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Abstract
Structural join operations are central to evaluating

queries against XML data, and are typically responsible
for consuming a lion’s share of the query processing time.
Thus, structural join order selection is at the heart of query
optimization in an XML database, just as (value-based) join
order selection is central to relational query optimization.

In this paper, we introduce five algorithms for structural
join order optimization for XML tree pattern matching and
present an extensive experimental evaluation. Our experi-
ments demonstrate that many relational rules of thumb are
no longer appropriate: for instance, using dynamic pro-
gramming style optimization is not efficient; limiting con-
sideration to left-deep plans usually misses the best solu-
tion. Our experiments also show that a Dynamic Program-
ming optimization with Pruning (DPP) algorithm can find
the optimal solution, with low cost relative to the tradi-
tional Dynamic Programming (DP) algorithm; and an opti-
mization technique that only considers Fully Pipelined (FP)
plans can very quickly choose a plan that in most cases is
close to optimal. Our recommendation is that DPP should
be used in XML query optimizers where query execution
time is expected to be significant, and that FP should be
used where it is important to find a good (but not necessar-
ily the best) plan quickly.

1 Introduction
As XML [4] has gained prevalence in recent years, the

storage and querying of XML data have become an impor-
tant issue. Effective query optimization is crucial to ob-
taining good performance from an XML database given a
declarative query specification.

A join is frequently the most expensive physical opera-
tion in evaluating a relational query. Thus, selection of join
order is a key task for a relational query optimizer. This ob-
servation is true for an XML query optimizer as well, but
with significant twists. Perhaps the most important of these
is the prevalence of structural joins in XML. Structural join
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order selection is a critical component of an XML query
optimizer, and is the focus of this paper.

A join in the relational context is usually a value-based
equi-join, which involves two tables and is based on the val-
ues of two columns, one in each table. In the XML context,
even though there are value-based joins, structural joins oc-
cur much more frequently. A structural join focuses on the
containment (ancestor-descendant or parent-child) relation-
ship of the XML elements to be joined. The join condition
is specified not on the value of the XML elements, but on
their relative positions in the XML document.

In short, queries on XML data have some features that
are different from queries in the traditional relational con-
text. Therefore, the set of alternative plans, and their relative
costs, in the XML context are also quite different.

Using simple cost models for structural join algorithms,
we develop five XML query optimization algorithms for
structural join order selection. The first algorithm we
present uses a Dynamic Programming (DP) style optimiza-
tion to exhaustively explore every plan in the search space,
including bushy query plans. Since the DP algorithm can
be costly in terms of the optimization time, we also develop
an enhanced algorithm, which is called Dynamic Program-
ming with Pruning (DPP). DPP uses pruning techniques in
the search process to eliminate partial query plans that are
guaranteed to lead to suboptimal solutions.

Even after the pruning enhancement in DPP, the opti-
mization process may still be expensive. More aggressive
pruning techniques can be used to reduce the optimization
time at the expense of a reduction in the quality of the final
query plan. The Dynamic Programming with Aggressive
Pruning (DPAP) algorithm uses a number of such heuris-
tics. We consider two such heuristics. The first heuristic
limits the number of intermediate results considered, which
leads to the DPAP-EB algorithm. The second heuristic mir-
rors the choices made by many relational optimizers and
only considers left-deep query plans. This optimization al-
gorithm is called DPAP-LD.

Taking special features of XML data and XML queries
into consideration, we introduce a final algorithm, called the
Fully-Pipelined (FP) algorithm, which only considers non-
blocking query plans and is guaranteed to select the cheap-
est non-blocking query plan.

1



We present extensive experimental evaluation of the pro-
posed optimization techniques in the Timber [8] native
XML database system. We demonstrate that relational rules
of thumb may no longer be appropriate. For instance, re-
stricting consideration to left-deep plans is not a good idea.
Our experiments also show that while both DP and DPP
algorithms search the entire solution space and select the
optimal solution, the DPP algorithm is much more effi-
cient. In addition, heuristic techniques (DPAP) can be in-
troduced to speed up the DPP algorithm even further, at the
cost of potentially missing out an optimal plan. The FP al-
gorithm, which exploits features unique to XML data and
XML queries, can quickly choose a non-blocking plan that
in most cases is close to optimal.

The main contributions of this paper are the development
of a framework for cost-based structural join order selection
for XML query optimization, the development of five op-
timization algorithms, and an evaluation of the algorithms
using an actual implementation. We show that DPP is the
algorithm of choice for XML query optimizers that want
to explore the entire search space and select the optimal
structural join plan. The FP algorithm very efficiently finds
the optimal non-blocking plan, which could be valuable in
many applications, such as online querying on XML data
sources.

The remainder of this paper is organized as follows:
Sec. 2 provides the necessary background information, and
formally defines the objective of structural join order selec-
tion in XML query optimization. The five new algorithms
we propose are discussed in detail in Sec. 3. The proposed
algorithms are evaluated experimentally in Sec. 4. Related
work is presented in Sec. 5, and Sec. 6 contains our conclu-
sions and directions for future work.

2 Problem Definition
Declarative querying is a central feature of modern

database systems. Given a query expressed in a declarative
query language, a query optimizer has the task of enumerat-
ing alternative plans to evaluate the query, and choosing the
optimal of these alternative plans. In the relational world,
often the most important optimization step is join order se-
lection. The counterpart in the XML world is structural join
order selection. In the overall relational query optimization
process, techniques such as selection push-down, projection
push-down, etc. are also valuable, and we fully expect that
such techniques will have similar uses in a complete XML
query optimizer [6]. However, considering all these aspects
is beyond the scope of this paper, and we only concentrate
on structural join order selection, which, like its counter-
part in the relational world, is likely to be at the heart of
any complete XML query optimizer. We provide below the
necessary background in structural join computation, and
its role in XML query processing.

2.1 Pattern Matching
The XPath expressions used to bind variables in XQuery,

along with the conditions in the WHERE clause, can be ex-
pressed as the matching of a query pattern tree in a database
[7, 1].

In formal terms: Given a rooted node-labelled tree T =
(VT , ET ), representing the database.
A query pattern is a smaller, rooted, node-labelled tree
Q = (VQ, EQ). The labels at the nodes of Q are boolean
compositions of predicates. Edges of Q may optionally also
be labelled, with a ∗, to specify the ancestor-descendant re-
lationship between the nodes.
A match of a pattern query Q in T is a total mapping h :
{u : u ∈ Q}→{x : x ∈ T} such that:

• For each node u ∈ Q, the predicate node label of u is
satisfied by h(u) in T .

• For each edge (u, v) in Q, h(v) is a descendant (or
child) of h(u) in T .

To evaluate a query is to find all the matches of a query
pattern in the database.

2.2 Structural Join Algorithms and Cost Models

A structural join operation can be evaluated by a
database system using a number of different algorithms.
There already exist a wide array of access methods for struc-
tural join computation [1, 5, 19] and we expect new ones to
be invented in the future. From the perspective of the design
of the query optimizer algorithm the actual choice of these
algorithms is not crucial. (In fact, it does not even matter
whether the algorithms are implemented in a native XML
database or through mapping to a relational system). Of
course, the cost models for these algorithms and the effect
of any physical properties (such as producing sorted out-
puts) are needed to compute the cost of intermediate query
plans and to pick the optimal query plan.

2.2.1 Structural Join Algorithms
Given a query pattern, it is usually reasonable to assume that
candidate matches for individual query nodes can be found
efficiently, for instance, through an index scan. Consider
an edge (u, v) in a query pattern. This edge represents a
structural inclusion relationship between the elements rep-
resented by nodes u and v. This inclusion can be specified
to be either immediate (u is the parent of v) or arbitrary (u
is an ancestor of v). Having obtained two lists of candidate
nodes that satisfy any predicates associated with u and with
v individually, a structural join outputs pairs that satisfy the
required inclusion relationship.

Example 2.1 Consider the query in Figure. 1. Accessing
an index built on the element tag names gives us a list of
candidate data nodes for each node in the query pattern.
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Figure 1. Example Query Pattern

Performing structural join operation on a pair of pattern
tree nodes, for instance, node A (manager) and node B
(employee), with the relationship specified (*), the results
are pairs of data nodes (e.g. manager and employee)
where each manager node in a pair is the ancestor of the
employee node in the same pair, in the XML database.

A critical issue for the physical join operator is the order
in which node sets are input and output. For most struc-
tural join algorithms, it is most useful to order inputs by the
structural positions of the nodes in the original data set. A
common structural ordering scheme that is often used is to
number the nodes using a depth-first pre-order node num-
bering scheme [19, 8]. The output can be ordered by either
node participating in the join. For convenience, we call the
output ordered by ancestor when it is ordered by the includ-
ing node (u), even if the structural join is based on direct
parent-child relationship. When the output is ordered by
the included node (v), we say it is ordered by descendant.

In this paper, we only focus on the “Stack-Tree” family
of algorithms [1], because they are currently amongst the
most efficient algorithms for computing binary structural
joins. (The introduction of other binary structural join al-
gorithms will not change the design of the query optimizer
that is described in this paper, as new algorithms with their
cost models can be incorporated into the query optimiza-
tion framework that is describe in this paper.) The Stack-
Tree algorithms are applicable to both relational implemen-
tations of XML storage and native XML systems. These
algorithms have properties that are similar to the relational
sort-merge join algorithm. Like the relational sort-merge
join algorithm, these algorithms take as input two data sets
that are sorted by the pre-order node number, and can pro-
duce output that is ordered by either the ancestor or descen-
dent. The Stack-Tree-Ancs algorithm, in this family, pro-
duces output ordered by ancestor, whereas the Stack-Tree-
Desc algorithm produces output ordered by descendant.

Irrespective of the implementation specifics, the cost of
an access method implementing either algorithm is a linear
function of the sizes of the inputs and the size of the output.
In other words, if we have estimates of intermediate result
sizes, we can obtain cost estimates for these access methods
as linear functions of these sizes. The specific constants
used in the linear functions are dependent on the system
implementation and machine characteristics.

2.2.2 Cost Models
In addition to the two algorithms of focus for structural
joins, there are two other key physical operations: index
access and sorting. The cost formulae for these operations
are as follows:
Index Access The cost for accessing index and retrieving n
items is fI × n.
Sort The cost for sorting a list of n items is nlogn× fs.
Structural Join The cost for joining two nodes A and B
(where node A is ancestor of node B) in the pattern de-
pends on the join algorithm used. In addition to disk I/O,
the majority of the CPU cost goes towards operations on an
in-memory stack, as discussed in [1]. The cost formulae of
the Stack-Tree algorithms are as following (with cardinality
of the node A expressed as |A|, the join results of A join B
expressed as AB):
• Stack-Tree-Ancs: 2× |AB| × fIO + 2× |A| × fst.
• Stack-Tree-Desc: 2× |A| × fst.
Each implementations of an XML database would have

different constants associated with the cost of each physical
operation. We use a set of factors (fI for index access, fs

for sorting, fIO for disk IO, and fst for stack operations) to
normalize the cost of different operations when these are to
be compared or added.

2.3 Structural Join Order Selection
Example 2.2 Consider the following query on a personnel
XML database: “for each manager A, list the names of the
employees supervised by A, and the name of any depart-
ment that is directly supervised by another manager, who
is a subordinate of A.” The query defines a pattern tree,
shown in Figure. 1.

One possible evaluation plan for this query is to retrieve
all manager nodes (candidate for A) from an index, and
then scan the sub-tree under each of these nodes, look-
ing for other nodes that satisfy both the predicate and re-
lationship condition. Notice that the relationships speci-
fied for A-B and A-D pair in the pattern are all ancestor-
descendant relationships. This means, to find all the pat-
tern matches, the entire sub-tree for each manager node
must be scanned. The performance of this plan can be very
poor, especially when the XML data is deep and nested.

Evaluation of this query using structural join progresses
as follows. First, one identifies all manager nodes (can-
didate matches for nodes A and D in the pattern), all em-
ployee nodes (candidates for B), all department nodes
(candidates for E) and name nodes (candidates for C and
F ) in the database. Then, five structural joins are com-
puted, one for each edge in the pattern, between these six
sets of candidates. The final result is a set of 6-node tu-
ples, corresponding to each instance in the database that
matches the query pattern.

The five joins can be evaluated in different orders. The
number of alternative plans is a factorial of the number of
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Figure 2. A Few Plans that Evaluate the Example Query Pattern

nodes in the pattern. Figure. 2 shows a few of these eval-
uation plans. A plan can be left-deep, as in Figure. 2(a,c),
or bushy, as in Figure. 2(b,d); fully pipelined, as in Fig-
ure. 2(a,b), or with blocking, as in Figure. 2(c,d).

For any given query pattern, there are a number of dif-
ferent ways of evaluating the query. The query optimizer’s
task is to pick the optimal (or at least a good) evaluation
plan, based on the estimated cost of each alternative plan it
considers.

More formally, an evaluation plan is a rooted, labeled
tree P = (VP , EP ). Each node in the tree is a physical
operation using a specified access method. Each evaluation
plan has a cost associated with it, which represents the time
requirement to evaluate the query using this plan.

Our goal in this paper is to design and evaluate algo-
rithms that find the cheapest evaluation plan for a given
query pattern. In addition to picking good plans, the time
required to choose a query plan (query optimization time)
should be only a small percentage of the time required to
actually execute the chosen query plan.

3 Join Order Selection Algorithms

In this section, we introduce five different algorithms for
join order selection, and develop cost formulae to estimate
the number of plans evaluated by each algorithm.

3.1 Exhaustive Dynamic Programming (DP)

The traditional dynamic programming algorithm
searches the entire solution space by computing the min-
imum cost evaluation plan for each combination of the
relations participating in the query. It does so progressively,
using the minimum cost plans for smaller combinations to
determine the minimum cost for larger ones. The same idea
can be adapted for the XML context.

3.1.1 Defining Status
In order to keep track of each partial structural join plan,
we introduce the notion of status. A status defines an inter-
mediate stage of query evaluation, in which the structural
relationships between some pattern tree nodes have been

evaluated, while others remain unresolved. This partitions
the nodes in the pattern tree into subsets, each representing
a sub-pattern that has been evaluated. A status node is used
to represent each such joined sub-pattern.

Definition 1 Given a query patternQ = (VQ, EQ), a status
node NS in a status derived from Q is a cluster of nodes in
VQ that satisfies the following formulae:
• NS ⊆ VQ;
• ∀u, v ∈ NS ∧w on path from u to v in Q⇒ w ∈ NS;

Since the join algorithms that we consider are Stack-
based join algorithms, the output of any intermediate plan
will have the intermediate results sorted by one of the inputs
in the intermediate plan (see Section 2.2.1). This physical
ordering property can be useful in a later step of the query
evaluation, and is recorded in the status node. Note that the
query may specify an explicit set of attributes for ordering
the final result, and in such cases, additional sort operations
may be required to produced the final query plan.

Definition 2 Given a query patternQ = (VQ, EQ), a status
is a tree S = (VS , ES), where
• VQ = {v|v ∈ NS}.
• ∀NS , N

′
S ∈ VS ⇒ NS ∩N

′
S = φ;

•
⋃

NS∈VS

NS = VQ;

• ES ⊆ EQ.
• ∀NS ∈ VS , ∀u, v ∈ NS ⇒ (u, v) /∈ ES .
The query pattern Q is a status itself, and is called start

status, represented by S0. When VS = {{VQ}}, the status
is called final status, represented by Sf . All other statuses
are called intermediate statuses.

Example 3.1 Figure. 3 illustrates the optimization process
using the DP algorithm. Status S00 is the start status, each
status node in it contains one pattern tree node. Status S30,
S31, S32, S33 are all final statuses. In each of those statuses,
there is only one status node, which contains all the pattern
tree nodes in the original query pattern. In an intermediate
status, some status node may have more than one pattern
tree nodes. For example, the root node in status S10 has two
pattern tree nodes, A and B, and the AB result is ordered by
A. (The ordered-by node is presented in bold in the figure.)
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Figure 3. Example Optimization Process Using DP algorithm

Definition 3 Associated with each status S is a Cost value.
The Cost is the accumulated cost of the operations needed
to evaluate all the sub-patterns represented by the status
nodes in S. In other words, the Cost is the accumulated
cost needed to transform from the start status S0 to S.

There are many intermediate statuses between the start
status and the final status. A move connects two statuses
that differ in only one edge. The physical operations asso-
ciated with each move include: (1) A structural join opera-
tion, which joins the two nodes at the end of the edge and
produces a larger joined sub-pattern. The choice of join al-
gorithm determines by which node the intermediate results
is ordered. (2) An optional sort operation, which is only re-
quired if the intermediate results are not already in the sort
order that is required by the next operator in the query plan.

Definition 4 A move M from status S is a vector
(aN, dN,Algo, St, Cost) , where aN and dN are pattern
tree nodes and (aN, dN) ∈ ES is the edge to be evaluated;
Algo specifies the physical operator; St is the node to be
sorted by, if extra sorting is needed; and Cost is the esti-
mated cost of the join (plus sorting cost, if St is specified).

For a given query pattern, the number of moves needed
to transform the start status to the final status equals the
number of edges in the pattern. Each move processes one
edge in the query pattern and takes one step towards the
final status, in which all edges have been processed.

Starting from a given status S, there is a set of possible
moves that transform the status into a set of statuses that are
one step closer to the final status. We call this set of moves
possible moves and represent it using pM(S).

Example 3.2 In Figure. 3, the six moves from status S00,
each deals with one edge in the status, transform status S00

into status S10 · · ·S15, respectively.

3.1.2 Search Structure

pM(S) contains all the possible moves that can be made
from a given status S. The consideration of all moves in
pM(S), and estimating the desirability of each resulting
new status is called expanding status S.

Our goal is to find a sequence of moves that transforms
the start status S0 to the final status Sf , with the total cost
of the moves the lowest among all sequences of moves that
can achieve the same transformation. The set of possible se-
quences of moves is explored using dynamic programming.

Definition 5 Statuses are arranged in a topological graph,
with start status as the root. Statuses that are k moves from
the start status are said to be on level k.

The searching is done one level at a time. No status on
level k is generated until all possible solutions for reaching
each status on level k−1 are checked and the best join plan
for each status on level k − 1 is found.

After the best plan for each status on level k−1 is found,
the statuses on level k− 1 will be picked and expanded one
by one. All statuses on the same level have equal priority
for picking and expansion. For each status on level k − 1
that is picked, all possible moves are considered, and new
statuses, which belong to level k are generated. A unique
status on level k may be generated more than once, based
on different statuses from level k− 1. The costs of all these
plans are compared and only the one with minimum cost is
kept. All others are eliminated from further consideration.
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Example 3.3 Figure 3 demonstrates the search process us-
ing DP algorithm. The statuses on the same level are ar-
ranged in a row. A cost value is associated with each status
(presented in the parenthesis following status ID).

After the search is done, all statuses have been checked
and expanded according to the possible moves of the sta-
tuses. For example, status S12 has 5 possible moves. The
new statuses generated are S20, S21, S22, S26 and S28.
Also, a status can be generated from more than one status
on the level just above it. For instance, S30 can be gener-
ated from S20, S24, or S26. For a given status, the cost can
be different if it is generated from different statuses. For
such statuses, only the minimum of these alternative ways
of expanding is retained as the cost of that status, and only
the path with this minimum cost is kept (we represent these
kind of paths with a solid line and the ones eliminated with
a dotted line in the figure).

There is more than one final status when the search is
completed. Each has the desired pattern match result, but
with different ordering of the final result. The costs of the
final statuses are compared and the one with minimum cost
is picked. If the query has an explicit order-by clause, then
additional sorting costs are added to the status that don’t
produce plans in the required order.

For example, let’s assume that S32 has the minimum cost
among all the final statuses. Tracing back the moves that
lead to this final status (S32) all the way back to the start
status (S00), we obtain the optimal solution to evaluate the
query. The structural join plan selected is to first join node
A with node B, producing an intermediate result ordered
by node A. The exact algorithm to use for this join would be
recorded with the status node in S10. The next step is to join
with node D, producing the next intermediate result ordered
by node B, and then finally joining with node C producing
the final result, which is ordered by node C.

Consider a pattern with n nodes. The number of statuses
generated during the searching process is O(n × 2n). The
number of alternative plans considered is O(n2 × 2n).

3.2 Dynamic Programming with Pruning (DPP)

Example 3.4 In Figure 3, as we can see, lots of statuses
that are not potentially good are expanded, only because
they can be generated from a status one level above. For
example, status S26 does not contribute to any path that
leads to the final status, in fact, its cost is larger than that of
the final status with minimum cost. So, there is no way that
a good plan can be generated from S26. However, in the
optimization process using DP algorithm, S26 is generated
and all its possible moves are tried.

The complexity of the DP algorithm is exponential in
the number of nodes in the pattern. The goal of the DPP

algorithm is to find the optimal solution in a more efficient
way. Conceptually, we still do exhaustive search in the set
of possible sequences of moves. However, we want to limit
the search to a narrow band along the optimal path. This
is done by (i) setting a priority list for the statuses and no
longer requesting that one level be fully developed before
the searching is moved on to the next level; (ii) pruning
intermediate plans that are guaranteed to lead to suboptimal
solutions.

Besides Cost, the actual cost of the operations, we intro-
duce, for each status, another cost value, ubCost, which is
the upper-bound estimate of the cost needed for transform-
ing the status to the final status. The ubCost for a status
can be obtained easily and quickly by computing the cost of
the join operations for each un-joined edge in the status in a
bottom-up fashion, plus sorting cost, when necessary (more
accurate ubCost computation methods can be used to im-
prove the pruning property of DPP, though any upper-bound
estimate guarantees the correctness of the algorithm).

All un-expanded statuses are arranged in a priority list,
ordered by the value of Cost + ubCost. The status at the
head of the priority list, which has the lowestCost+ubCost
is always expanded first. A sub-plan is no longer ex-
panded when other sub-plan with lower cost is found to
reach the same status. The expansion of a sub-plan is ter-
minated when the Cost of the status it reaches exceeds the
lowest cost of a final status that has been reached. Thus
DPP achieves efficiency by expanding promising plans
first, which usually results in producing a “good” full plan
quickly. As soon as the cost of a full plan becomes avail-
able, further pruning is used to eliminate sub-plans with a
Cost greater than the Cost of the full plan.

Another thing worth noticing is that many statuses gener-
ated in the DP algorithm have pM(S) = φ. That is, they do
not lead to any possible solution, let alone a good solution.

Definition 6 A status S is a deadend if the possible moves
pM(S) = φ.

A status is deadend if none of the edges left in the sta-
tus has the status nodes at both ends of it sorted by the end
node of the edge. In the DP algorithm above, these dead-
end nodes are generated but are useless for the optimiza-
tion. The generation of deadend statuses can be prevented
by looking ahead one step at the time of expanding a status.

The Expanding Rules and Pruning Rules of DPP algo-
rithm can be summarized as following:
• Expanding Rule Always expand the status with low-

est Cost+ ubCost;
• Pruning Rule A status S is “dead” if the cost of the

path from S0 to S exceeds the lowest path cost from
S0 to Sf (recall Sf is a final status) . No status is
“dead” before one such path is found. A status is elim-
inated from further consideration when it is found to
be “dead”.
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• Lookahead Rule At the time of expanding one status,
a new status would not be generated if it is a deadend.

Example 3.5 In Figure 3, more than half of the statuses on
the level above the last level have no outgoing move. These
statuses are all deadends. With the Lookahead Rule, all
these statuses could be detected and not be generated at all.

To analyze the complexity of DPP, consider a pattern that
is a complete tree with depth d and fixed fan-out f . The total

number of edges is |E| =
d
∑

k=1

fk. The number of possible

statuses on level lv is SDPP (lv) = fSDP P
×

(

lv
|E|

)

,

where fSDP P
= O(lv2) is the number of distinct nodes

orderings that are possible for each status. The upper-bound
for the total number of statuses evaluated in the searching is
|E|
∑

lv=0

SDPP (lv).

3.2.1 Example Optimization Process

Let’s look at the example shown in Figure. 4 and see how
the DPP algorithm finds the optimal evaluation plan for the
query. In Figure. 4, we number the statuses in the order they
are generated. The lookahead rule is applied to reduce the
number of statuses generated.

Example 3.6 Status0 has four possible moves, which
transform status0 to status1,2,3,4, respectively. Note that
in Figure 3, there are other possible moves, which trans-
form status0 to a “deadend”. No “deadend” node is gen-
erated here since we are using DPP algorithm with Looka-
head Rule.

Among the new statuses, status2 has the least Cost +
ubCost. So, it is expanded next and Status5 is generated.
Then, the status with the lowest Cost + ubCost is status1.
Expanding status1 produces status6. Now, the status with
lowest Cost + ubCost is status5. Expanding status5, we
get status7. Note that only one status is generated in this
expansion, since the new status is the final status and we
don’t care about the ordering any more.

Now, we have found one path from the start status to the
final status. The Cost of status7 is recorded as the current
minimum cost (MinCost). But the search has not finished;
there are still other statuses that may lead to a better solu-
tion. Status6 is selected next. Expanding status6, we reach
another final status, status8. We find that the Cost of sta-
tus8 is smaller than that of status7. Therefore, status7 is
eliminated and MinCost is set to 105, the Cost of status8.

Next, we expand status3. Two new statuses could be gen-
erated. However, we detected that one of the newly gener-
ated status is exactly the same as status5, except that its

Cost is higher. This status is discarded right away. Status9
is generated since no such status has been generated so far.

The next status on the priority list is status9. Before ex-
panding it, we find that the Cost of status9 is larger than
the MinCost. This means, status9 is “dead”. Status4
is checked next, it is also “dead”. Now, there is no un-
expanded statuses. The search is over.

The evaluation plan chosen for the query is the moves
along the path from status0 to status8, the only final status
left in the search process. As we can see, the structural join
plan selected by DPP algorithm is exactly the same as the
one selected by DP algorithm.

3.3 Dynamic Programming with Aggressive
Pruning (DPAP)

Additional pruning rules can be introduced into the DPP
algorithm to eliminate less promising portions of the search
space, thereby decreasing the optimization cost consider-
ably in return for, hopefully, a small risk of eliminating the
optimum solution. Various heuristics can be devised for this
purpose. We describe two possibilities below.

3.3.1 DPAP with Expansion Bound (DPAP-EB)

We considered several heuristic pruning parameters, includ-
ing the depth of the expanding, the number of statuses cre-
ated at a level, and so on. Of these, we describe here only
the one parameter that we empirically found to be most ef-
fective.

The parameter Te restricts how many statuses can be ex-
panded at each level. This is based on the heuristic that
a good sub-plan has a higher chance of leading to an ap-
proximation of the optimal solution for evaluating a query
pattern. In other word, if a sub-plan is costly, it is less
likely it can be expanded to a good plan. With parame-
ter Te, when the number of statuses expanded at level lv
reaches the limit Te, there is no point creating any more
statuses at this level, so no more statuses will be expanded
at any level less than lv. This restriction brings the upper-
bound for the total number of statuses considered down to
|E|
∑

lv=0

Te × (|E| − lv)× lv.

Example 3.7 Considering the optimization process in Fig-
ure 4. If parameter Te is set to be 2, status3 and status 4
will not be generated in the expansion process of status0.
Therefore, status9 will not be considered in the search pro-
cess, too. In this case, with Te setting to 2 can still results
in the optimal solution. However, it is not always true for
other queries and other settings.
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Figure 4. Example Optimization Process Using DPP algorithm

3.3.2 DPAP on Left-Deep Plans (DPAP-LD)

Relational query optimizers frequently restrict considera-
tion to left-deep plans. It is straightforward to restrict the
DPP algorithm using the following rule to only consider
left-deep plans: In any status, only one status node is al-
lowed to comprise of multiple pattern tree nodes. We call
this status node the growing node.

This rule implies that a potential move can only be based
on evaluating an edge with one end in the growing node and
one end out of it.

Example 3.8 In the example we presented for the DPP al-
gorithm above (Figure. 4), when the left-deep expanding
rule is applied, the optimization process remains the same,
except that status9 is not legal (not left-deep) and would not
be produced. In this simple example, DPP algorithm and
DPAP-LD algorithm find the same solution.

Consider a pattern that is a complete tree with depth d
and fan-out f . The upper-bound for total number of statuses
considered in the search is O(|E|fd).

3.4 Fully-Pipelined Solution Space

By choosing an appropriate structural join algorithm, the
results of a structural join can be output ordered by either
of the two nodes involved in the join. No extra sorting is
needed, and no blocking points created in the pipeline, if the
intermediate results are ordered by the node that is involved
in the next join. This leads to the following:

Theorem 3.1 Any XML pattern match can be evaluated
with a fully-pipelined evaluation plan to produce results or-
dered by any node in the pattern tree.

Proof Sketch: Prove by induction on n, the total number
of edges in a pattern. For the base case, the theorem obvi-
ously goes through for a query pattern with a single node

and zero edges. For the inductive case, we can show that
there is at least one pipelined plan, whose last join involves
a sub-pattern which contains the result OrderBy node r, and
a sub-pattern which contains one of its neighbors u. Each
of these sub-patterns has less than n edges. By the inductive
assumption, there is a pipelined plan for the first sub-pattern
with results ordered by r and a pipelined plan for the second
sub-pattern with results ordered by the neighbor node u.

F

A

B D

C E

Sub−pattern to Evaluate

OrderBy Node of Sub−pattern 

OrderBy Node of the Pattern 

Figure 5. Pattern Tree Example in FP algorithm

The set of fully-pipelined evaluation plans for a given
query pattern is a small subset of all the evaluation plans for
the query pattern. Furthermore, fully-pipelined plans have
the property of producing the initial result tuples quickly,
which is desirable in many applications. The FP algorithm
only considers fully-pipelined plans as follows: For a given
query pattern, a fully-pipelined query plan could produce
the final result ordered by any of the nodes in the query
pattern. The FP algorithm examines each of these possi-
bilities. Effectively for each node N in the query pattern
tree, the pattern tree is “picked up” at that node. Thus the
node N becomes the root of the pattern tree and it divides
the pattern tree into sub-pattern trees. Plans for each of the
sub-pattern trees are considered (by recursive application of
the algorithm) so that the best fully-pipelined plan that pro-
duces intermediate results ordered by the root of each sub-
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pattern tree is generated. Then the algorithm considers the
order in which the plans corresponding to the sub-pattern
trees is joined first with node N . Please refer to [18] for the
pseudo-code of the FP optimization algorithm.

Example 3.9 Consider the pattern tree in our running ex-
ample, as shown in Figure. 5. To find the best fully pipelined
join plan to evaluate the query and guarantee the output is
ordered by the node in black, the best join plans to evalu-
ate two sub-patterns, with output ordered by the nodes in
grey, need to be generated. Then, the order of the two sub-
patterns joining with the node in black is selected by enu-
merating all the possible permutations. The best plan to
evaluate the whole pattern is chosen from a set of plans,
each of which evaluates the whole pattern and guarantees
that results are ordered by one node in the pattern.

Consider a pattern that is a complete tree with depth d
and fixed fan-out f . The total number of alternative plans
considered in searching for plans to evaluation the pattern,
without specifying by which node the results should be or-

dered by, is O((
d−1
∑

k=0

fk)2 × f !).

Frequently, an OrderBy node is specified for a query
pattern, which requires that the result be ordered by a cer-
tain node, to facilitate other operations following the pattern
matching. In this case, the total number of alternative plans

considered in the FP algorithm is only O(
d−1
∑

k=0

fk × f !) =

O(|E| × (f − 1)!).

4 Experimental Evaluation

In this section, we present an experimental evaluation of
the various query optimization techniques discussed. All
experiments were run on a machine with a 500MHz In-
tel Pentium III processor, 512MB of memory and a 40GB
ATA Compaq disk drive. All experiment were carried out in
Timber [8]. Timber uses the SHORE storage manager, and
for these experiments the SHORE buffer pool size was set
16MB. All estimates for the join results were made using
positional histograms [17].

4.1 Data Set and Queries

The data sets that we used in the experiments are: a)
Mbench [13], an XML benchmark developed at University
of Michigan, b) the popular DBLP data set [20] and c) Pers,
the synthetic personnel data set from AT&T [1]. The size of
these three data sets are 740K nodes (about 535MB) for the
Mbench data set, 500K nodes (about 9MB) for the DBLP
data set, and 5K nodes (about 113MB) for the Pers data set.

To test the effectiveness of the optimization techniques
we used a number of queries of varying complexity. In this
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Figure 6. Sample Pattern Trees for Experiments

section, we present experimental results for queries con-
forming to the patterns shown in Figure 6. For an actual
query conforming to a pattern, an edge in the pattern tree
could be either a parent-child relationship or an ancestor-
descendant relationship.

We limit our presentation of the experimental results to
a small subset of the queries that we have actually used. In
this section, we consider two queries on the Mbench data
set, two queries on the DBLP data set, and four queries on
the Pers data set. In our presentation, we label the queries
using the form Q.DataSet.QueryNum.Pattern. For example,
Q.DBLP.1.b is the first query on the DBLP data set, and the
pattern of this query is b (in Figure 6).

4.2 Quality of Plans and Optimization Time

In this section, we examine the time taken to execute the
query plans produced by the optimization algorithms, and
the time taken by each algorithm to optimize the queries
(the total query evaluation time is the sum of these two
times). Both these results are presented in Table 1. In this
table, the query optimization time is shown in a boldface
font, and the plan execution time is shown in an italics font.
We analyze each of these components in the following sec-
tions. For the DPAP-EB algorithm, in this experiment, the
value of the tuning parameter is set to be the same as the
number of edges in the pattern.

4.2.1 Quality of Plans
To put the query plan execution times in perspective, we
randomly (but not exhaustively) generated a number of
query plans for each query, and picked the worst of these
plans. This “bad” plan, which is shown in the last column
of Table 1, is not necessarily the worst plan for a query. It is
simply shown here to quantify the impact of a good query
optimization algorithm.

By examining the plan execution times for the algo-
rithms in Table 1 (see the columns under Eval.), we ob-
serve that the query plan execution times varies dramati-
cally across different evaluation plans. In some cases, a
bad plan is 10,000 times slower than a good plan! All five
algorithms serve the purpose of avoiding really bad plans,
but the quality of the plans chosen by different algorithms
are still different. The DP and DPP algorithms always se-
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DP DPP DPAP-EB DPAP-LD FP Bad
Query Opt. Eval. Opt. Eval. Opt. Eval. Opt. Eval. Opt. Eval. Plan
Q.Mbench.1.a 0.67 2.61 0.12 2.61 0.09 2.61 0.10 3.17 0.07 2.92 76.76
Q.Mbench.2.b 0.69 1.03 0.12 1.03 0.11 1.17 0.11 1.69 0.10 1.12 124.22
Q.DBLP.1.b 0.75 5.77 0.14 5.77 0.12 5.98 0.12 6.96 0.11 5.77 156.71
Q.DBLP.2.c 2.21 0.14 0.53 0.14 0.43 0.18 0.30 0.14 0.10 0.18 18.60
Q.Pers.1.a 0.69 0.50 0.13 0.50 0.09 0.50 0.10 0.57 0.07 0.50 15.90
Q.Pers.2.c 2.34 11.39 0.56 11.39 0.44 12.1 0.29 17.62 0.09 12.1 520.90
Q.Pers.3.d 6.32 0.37 1.62 0.37 1.37 0.42 0.90 0.37 0.35 0.42 9.77
Q.Pers.4.d 5.78 1.89 1.71 1.89 1.39 1.89 0.87 4.13 0.39 1.89 96.34

Table 1. Query Optimization and Query Plan Evaluation Times (in seconds)

lect the optimal evaluation plan for the query, as expected,
while DPAP and FP algorithms only do so sometimes. Both
DPAP-EB and FP do quite well, finding a plan close to op-
timum in the cases the optimal plan is missed. DPAP-LD
fares significantly worse.

4.2.2 Optimization Time
In this section, we examine the time taken by each algorithm
to optimize the queries. These times are shown in Table 1
under the column Opt.. These results show that even though
both the DP and DPP algorithms search the entire solution
space to select the optimal solution, the DPP algorithm can
eliminate bad plans in an early stage, and consequently, is
more efficient. The DPAP algorithms, which employ ad-
dition restrictions on the status expansion, eliminate more
plans, and consume less time than the DPP in optimizing
the queries. Interestingly, the FP algorithm usually spends
the least amount of time optimizing the query, and still gen-
erally produces plans that are close to optimal.

DP DPP’ DPP DPAP DPAP FP
-EB -LD

OpTime 6.32 3.01 1.62 1.37 0.90 0.35
# of Plans 396 122 71 57 39 14

Table 2. The Query Optimization Time and Number of
Alternative Plans Considered for Query Q.Pers.3.d

The source of the difference in the optimization time
spent by the algorithms is the number of alternative plans
considered by each algorithm. Besides keeping track of the
optimization time and query plan execution time for each
query we tested, we also kept record of the number of plans
considered. In the interest of space, we present this result
for only one query, Q.Pers.3.d, in Table 2. In this table,
DPP’ represents the DPP algorithm without the Lookahead
Rule.

The results in Table 2 show that the time spent on opti-
mization is linearly proportional to the number of alterna-
tive plans that are considered. The DP algorithm not only
considers many plans, but also considers the same plan sev-
eral times, e.g. starting from different branches for a bushy
plan. The DPP algorithm eliminates this redundant consid-

eration and a large number of non-promising plans, and is
much faster than the DP algorithm. The DPAP algorithms
are even faster, considering even fewer plans. The FP algo-
rithm explores the least number of plans and is the fastest.
The results in this table also demonstrate the effectiveness
of the lookahead rule in DPP.

4.3 Effect of Data Size

This experiment investigates the effect of increasing the
data set size on the plans that are produced by the various
algorithms. To produce larger data sets, we replicated each
data set by a “folding factor”, generating data sets that are
10, 100 and 500 times larger than the original data sets. In
the interest of space, we only present the effect of increasing
the data set size for the time taken to evaluate plans for one
representative query, Q.Pers.3.d, in Table 3.

Folding Factor
×1 ×10 ×100 ×500

DP 0.37 3.11 26.1 110.97
DPP 0.37 3.11 26.1 110.97
DPAP-EB 0.42 3.21 28.9 292.86
DPAP-LD 0.37 3.56 56.1 702.89
FP 0.42 3.21 28.9 110.97
bad plan 9.77 103.66 879.59 > 4000

Table 3. Data Size and Query Plan Execution Time (in
sec.) for Query Q.Pers.3.d

Note that the optimization time for the algorithms re-
mains the same even when the data set sizes are increased.
However, the larger the data sets, the larger is the plan eval-
uation time. Consequently, in large data sets, a more expen-
sive optimization algorithm is worthwhile. However, there
is a more interesting effect of data size, as follows:

When the data size is small, the performance of the exe-
cution plans chosen by different algorithms is not very dif-
ferent. The optimal plan chosen by the DP and DPP al-
gorithm is left-deep, and is the same as the one chosen by
the DPAP-LD algorithm. For larger data sets, the optimal
plan chosen by the DP and DPP algorithm becomes a fully-
pipelined bushy plan, and is the same as what the FP algo-
rithm chooses. As the data size increases, the gap between
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Figure 7. Comparison of Query Plan Evaluation Times
for Query Q.Pers.3.d, Folding Factor = 100

the performance of the best plan and the left-deep plan gets
larger. The reason is that with larger data sets, the inter-
mediate results sizes also increase. Sorting these interme-
diate results becomes a big part of the plan evaluation cost
and drags down the performance of plans, like the left-deep
plans, that need to materialize intermediate results. Fully
pipelined plans start becoming more attractive as they never
have to sort any intermediate results.

4.4 Effect of the Parameter Te in DPAP-EB

In this section, we evaluate the effect of the tuning pa-
rameter Te on the performance of the DPAP-EB algorithm.
DPAP-EB uses the tuning parameter Te to limit the number
of statuses that are expanded at each level, which in turn
limits the total number of statuses considered in the opti-
mization process. We ran each query with different values
of Te. In the interest of space, here we only present the re-
sults for the query Q.Pers.3.d on databases with folding fac-
tors of 100 and 1 (in Figures 7 and 8 respectively); the same
conclusions can be drawn for the other queries too. Along
the X-Axis in these figures, we show runs of the DPAP-EB
algorithm for various values of the Te parameter (shown in
parentheses). We increased the value of Te from 1 to the
number of nodes in the pattern, since by then the optimal so-
lution has already be selected. Data for other optimization
techniques is also included to facilitate comparison. Along
the Y-axis, we show the optimization time and execution
time as components of the total query evaluation time.

Let’s begin by looking at Figure 7. From this figure, we
observe that the time spent on optimization increases mono-
tonically when the value of the parameter Te increases,
while the execution time of the evaluation plan selected de-
creases rapidly and becomes optimal quickly around Te =
5. At this point the total query evaluation time (optimization
time plus plan execution time) is minimized for DPAP-EB.
Beyond this point, for Te > 5, the query execution time re-
mains the same, but the optimization time increases, until
it eventually becomes the same as the optimization time for
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Figure 8. Comparison of Query Plan Evaluation Times
for Query Q.Pers.3.d, Folding Factor = 1

DPP. For this query, with this data set, the query plan exe-
cution time (even for the best plan) is much larger than the
optimization time (even for the most costly DP algorithm).
In this sort of situation, rather than try to guess the opti-
mum value for the Te parameter, one can simply use DPP,
and expect it to do only slightly worse than the best case for
DPAP-EB.

Now let us examine Figure 8, which represents a dif-
ferent scenario in which the query plan evaluation time is
comparable to the optimization time. As a result, the op-
timization time becomes a significant portion of the total
query evaluation time. As Figure 8 shows, now the FP al-
gorithm is the most efficient overall algorithm. The figure
also shows a more obvious “U” shape pattern for the DPAP-
EB plans as the value of Te is increased. For queries with
small plan evaluation time, it may not be worth the effort to
use a large value of Te, and in fact a smaller value of Te is
preferable.

5 Related Work

Relational Join Order Optimization:
Query optimization is central to modern databases, and

has been extensively studied since the classic work by
Selinger et al. [14]. Ideas proposed in [14] are still com-
mon practice in relational optimizers: Use statistics about
the database instance to estimate the cost of a query evalua-
tion plan; consider only plans with binary joins in which the
inner relation is a base relation (left-deep plans); postpone
Cartesian product after joins with predicate. Krishnamurthy
et al. [9] proved that under some circumstance, if sorting is
not required, a pipelined evaluation plan is the optimum so-
lution.

Bushy plans have been shown to be preferred in many
circumstances [16, 15]. The Starburst optimizer [12] per-
mits consideration of selected bushy plans, and shows that
the complexity of optimizing a query is largely dependent
on the shape of the query graph, instead of the number of

11



relations involved.
XML Query Optimization:

While XML query processing is relatively new, there
already has been at least some work in this regard. The
“classic” work on XML query optimization is by McHugh
and Widom [11]. The idea proposed in this paper is to
break branching path expressions into single path expres-
sions (without branching). Several algorithms are also pro-
posed and evaluated. However, this work is applicable in the
context of navigational access methods only, which are usu-
ally not very efficient for evaluating structural joins [1, 19].

Even earlier, Liefke [10] proposed a technique to specify
and optimize queries on ordered semi-structured data using
automata. Automata is used to present the queries and opti-
mize the query using query typing and automata unnesting.

More recently, techniques for optimizing XML queries
by minimizing the pattern tree specification and using
schema information has been proposed [3]. This sort of
rewrite optimization is complementary to, and can be ap-
plied before, the cost-based access plan optimization that
we consider.

6 Conclusions and Future Work

XML query processing is important, irrespective of how
XML data is stored: in a native XML database, after map-
ping to a relational database, or after some other mapping,
such as to an object-oriented database. In this paper, we
have developed a framework for cost-based optimization of
structural join order selection, a central issue in XML query
processing. While the spirit of this optimization is the same
as for relational optimization, there are significant differ-
ences on account of the tree-structure of XML data and the
concept of structural join in XML query processing.

Based on the special features of XML data and XML
queries, we developed five different techniques for perform-
ing query optimization in this XML framework. The per-
formance and efficiency of the proposed algorithms are an-
alyzed theoretically and evaluated experimentally. A signif-
icant finding is that consideration of left-deep plans alone,
which is the rule-of-thumb for relational optimizers, is not
a good idea in the XML context. A reasonable heuristic for
quickly finding a good plan is to focus on fully-pipelined
plans. The FP algorithm finds such plans very efficiently.
For queries with long evaluation times, one can afford to
spend more time optimizing the query, and in such cases,
we recommend that the DPP algorithm be used to produce
the optimal query plan.

The work presented in this paper has been performed in
the context of developing a query optimizer for the Timber
native XML database system and is an important first step
towards cost-based optimization for XML queries. How-
ever, there are number of additional directions for future

work. We are currently working on enhancing our tech-
niques to consider cases where every node predicate is not
evaluated using an index, and with new access methods for
merged operators as in [2] and multi-way structural joins as
in [5]. In the future, we will also consider expensive op-
erations beyond structural pattern matching, such as value-
based joins and grouping.
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