ’eNest’ table and ’ancestor’ to
-- store the ancestor of ’eNest’ nodes
-- with ’aSixteen’ = 3
select distinct eNest_aUnique1
from eNest, ancestor
where eNest.eNest_ID = ancestor.ID
and eNest.eNest_aLevel = 13;

� QS22: Select nodes with aLevel = 15 that have a descendant with aSixtyFour = 3

-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’ancestor’ to
-- store the ancestor of ’eNest’ nodes
-- with ’aSixtyFour’ = 3
select distinct eNest_aUnique1
from eNest, ancestor
where eNest.eNest_ID = ancestor.ID
and eNest.eNest_aLevel = 15;

� QS23: Select nodes with aLevel = 11 that have a descendant with aFour = 3

-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’descendant’ to
-- store the descendants of ’eNest’ nodes
-- with ’aLevel’ = 11
select distinct e1.eNest_aUnique1
from descendant d, eNest e1, eNest e2
where d.rootID = e1.eNest_ID
and e1.eNest_aLevel = 11
and d.ID = e2.eNest_ID
and e2.eNest_aFour = 3;

� QS24: Select nodes with aSixteen = 3 that have a descendant with aSixteen = 5

-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’ancestor’ to
-- store the ancestor of ’eNest’ nodes with ’aSixteen’ = 5
select distinct eNest_aUnique1
from eNest, ancestor
where eNest.eNest_ID = ancestor.ID
and eNest.eNest_aSixteen = 3;

� QS25: Select nodes with aFour = 3 that have a descendant with aSixtyFour= 3

-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’tmp1_qs25’ to
-- store the ancestor of ’eNest’ nodes
-- with ’aSixtyFour’ = 3
select distinct eNest_aUnique1
from eNest, ancestor
where eNest.eNest_ID = ancestor.ID
and eNest.eNest_aFour = 3;

� QS26: Select nodes with aSixtyFour = 9 that have a descendant with aFour = 3
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-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’descendant’ to
-- store the descendants of ’eNest’ nodes
-- with ’aFour’ = 3
select distinct eNest_aUnique1
from eNest e1, eNest e2, descendant d
where d.rootID = e1.eNest_ID
and e1.eNest_aSixtyFour = 9
and d.ID = e2.eNest_ID
and eNest.eNest_aFour = 3;

� QS27: Select nodes with aSixtyFour = 9 that have a descendant with aFour = 3. Return a pair of ancestor
and descendant nodes

-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’descendant’ to
-- store the ancestor of ’eNest’ nodes
-- with ’aFour’ = 3
select distinct e1.eNest_aUnique1, e2.eNest_aUnique1
from eNest e1, eNest e2, descendant d
where d.rootID = e1.eNest_ID
and e1.eNest_aSixtyFour = 9
and d.ID = e2.eNest_ID
and eNest.eNest_aFour = 3;

� QS28: One chain query with three parent-child joins with the selectivity pattern: high-low-low-high, to
test the choice of join order in evaluating a complex query. To achieve the desired selectivities, we use the
following predicates: aFour = 3, aSixteen = 3, aSixteen = 5, and aLevel = 16

select distinct node1.eNest_aUnique1
from eNest node1, eNest node2, eNest node3,

eNest node4
where node1.eNest_aFour = 3
and node2.eNest_aSixteen = 3
and node3.eNest_aSixteen = 5
and node4.eNest_aLevel = 16
and node2.eNest_parentID = node1.eNest_ID
and node2.eNest_parentCODE = ’eNest’
and node3.eNest_parentID = node2.eNest_ID
and node3.eNest_parentCODE = ’eNest’
and node4.eNest_parentID = node3.eNest_ID
and node4.eNest_parentCODE = ’eNest’;

� QS29: One twig query with two parent child selection, low selectivity of parent aLevel = 11, high selec-
tivity of left child aFour = 3, and low selectivity of right child aSixtyFour = 3

select distinct eParent.eNest_aUnique1
from eNest eParent, eNest eChild1, eNest eChild2
where eParent.eNest_aLevel = 11
and eChild1.eNest_aFour = 3
and eChild2.eNest_aSixtyFour = 3
and eChild1.eNest_parentID = eParent.eNest_ID
and eChild1.eNest_parentCODE = ’eNest’
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and eChild2.eNest_parentID = eParent.eNest_ID
and eChild2.eNest_parentCODE = ’eNest’
and eChild1.eNest_ID <> eChild2.eNest_ID;

� QS30: One twig query with two parent child selection, low selectivity of parent aFour = 1, low selectivity
of left child aLevel = 11, and low selectivity of right child aSixtyFour = 3

select distinct eParent.eNest_aUnique1
from eNest eParent, eNest eChild1, eNest eChild2
where eParent.eNest_aFour = 1
and eChild1.eNest_aLevel = 11
and eChild2.eNest_aSixtyFour = 3
and eChild1.eNest_parentID = eParent.eNest_ID
and eChild1.eNest_parentCODE = ’eNest’
and eChild2.eNest_parentID = eParent.eNest_ID
and eChild2.eNest_parentCODE = ’eNest’
and eChild1.eNest_ID <> eChild2.eNest_ID;

� QS31: One chain query with three ancestor-descendant joins with the selectivity pattern: high-low-low-
high, to test the choice of join order in evaluating a complex query. To achieve the desired selectivities,
we use the following predicates: aFour = 3, aSixteen = 3, aSixteen = 5, and aLevel = 16

create table tmp2_qs31(aID integer);
create table tmp3_qs31(aID integer);
create table tmp4_qs31(aID integer);
create table tmp5_qs31(ID integer);

drop view tmp1_qs31
create view tmp1_qs31(aID) as
-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’ancestor1’ to
-- store the ancestors of ’eNest’ nodes
-- with ’aLevel’ = 16
select distinct ID
from ancestor1;

delete from tmp2_qs31;
insert into tmp2_qs31
select a.eNest_ID as aID
from eNest a, tmp1_qs31
where a.eNest_ID = tmp1_qs31.ID
and a.eNest_aSixteen = 5;

delete from tmp3_qs31;
insert into tmp3_qs31
-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’tmp2_qs31’ to
-- store the ancestors of ’eNest’ nodes
-- with ’aLevel’ = 16 that have ancestor nodes
-- with ’aSixteen’ = 5 in ’tmp3_qs31’
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select distinct ID
from ancestor2;

delete from tmp4_qs31;
insert into tmp4_qs31
select a.eNest_ID as aID
from eNest a, tmp3_qs31
where a.eNest_ID = tmp3_qs31.ID
and a.eNest_aSixteen = 3;

-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’tmp4_qs31’ to
-- store the ancestors of ’eNest’ nodes with
-- ’aLevel’ = 16 that have ancestor nodes with
-- ’aSixteen’ = 5, and that have ancestor nodes with
-- ’aSixteen’ = 3 in ’tmp5_qs31’
select distinct a.eNest_aUnique1
from eNest a, tmp5_qs31
where a.eNest_ID = tmp5_qs31.ID
and a.eNest_aFour = 3;

� QS32: One twig query with two ancestor descendant selection, low selectivity of ancestor aLevel = 11,
high selectivity of one descendant aFour = 3, and low selectivity of another descendant aSixtyFour = 3

create table tmp1_qs32(aUnique1 integer);
create table tmp2_qs32(aUnique1 integer);

delete from tmp1_qs32;
insert into tmp1_qs32
-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’tmp1_qs32’ to
-- store the ancestors of ’eNest’ nodes
-- with ’aSixtyFour’ = 3
select distinct eNest_aUnique1
from ancestor, eNest
where eNest_aLevel = 11
and eNest_ID = ID;

delete from tmp2_qs32;
insert into tmp2_qs32
-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’tmp2_qs32’ to
-- store the ancestors of ’eNest’ nodes
-- with ’aFour’ = 3
select distinct eNest_aUnique1
from ancestor, eNest
where eNest_aLevel = 11
and eNest_ID = ID;

select tmp1_qs32.aUnique1
from tmp1_qs32, tmp2_qs32
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where tmp1_qs32.aUnique1 = tmp2_qs32.aUnique1;

� QS33: One twig query with two ancestor descendant selection, low selectivity of ancestor aFour = 1, low
selectivity of one descendant aLevel = 11, and low selectivity of another descendant aSixtyFour = 3

drop view tmp1_qs33;
create view tmp1_qs33(ID, aUnique1) as
-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’ancestor’ to
-- store the ancestors of ’eNest’ nodes
-- with ’aLevel’ = 11
select distinct ID, eNest_aUnique1
from ancestor, eNest
where eNest_aFour = 1
and eNest_ID = ID;

drop view tmp2_qs33;
create view tmp2_qs33(ID, aUnique1) as
-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’ancestor’ to
-- store the ancestors of ’eNest’ nodes
-- with ’aSixtyFour’ = 3
select distinct ID, eNest_aUnique1
from ancestor, eNest
where eNest_aFour = 1
and eNest_ID = ID;

select tmp1_qs33.aUnique1
from tmp1_qs33, tmp2_qs33
where tmp1_qs33.ID = tmp2_qs33.ID;

� QS34: One twig query with two ancestor descendant selection, low selectivity of ancestor aFour = 1, low
selectivity of a child with aLevel = 11, and low selectivity of another descendant aSixtyFour = 3

-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’ancestor’ to
-- store the ancestors of ’eNest’ nodes
-- with ’aSixtyFour’ = 3
select distinct a.eNest_aUnique1
from eNest a, ancestor, eNest c
where a.eNest_ID = ancestor.ID
and c.eNest_parentID = a.eNest_ID
and c.eNest_parentCODE = ’eNest’
and c.eNest_aLevel = 11
and a.eNest_aFour = 1;

� QS35: Missing Elements. Find all BaseType elements such that there is no OccasionalType elements
below them.

1) Find all BaseType elements that have some OccasionalType elements below them.

2) Left outer join between all BaseType elements and BaseType elements that have OccasionalType ele-
ments below them.
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create table tmp1(ID integer, hasOccasional integer);

delete from tmp1;
insert into tmp1;
-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’subeNest’ to
-- store ’eNest’ nodes that have ’eOccasional’
-- as descendants
select distinct ID, hasOccasional
from subeNest;

drop view tmp2;
create view tmp2(aUnique1, hasOccasional) as
select eNest_aUnique1, t.hasOccasional
from eNest c
left outer join
tmp t
on t.ID = c.eNest_ID;

select aUnique1 from tmp2
where hasOccasional is null;

� QJ1: Select nodes based on aSixtyFour = 2 and join with themselves based on the equality value of
aUnique1.

select e1.eNest_aUnique1, e2.eNest_aUnique1
from eNest e1, eNest e2
where e1.eNest_aSixtyFour = 2
and e1.eNest_aSixtyFour = e2.eNest_aSixtyFour
and e1.eNest_aUnique1 = e2.eNest_aUnique1;

� QJ2: Select nodes based on aSixteen = 2 and join with themselves based on the equality value of aUnique1.

select e1.eNest_aUnique1, e2.eNest_aUnique1
from eNest e1, eNest e2
where e1.eNest_aSixteen = 2
and e1.eNest_aSixteen = e2.eNest_aSixteen
and e1.eNest_aUnique1 = e2.eNest_aUnique1;

� QJ3: Select all OccasionalType nodes that point to a node with aSixtyFour = 3

select eOccasional_aRef
from eOccasional, eNest
where eNest_aSixtyFour = 3
and eNest_aUnique1 = eOccasional_aRef;

� QJ4: Select all OccasionalType nodes that point to a node with aFour = 3

select eOccasional_aRef
from eOccasional, eNest
where eNest_aFour = 3
and eNest_aUnique1 = eOccasional_aRef;

� QA1: Over all nodes at level 15, compute the average value for the aSixtyFour attribute
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select avg(eNest_aSixtyFour)
from eNest
where eNest_aLevel = 15;

� QA2: Over all nodes at all levels, compute the average value for the aSixtyFour attribute

select eNest_aLevel, avg(eNest_aSixtyFour)
from eNest
group by eNest_aLevel;

� QA3: Select elements that have at least two occurrences of keyword “oneB1” in their content

select eNest_aUnique1
from eNest
where eNest_val like ’%oneB1%’
and isNumKeysGTE(eNest_val,’oneB1’,2) = 1;

� QA4: Amongst the nodes at level 11, find the node(s) with the largest fanout.

1) find number of children of each node at level 11

2) find nodes that have the number of children equal to the the largest number of children.

CREATE TABLE tmp1_qa3(pID integer, cID integer);
CREATE TABLE tmp2_qa3(pID integer, numC integer);

delete from tmp1_qa3;
insert into tmp1_qa3;
select distinct p.eNest_ID, c.eNest_ID
from eNest p, eNest c
where c.eNest_parentID = p.eNest_ID
and p.eNest_aLevel = 11
union
select distinct p.eNest_ID, c.eOccasional_aRef
from eNest p, eOccasional c
where c.eOccasional_parentID = p.eNest_ID
and p.eNest_aLevel = 11;

delete from tmp2_qa3;
insert into tmp2_qa3
select pID, count(cID)
from tmp1_qa3
group by pID;

drop view tmp3_qa3;
create view tmp3_qa3(maxNumC) as
select distinct max(numC)
from tmp2_qa3;

select distinct eNest_aUnique1
from eNest, tmp2_qa3, tmp3_qa3
where eNest.eNest_ID = tmp2_qa3.pID
and numC = maxNumC;

� QA5: select elements that have at least two children that satisfy aFour = 1
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select distinct eParent.eNest_aUnique1
from eNest eParent, eNest eChild1, eNest eChild2
where eChild1.eNest_aFour = 1
and eChild2.eNest_aFour = 1
and eChild1.eNest_parentID = eParent.eNest_ID
and eChild1.eNest_parentCODE = ’eNest’
and eChild2.eNest_parentID = eParent.eNest_ID
and eChild2.eNest_parentCODE = ’eNest’
and eChild1.eNest_ID <> eChild2.eNest_ID;

� QA6: For each node at level 7, determine the height of the sub-tree rooted at this node

drop view tmp1_qa6;
create view tmp1_qa6 as
select max(eNest_aLevel) as maxLevel
from eNest;

-- vendor specific call for recursive query removed
-- recursive join ’eNest’ table and ’tmp1_qa6’ to
-- store the ancestors of ’eNest’ nodes that
-- have maximum level and keep track the height of
-- each node. At the end, output the ID and the height
-- of nodes with ’aLevel’ = 7
select distinct uniqueID, height
from desc
where level = 7;

� QU1: Point Insert. Insert a new node below the node with aUnique1 = 10102

drop view tmp1_qu1;
create view tmp1_qu1(parentID, stringVal) as
select eNest_ID, eNest_val
from eNest
where eNest_aUnique1 = 10102;

insert into eNest
select 70000, parentID, ’eNest’, 1, 70000, 3000, 10, 3, 15, 60,
’Sing a song of oneB11’, stringVal
from tmp1_qu1;

� QU2: Delete the node with aUnique1 = 10102 and transfer all its children to its parent.

update eNest
set eNest_parentID =
(select eNest_parentID
from eNest
where eNest_aUnique1 = 10102)
where eNest_parentID =
(select eNest_ID
from eNest
where eNest_aUnique1 = 10102);

-- delete the node with aUnique1 = 10102
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delete from eNest
where eNest_aUnique1 = 10102;

� QU3: Insert a new node below each node with aSixtyFour = 1. Each new node has attributes identical to
its parent, except for aUnique1, which is set to some new large, unique value, not necessarily contiguous
with the values already assigned in the database.

drop view tmp1_qu3;
create view tmp1_qu3(eNest_ID, eNest_parentID, eNest_parentCODE,

eNest_childOrder, eNest_aUnique1, eNest_aUnique2,
eNest_aLevel, eNest_aFour, eNest_aSixteen,
eNest_aSixtyFour, eNest_aString, eNest_val) as

select eNest_ID + 70000, eNest_ID, eNest_parentCODE, eNest_childOrder,
eNest_aUnique1, eNest_aUnique2, eNest_aLevel, eNest_aFour,
eNest_aSixteen, eNest_aSixtyFour, eNest_aString, eNest_val

from eNest
where eNest_aSixtyFour = 1;

insert into eNest
select *
from tmp1_qu3;

� QU4. Bulk Delete. Delete all leaf nodes with aSixteen = 3.

delete from eNest
where eNest_parentID not in
(select eNest_ID
from eNest)
and eNest_aSixteen = 3;

� QU5. Bulk Load. Load the original data set from a (set of) document(s).

load from eNest.txt of del modified by coldel| insert into eNest;
load from eOccasional.txt of del modified by coldel| insert into eOccasional;

� QU6. Bulk Reconstruction. Return a set of documents, one for each sub-tree rooted at level 11 (have
aLevel=11) and with a child of type OccasionalType.

with ancestor(rootID, ID) as
(select eNest_ID, eNest_ID
from eNest, eOccasional
where eNest_ID = eOccasional_parentID
and eNest_aLevel = 11
UNION ALL
select a.rootID, eNest_ID
from eNest e, ancestor a
where a.ID = e.eNest_parentID)
select e.eNest_aUnique1, count(a.ID)
from ancestor a, eNest e
where a.rootID = e.eNest_ID
group by e.eNest_aUnique1;

� QU7. Restructuring. For a node � of type eOccasional, let � be the parent of � , and � be the parent of
� in the database. For each such node � , make � a direct child of � in the same position as � , and place �

(along with the sub-tree rooted at � ) under � .
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drop table tmp1_qu7;

create table tmp1_qu7(eNest_ID integer, eNest_parentCODE varchar(50),
eNest_childOrder integer,
eNest_aUnique1 integer, eNest_aUnique2 integer, eNest_aLevel integer,
eNest_aFour integer,
eNest_aSixteen integer, eNest_aSixtyFour integer,
eNest_aString varchar(40), eNest_val varchar(550));

insert into tmp1_qu7
select eNest_ID, eNest_parentCODE, eNest_childOrder, eNest_aUnique1,
eNest_aUnique2, eNest_aLevel, eNest_aFour, eNest_aSixteen,
eNest_aSixtyFour, eNest_aString, eNest_val
from eNest, eOccasional
where eNest_ID = eOccasional_parentID;

drop table tmp2_qu7;

create table tmp2_qu7(ID integer, parentID integer);

insert into tmp2_qu7
select eNest_ID as ID, eOccasional_ID as parentID
from eOccasional, eNest
where eNest_ID = eOccasional_parentID;

drop table tmp3_qu7;

create table tmp3_qu7(eNest_ID integer, eNest_parentID integer,
eNest_parentCODE varchar(50),
eNest_childOrder integer,
eNest_aUnique1 integer, eNest_aUnique2 integer, eNest_aLevel integer,
eNest_aFour integer,
eNest_aSixteen integer, eNest_aSixtyFour integer,
eNest_aString varchar(40), eNest_val varchar(550));

insert into tmp3_qu7
select t1.eNest_ID, t2.parentID, t1.eNest_parentCODE, t1.eNest_childOrder,
t1.eNest_aUnique1,
t1.eNest_aUnique2, t1.eNest_aLevel, t1.eNest_aFour, t1.eNest_aSixteen,
t1.eNest_aSixtyFour, t1.eNest_aString, t1.eNest_val
from tmp1_qu7 t1, tmp2_qu7 t2
where t1.eNest_ID = t2.ID;

delete from eNest
where eNest_ID in
(select eOccasional_parentID
from eOccasional);

insert into eNest
select * from tmp3_qu7;
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update eOccasional u
set u.eOccasional_parentID =
(select v.eNest_parentID
from eNest v
where v.eNest_ID = u.eOccasional_parentID);

C XPath Queries for MBench
� QR1: Select all elements with aSixtyFour = 2 (Return only the element in question)

//eNest[@aSixtyFour=2]/@aUnique1

� QR2: Select all elements with aSixtyFour = 2 (Return the element and all its immediate children)

//eNest[@aSixtyFour=2]

� QR3: Select all elements with aSixtyFour = 2 (Return the entire subtree)

//eNest[@aSixtyFour=2]/@aUnique1

� QR4: Select all elements with aSixtyFour = 2 and selected descendants with aFour = 1

//eNest[@aSixtyFour=2]/@aUnique1|//eNest[@aSixtyFour=2]//eNest[@aFour=1]/@aUnique1

� QS1: Select elements with aString = ’Sing a song of oneB4’

//eNest[@aString = ’Sing a song of oneB4’]/@aUnique1

� QS2: Select elements with aString = ’Sing a song of oneB1’

//eNest[@aString = ’Sing a song of oneB1’]/@aUnique1

� QS3: Select elements with aLevel = 10

//eNest[@aLevel=10]/@aUnique1

� QS4: Select elements with aLevel = 13

//eNest[@aLevel=13]/@aUnique1

� QS5: Select nodes that have aSixtyFour between 5 and 8

//eNest[@aSixtyFour>=5][@aSixtyFour<=8]/@aSixtyFour

� QS6: Select nodes with aLevel = 13 and have the returned nodes sorted by aSixtyFour attribute

//eNest[@aLevel=13] sortby(./@aSixtyFour)/@aSixtyFour

� QS7: Select nodes with aSixteen = 1 and aFour = 1

//eNest[@aSixteen=1][@aFour=1]/@aUnique1

� QS8: Selection based on the element name, eOccasional

//eNest//eOccasional/@aRef

� QS9: Select the second child of every node with aLevel = 7

//eNest[@aLevel=7]/eNest[position()=2]/@aUnique1

� QS10: Select the second child of every node with aLevel = 9
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//eNest[@aLevel=9]/eNest[position()=2]/@aUnique1

� QS11. Low selectivity. Select OccasionalType nodes that have ”oneB4” in the element content

//eOccasional[text()˜="oneB4"]/@aRef

� QS12. High selectivity. Select nodes that have ”oneB4” as a substring of element content

//eNest[text()˜="oneB4"]/@aUnique1

� QS13. Low selectivity. Select all nodes with element content that the distance between keyword ”oneB5”
and keyword ”twenty” is not more than four

N/A
� QS14. High selectivity. select all nodes with element content that the distance between keyword ”oneB2”

and keyword ”twenty” is not more than four

N/A
� QS15. Local ordering. Select the second element below each element with aFour = 1 (sel= 1/4) if that

second element also has aFour = 1

//eNest[@aFour=1]/eNest[@aFour=1][position()=2]/@aUnique1

� QS16. Global ordering. Select the second element with aFour = 1 below any element with aSixtyFour = 1

//eNest[@aSixtyFour=1]/eNest[position()=2][@aFour=1]/@aUnique1

� QS17. Reverse ordering. Among the children with aSixteen = 1 of the parent element with aLevel = 13,
select the last child

//eNest[@aLevel=13]/eNest[@aSixteen=1][position()=last()]/@aUnique1

� QS18. Select nodes with aLevel = 13 that have a child with aSixteen = 3

//eNest[@aLevel=13][./eNest[@aSixteen=3]]/@aUnique1

� QS19. Select nodes with aLevel = 15 that have a child with aSixtyFour = 3

//eNest[@aLevel=15][./eNest[@aSixteen=3]]/@aUnique1

� QS20. Select nodes with aLevel = 11 that have a child with aFour = 3

//eNest[@aLevel=11][./eNest[@aFour=3]]/@aUnique1

� QS21. Select nodes with aLevel = 13 that have a descendant with aSixteen = 3

//eNest[@aLevel=13][.//eNest[@aSixteen=3]]/@aUnique1

� QS22. Select nodes with aLevel = 15 that have a descendant with aSixtyFour = 3

//eNest[@aLevel=15][.//eNest[@aSixtyFour=3]]/@aUnique1

� QS23. Select nodes with aLevel = 11 that have a descendant with aFour = 3

//eNest[@aLevel=11][.//eNest[@aFour=3]]/@aUnique1

� QS24. Select nodes with aSixteen = 3 that have a descendant with aSixteen = 5

//eNest[@aSixteen=3][.//eNest[@aSixteen=5]]/@aUnique1

� QS25. Select nodes with aFour = 3 that have a descendant with aSixtyFour = 3

//eNest[@aFour=3][.//eNest[@aSixtyFour=3]]/@aUnique1
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� QS26. Select nodes with aSixtyFour = 9 that have a descendant with aFour = 3

//eNest[@aSixtyFour=9][.//eNest[@aFour=3]]/@aUnique1

� QS27. Select nodes with aSixtyFour = 9 that have a descendant with aFour = 3. Return a pair of ancestor
and descendant nodes

//eNest[@aSixtyFour=9][.//eNest[@aFour=3]]/@aUnique1|//eNest[@aSixtyFour=9]//eNest[@aFour=3]/@aUnique1

� QS28. One chain query with three parent-child joins with the selectivity pattern: high-low-low-high. The
query is to test the choice of join order in evaluating a complex query. To achieve the desired selectivities,
we use the following predicates: aFour= 3, aSixteen= 3, aSixteen= 5 and aLevel= 16

//eNest[@aFour=3][./eNest[@aSixteen=3]/eNest[@aSixteen=5]/eNest[@aLevel=16]]/@aUnique1

� QS29. One twig query with two parent-child joins with the selectivity pattern: low-high, low-low. Select
parent nodes with aLevel = 11 that have a child with aFour = 3, and another child with aSixtyFour = 3

//eNest[@aLevel=11][./eNest[@aFour=3]][./eNest[@aSixtyFour=3]]/@aUnique1

� QS30. One twig query with two parent-child joins with the selectivity pattern: high-low, high-low. Select
parent nodes with aFour = 1 that have a child with aLevel = 11 and another child with aSixtyFour = 3

//eNest[@aFour=1][./eNest[@aLevel=11]][./eNest[@aSixtyFour=3]]/@aUnique1

� QS31. One chain query with three ancester descendant joins with the selectivity pattern: high-low-low-
high. The query is to test the choice of join order in evaluating a complex query. To achieve the desired
selectivities, we use the following predicates: aFour= 3, aSixteen= 3, aSixteen= 5 and aLevel= 16

//eNest[@aFour=3][.//eNest[@aSixteen=3]//eNest[@aSixteen=5]//eNest[@aLevel=16]]/@aUnique1

� QS32. One twig query with two ancester-descendant joins with the selectivity pattern: low-high, low-low.
Select parent nodes with aLevel = 11 that have a child with aFour = 3, and another child with aSixtyFour
= 3

//eNest[@aLevel=11][.//eNest[@aFour=3]][.//eNest[@aSixtyFour=3]]/@aUnique1

� QS33. One twig query with two parent-child joins with the selectivity pattern: high-low, high-low. Select
parent nodes with aFour = 1 that have a child with aLevel = 11 and another child with aSixtyFour = 3

//eNest[@aFour=1][.//eNest[@aLevel=11]][.//eNest[@aSixtyFour=3]]/@aUnique1

� QS34. One twig query with one parent-child join and one ancestor-descendant join. Select nodes with
aFour = 1 that have a child of nodes with aLevel = 11 and a descendant with aSixtyFour = 3

//eNest[@aFour=1][./eNest[@aLevel=11]][.//eNest[@aSixtyFour=3]]/@aUnique1

� QS35. Find all BaseType elements below which there is no OccasionalType element

//eNest[count(./eOccasional)=0]/@aUnique1

� QJ1. Select nodes with aSixtyFour = 2 and join with themselves based on the equality of aUnique1
attribute

//eNest[@aSixtyFour=2][@aUnique1=//eNest[@aSixtyFour=2]/@aUnique1]/@aUnique1

� QJ2. Select nodes based on aSixteen = 2 and join with themselves based on the equality of aUnique1
attribute

//eNest[@aSixteen=2][@aUnique1=//eNest[@aSixteen=2]/@aUnique1]/@aUnique1

� QJ3. Select all OccasionalType nodes that point to a node with aSixtyFour = 3
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//eOccasional[@aRef=//eNest[@aSixtyFour=3]/@aUnique1]/@aRef

� QJ4. Select all OccasionalType nodes that point to a node with aFour = 3

//eOccasional[@aRef=//eNest[@aFour=3]/@aUnique1]/@aRef

� QA1. Compute the average value for the aSixtyFour attribute of all nodes at level 15

avg(//eNest[@aLevel=15]/@aSixtyFour)

� QA2. Compute the average value of the aSixtyFour attribute of all nodes at each level.

avg(//eNest groupby(@aLevel)/@aSixtyFour)

� QA3. Value aggregate selection. Select elements that have at least two occurrences of keyword ”oneB1”
in their content

N/A
� QA4. Structural aggregation. Amongst the nodes at level 11 (have aLevel = 11), find the node(s) with the

largest fanout

//eNest[@aLevel=11][count(./eNest)=max(count(//eNest[@aLevel=11]/eNest))]/@aUnique1

� QA5. Select elements that have at least two children that satisfy aFour = 1

//eNest[count(./eNest[@aFour=1])>=2]/@aUnique1

� QA6. For each node at level 7, determine the height of the sub-tree rooted at this node.

N/A

� QU1-QU7

N/A
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