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ABSTRACT
Many searches on the web have a transactional intent. We
argue that pages satisfying transactional needs can be dis-
tinguished from the more common pages that have some in-
formation and links, but cannot be used to execute a trans-
action. Based on this hypothesis, we provide a recipe for
constructing a transaction annotator. By constructing an
annotator with one corpus and then demonstrating its clas-
sification performance on another, we establish its robust-
ness. Finally, we show experimentally that a search proce-
dure that exploits such pre-annotation greatly outperforms
traditional search for retrieving transactional pages.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval

General Terms
Algorithms, Experimentation

Keywords
Information Extraction, Intranet Search, Transactional Search

1. INTRODUCTION
A user performing a web search may be interested in ob-

taining information regarding a topic of interest (informa-
tional search), in finding a specific web-page (navigational
search), or performing a desired action, such as filing a
claim, purchasing a ticket, or downloading a software pack-
age (transactional search). Search engines based on classical
information retrieval assume that web searches are moti-
vated by users’ information needs. Models based on this
traditional assumption have been found inadequate to serve
“the need behind the query” in navigational and transac-
tional search [8, 10, 18]. Meanwhile, it has been observed
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[3, 17] that an increasing fraction of all web search queries
have a transactional intent. It is this class of queries that
we address in this paper.

Consider, for example, an employee at the University of
Michigan seeking to file a “property damage report.” There
is a unique university wide form available online. However, a
search on the university’s web site using the keyword query
property damage report does not have a link to this form in
the first 20 hits. Most links returned by the search are to
pages that discuss property damage, and many are specific
to particular departments. From several of these results it
may be possible to navigate to the desired form, but the
path is not obvious. Our goal in this paper is to provide
better results for such a transactional search.

An obvious problem, when we consider an example such
as the one above is that most web pages are informational
and not transactional. Given a set of keywords, it is likely
that there are many more non-transactional pages that in-
clude the given keywords than actual transactional pages. In
fact, for many transactional searches, such as the one in the
example above, there is precisely one web page of interest.
The question is how to return this page with a high score.

Given our thesis that only a small fraction of pages in the
repository are transactional, if we have a means to identify
this set of pages (with high probability), then we can make
sure to return only such pages (with high score) in response
to a transactional search query. This is precisely what we
set out to do, identifying a number of cues on a web page
that suggest that it is transactional. It turns out that from
the effort to identify transactional pages, we can get more
than just whether the page is transactional. In particular,
we can identify information regarding the nature of transac-
tion supported by the page, and terms that are associated
with this transaction. Our experimental results show that
identifying such information is a critical component for sup-
porting transactional search.

In traditional IR, there is a preparatory phase, when doc-
uments are inserted into a collection and indices are cre-
ated (or updated), and an operational phase, when search
queries are efficiently evaluated. For transactional queries,
we do some additional work in the preparatory phase —
specifically, we recognize documents that are likely to be
relevant to transactional queries, and annotate them suit-
ably. We call such documents transactional pages. The set
of all transactional pages is a subset of the complete docu-
ment collection. These documents can then be processed in
different ways (Sec. 3) to create transactional collection for
transactional search.



procedure TransactionAnnotator(C,W)

O: Set of transactional objects
A: Set of actions

1. O= ObjectIdentifierC(W )
2. A= ActionIdentifierC(W )
3. if (PageClassifierC (W ,O,A))
4. then return (O,A)

Figure 1: Template for Transaction Annotator

The recognition of transactional pages is performed by
a transaction annotator, whose principles of operation are
given in Sec. 2. Specifically, we identify all transactions
supported by a page.1 At the core is a classification algo-
rithm which identifies web-pages that act as gateways to
forms and applications (i.e., transactions). While the no-
tion of identifying such gateways is not new [9], we present
a novel templatized procedure aimed at increasing precision.
Transaction annotators have no counterparts in traditional
IR, and have to be constructed from scratch by us.

Thereafter, we would like to leverage standard techniques
as far as possible. Specifically, in our implementation, we use
the popular open-source Lucene [16] infrastructure. There
are several design decisions to be made in this regard: whether
to index all terms or only transactional terms, whether to
index only the transactional collection or other documents
also, and so forth. We consider such issues in Sec. 3.

An experimental assessment of the proposed techniques
is given in Sec. 4. In Sec. 5 we discuss both reasons for
the good performance observed by our system as well as the
limits of applicability. The final sections present a discussion
of related work and then conclusions.

In this paper, we focus solely on transactional queries; in a
complete system, it may be necessary to determine whether
a given user query is transactional by analyzing it. Such
query classification is not included in the scope of this pa-
per, so as not to confound issues of classification with issues
of retrieval for the class (transaction queries) of interest. In-
stead, we refer the reader to techniques for automatic user
goal identification that have been proposed recently [9, 10,
11, 14]

2. TRANSACTION ANNOTATOR
The transaction annotator serves two purposes: (a) classi-

fies each web-page as being either transactional or not; and
(b) returns those specific sections that support the transac-
tion(s) (called transactional features). While multiple choices
for a classifier exist (rule-based, machine learning etc.), our
problem has several distinguishing characteristics that mo-
tivate our choice. Foremost, the interest is in very high-
precision classification. Consequently the lack of a large
training set combined with the fact that this is a single-class,
classification problem makes transactional annotation a less
appealing task for machine learning approaches [22]. Fur-
thermore, the requirement of extracting relevant portions
of the document necessitates the careful engineering of fea-
tures. For the above stated reasons the advantages of a
highly-optimized, hand-crafted, rule-based classifier clearly
outweighs the obvious overhead involved in building such

1Note that an individual web-page may support more than
a single transaction.

procedure ObjectIdentifierC(W,REP ,REN)

REP = {<rei,fi>} is a set of positive patterns
GN = {Gi, fi >} is a set of negative patterns
ERE is the pattern matching evaluation function
EG is the gazetteer matching evaluation function
BE is a boolean expression for class C
R is the set of objects identified

1. CO= CandidateObjectIdentifierC(W )
2. foreach o ∈ CO
3. COP (o) = {< rej , fj >∈ REP |ERE(o, rej , fj)is true}
4. CON (o) = {< Gj , fj >∈ GN |EG(o, Gj , fj)is true}
5. if BE(COP (o), CON(o))
6. then add (o) to R.
7. return ConsolidateObjectsC (R)

Figure 2: Algorithm to Identify Transactional Ob-
jects

procedure ActionIdentifierC(W,REP ,REN )

GA = {gi} is a gazetteer of terms
CA= set of actions identified in W
E is the gazetteer matching evaluation function

1. CA= CandidateActionIdentifierC(W )
2. foreach a ∈ CA
3. if (E(a,GA,f) is true)
4. then discard a.
5. return CA.

Figure 3: Algorithm to Identify Actions

an annotator. In this section we provide an algorithm tem-
plate that captures the essential elements of a transaction
annotator. We then focus on two classes of transactions –
software downloads (SD) and form-entry (FE ), and describe
the specifics of instantiating the template.

Figure 1 shows the template for our transaction annota-
tor. The first two steps identify transactional objects and ac-
tions, respectively. The former outputs the actual object of
the transaction – e.g., the name of the software for SD while
the latter identifies the action to be performed – e.g., down-
loadable links. Both steps rely primarily on checking for
the existence of positive patterns and verifying the absence
of negative patterns (Figure 2 and 3). Specifically, positive
pattern matches are carefully constructed regular expres-
sion patterns and gazetteer lookups while negative pattern
matches are regular expressions based on the gazetteer.

Consider, for example, the classifier that identifies SD.
Firstly, candidate software names are extracted by
CandidateObjectIdentifierC (Figure 2, line 1) by looking for
patterns resembling software names with version numbers
(e.g., Acrobat Reader 7.1 ). Some of these will be false pos-
itives such as “Chapter 1.1”. For each candidate object,
ObjectIdentifier evaluates patterns comprising features in
portions of the web page that are pertinent to the candidate
object. Each pattern comprises a regular expression re and
a feature f . For SD the only feature of interest is the object-
text – i.e., the text that describes the software name (e.g.,
Acrobat Reader and Chapter). An example positive pattern
for object-text requires that the first letter be capitalized.
It is important to note that complex transactions (such as
FE ) contain a richer set of features. False positives such as
“Chapter 1.1” will be pruned as a negative pattern using a



gazetteer. A boolean expression BE , over this set of positive
(COP (o)) and negative (CON (o)) pattern matches, decides
whether a candidate object (o) is relevant. The boolean
expression we currently use is simple: it returns true if and
only if COP (o) is non-empty and CON (o) is empty. Finally,
the relevant objects are consolidated and returned by Con-

solidateObjectsC (Figure 2, line 7). For example, Adobe Ac-
robat Reader and Acrobat Reader will be consolidated into
a single object.

Similarly, ActionIdentifier (Figure 3) begins with the iden-
tification of several candidate actions. Again, through the
use of several hand-crafted regular expressions and gazetteer
lookups the candidate list is pruned to get a final list of ac-
tions and corresponding features.

At this point PageClassifierC (Figure 1) classifies web pages
based on the transaction object and actions on each web
page: any web page that contains at least one transactional
object and an action associated with the object is classified
as a transactional page.

2.1 Instantiating and Optimizing the
Classifier

We have described above an overall template for building
transaction annotators. However, several decisions such as
choice of transactional features, regular expression patterns
and gazetteer entries are to be made dependent on the class
of transactions being considered. For SD and FE used in
this paper, the transaction annotator was constructed and
optimized using a subset of a million documents from the
IBM corporate intranet. These were then used unchanged in
our experimental evaluation on an entirely different dataset
(the University of Michigan intranet).

Feature engineering (identifying transactional features) and
defining regular-expressions and gazetteers was accomplished
using a manual iterative process (using the IBM intranet
data). It is worthwhile mentioning that there is a complex
interaction between the choice of features and regular ex-
pressions/gazetteers. The final set of features included hy-
perlinks, anchor-texts and html tags along with more specific
features such as window of text around candidate objects
and actions. In Table 1 we present several example patterns
(regular expressions and gazetteers)2 used by the transac-
tion annotator for SD. Similarly in Table 2 we present ex-
ample patterns used for FE. The first two columns describe
where in the algorithm the patterns are used. The third
column lists some example regular expressions or gazetteer
entries as the case may be. The fourth column lists the fea-
ture on which the regular expression (or gazetteer as the case
may be) is evaluated. For example, the first row describes
an example pattern to identify candidate transactional ob-
jects. The regular expression is evaluated over the document
text. This template can be utilized to identify other classes
of transaction annotators.

3. TRANSACTIONAL COLLECTION AND
OPTIMIZATION

The results of the transaction annotator described above
is a set of transactional pages, each with associated set
of transactional features. In this section, we discuss some

2For ease of exposition, the example patterns presented in
Tables 1 and 2 are simplified versions of the actual patterns
used.

choices with respect to how these pages are processed to cre-
ate a transactional collection that is indexed by the search
engine. We consider these design issues at multiple levels,
in turn.

1. Collection-level – Document Filtering: Each trans-
actional page must contain at least one transaction
object. We could evaluate transactional queries solely
against the transactional collection so obtained.

2. Document-level – Term Filtering: Filtering at a
document-level is accomplished by retaining only por-
tions of the document that have been identified as
containing transactional features. Each transactional
page is likely to contain many terms, only a small num-
ber of which are actually associated with the transac-
tion. We could choose to index only terms that appear
in the transactional features, and ignore the rest.

3. Term-level – Synonym Expansion: Transactional
queries typically have a general form of <action>
<object>. In many cases, the action has multiple
synonyms and there is the possibility of a mismatch
between the term appearing in the user query and
that appearing in the web-page. (E.g. “obtain” rather
than “download” some software package). The object
on the other hand, being the name of an entity, is less
likely to be obfuscated by the user. To address this po-
tential mismatch we create the transactional collection
by performing synonym expansion on all verbs appear-
ing in the transactional features. Note that performing
synonym expansion over the entire document collec-
tion will dramatically increase the size of the index.
Restricting it to only verbs in the transactional collec-
tion, as in our case, prevent this problem (Sec. 4.4.3).

4. EXPERIMENTAL EVALUATION
In this section, we report experiments conducted to eval-

uate the effectiveness of transactional search and compare
the processing choices discussed in Sec. 3.

4.1 Dataset and Queries
Ideally, we would have liked to have used a standard cor-

pus and query set for our evaluation. Unfortunately, we
found no suitable standard document collection available for
transactional search, let alone a query set. As such, we had
to create our own3.

In our experiments, we used a collection of intranet Web
pages obtained by using Wget [20]: given a single start point
(URL of the entry page of a research university), the soft-
ware recursively collected textual documents with a small
set of MIME types (e.g., html, php) within the domain of
umich.edu in November 2005. This Web page collection in-
cludes 434,211 documents with a total size of 6.49GB.

A set of 15 transactional search tasks was derived from an
informal survey conducted among administrative staff and
graduate students in the university: 10 of the tasks are to
find a particular form(s); the rest are for software downloads.
The list of tasks was then given to 26 subjects, who are all
either current (graduate) students or recent graduates. Each
subject was asked to write at least one keyword query for
each search task. We obtained an average of 1.48 queries

3Available at http://www.eecs.umich.edu/db/transactionalSearch



Table 1: Example patterns for SD

Regular Expressions/Gazetteer Entries Features
ObjectIdentifier CandidateObjectIdentifier [a-zA-Z]{2,} [Vv]?[0-9]([0-9.])+ document text

(Positive)Regular Expr.(REP ) [A-Z][a-zA-Z ]+ text of candidate objects
(Negative)Gazetteer(GN ) {chapter, section, version, since, . . .} text of candidate objects

ActionIdentifier CandidateActionIdentifier • [Tt]o download \w+ (click (on)?|go to) •window of text around hyperlinks
• download [a-zA-Z]+ from •window of text around hyperlinks
• .(exe|zip|tar(.gz)?|jar) •hyperlinks in web-page
• ˆ [Dd]ownload •title of web-page

(Negative) Gazetteer GA {tutorial, instruction, form, survey, . . .} window of text around hyperlinks

Table 2: Example patterns for FE

Regular Expressions/Gazetteer Entries Features
ObjectIdentifier CandidateObjectIdentifier (.)+ hyperlinks in the web-page

(Positive) Regular Expr.(REP ) • click here to •window of text around hyperlink
• following form is (used|related) to •window of text around hyperlink
• \w+ form$ •anchor-text
• \w+ form$ •heading appearing before hyperlink

(Negative) Gazetteer (GN ) {toolkit,presentation,cookbook,. . .} window of text around hyperlink

ActionIdentifier CandidateActionIdentifier {cancel,claim,register,nomination,. . .} • title of web-page
(Positive) Gazetteer • window of text around hyperlinks

• headings in web-page

Table 3: Example tasks (sample user queries)
Task 1 Get recent trip reimbursed

(travel reimburse, reimbursement form)

Task 3 Get the official letter of recommendation form
(recommendation letter form, candidate evaluation)

Task 6 Alter some of the courses you have registered
(modify course registration, add/drop course)

Task 12 Obtain Remedy client for your windows machine
(Remedy client windows, Remedy client download)

Task 14 Obtain the virus scan software available locally
(download virus scan, virus scan software)

Table 4: Query statistics: mean and (std. deviation)
Avg. Number of Unique Queries/Task (SD) 26.3 (6.34)
Avg. Number of Words/Query (SD) 2.95 (1.14)

per task from each subject. After removing duplicates, a
total of 394 unique queries were collected for the 15 tasks.
Example tasks are listed in Table 3 and statistics on the
query collection is reported in Table 4.

4.2 Experimental Set Up
We used Apache Lucene [16], a high-performance, full-

featured text search engine library, to index and search the
following data collections:

• S-DOC: This is the original dataset described in Sec. 4.1.

• S-TDC: Based on the existence of transactional ob-
jects, each document in S-DOC was classified as being
a transactional page or not. We separately indexed
the collection of transactional pages. Note that this
collection is a strict subset of the pages in S-DOC.

• S-ANT-NE: This collection is created by writing all
the transaction features (for both SD and FE ) on the
same document into a single file. The identifier asso-
ciated with each file is the original document.

• S-ANT: This collection is generated similar to S-ANT-
NE, but with term-level synonym expansion. We used
WordNet [21] as our general thesaurus to expand the
verbs in the transactional features.

4.3 Evaluation Metrics
Multiple different metrics, including precision, recall, and

F-measure, can be used to evaluate the quality of the result
returned by a search. In the case of a transactional search,
it is most often the case that the user is only interested in
one way to perform the transaction — that there are other
additional ways matters less. In other words, the user is
likely to care the most about the top ranked relevant match
returned.

In light of the above, results of most experiments are re-
ported in terms of the mean reciprocal rank (MRR) mea-
sure. For each unique query of each task, the reciprocal
value (1/n) of the rank (n) of the highest ranked correct
result is obtained. This value is then averaged over all the
queries corresponding to the same task. The reciprocal rank
of a query is set to 0 if no correct result is found in the first
100 pages returned.

In our study, correct answers are web pages that can sup-
port the desired transaction tasks. For example, a correct
answer for “download Remedy Client” must be a web page
from which the software Remedy Client can be downloaded
directly. As such, there is little subjectivity in determining
relevance.

For completeness, we also present recall measurements,
but only for the main experiment in Section 4.4.1.

4.4 Experimental Results

4.4.1 Transactional Search
As a first test, we wish to judge how effective our sys-

tem is for transactional search. The MRR for each task
over S-DOC and S-ANT is reported in Figure 4. As can
be seen, search based on S-ANT almost always outperforms
that based on S-DOC. For nearly two third of the tasks,
S-ANT achieves higher than 0.5 in the MRR, while S-DOC
achieves similar performance for only 3 of them. In partic-
ular, for 5 of the tasks (Task 1,2,4,5,10), MRR of S-ANT is
significant higher than that of S-DOC. For tasks 1,2,4, and
5, the MRR of S-ANT is higher than 0.5, indicating that
S-ANT on average returned a correct answer in its top two
results. In contrast, the MRR of S-DOC for the same set



of tasks is lower than 0.05. For Task 10, S-ANT performed
slightly worse, with its MRR being right below 0.3; how-
ever, it still significantly outperforms S-DOC, whose MRR
is merely 0.009.

Based on the results reported in Figure 4, the search tasks
can essentially be divided into two categories (i) tasks where
S-ANT significantly outperforms S-DOC (Task 1, 2, 4, 5,
10), and (ii) tasks where S-ANT achieves better MRR than
S-DOC by a smaller margin (such as Task 3, 6). Figure 6
presents reciprocal rank of S-ANT and S-DOC on individual
queries for selective tasks in these two categories. For tasks
in the first category (Figure 6(a), (b)), S-ANT performs
extremely well over individual queries: it returned correct
results in the first rank for more than half of the queries,
and in up to fifth rank for more than three fourth of the
queries. In contrast, S-DOC never returned correct results
in the first rank for any query, and only returned correct
results in up to tenth rank for less than one tenth of the
queries for the same tasks.

For tasks in the second category, the advantage of S-ANT
over S-DOC is still obvious but smaller (Figure 6(c), (d)).
S-ANT returned correct results in the first and second rank
for about half of the queries but failed to return correct
results in the top ten rank for others. Meanwhile, S-DOC
returned correct results in up to tenth rank for nearly one
third of the queries, and even returned correct results in the
first rank for about one tenth of them.

Note that for Task 9, both S-ANT and S-DOC perform
badly, with S-ANT performing worse than S-DOC. This re-
sult is not surprising. Task 9 asks for a form used to request
telephone repair service, but there is no such form in our
dataset (At the University of Michigan, telephone repair is
requested by telephoning a repair number, not by filling in
a web form). For this task, web pages with the correct
contact information for the service were counted as correct
results. One such page was included in S-ANT due to a
different transaction being identified on that page. Recall,
however, that transaction annotators only keep features re-
lated to transactions. Since there is no transaction object
related to this task, keyword search for the task on S-ANT
is essentially a search over less related document content to
the task, explaining the worse results.

While it is straightforward to see how many relevant an-
swers there are in the result set, it is hard to know how many
answers there are in the document collection as a whole. As
such, it is difficult to measure recall. Instead, for each task
we approximate the total number of relevant web pages by
obtaining the union of the correct answers in the top 100
results for S-DOC and S-ANT4. The recall of S-DOC and
S-ANT at the cutoff rank 100 (Recall@100) is reported in
Figure 5. As can be seen, even though S-ANT (12.6MB) is
only a tiny fraction of S-DOC (6.49GB), it actually retrieved
more correct results5 in its top 100 results for two third of the
tasks, and only returned fewer correct results for three tasks.

4.4.2 Term Filtering vs. Document Filtering
We also wish to compare the effectiveness of transactional

collection generated via term filtering and document filter-

4Specifically, the two most frequent keyword queries for each
task was used to get the 100 top results.
5There frequently are multiple pages linking to the same
form, and each of the page is considered a correct result in
our study.
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Figure 4: MRR for S-DOC and S-ANT.
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Figure 5: Recall@100 on S-DOC and S-ANT.

ing. The result of the study between S-ANT (term filtering)
and S-TDC (document filtering) is shown in Figure 7. As
can be seen, S-ANT performs better than S-TDC in 13 out
of 15 tasks. This result shows that when the transaction
annotator does a good job in identifying relevant features,
retaining only these features in the transactional collection
improves search performance, as opposed to retaining the
entire document.

The cases where unrelated content may help involve queries
that are less well defined, such as those for Task 6 and 14.
For example, none of the keyword queries specified for Task
14 contains the actual software name “VirusScan”; rather,
more general terms such as “anti-virus” and “virus scan” are
used. In future work, we intend to investigate techniques to
obtain useful context for such cases.

4.4.3 Synonym Expansion
Finally, to evaluate the effectiveness of synonym expan-

sion for transactional features, we compare the performance
of S-ANT and S-ANT-NE in Figure 8(a) for queries contain-
ing a verb6. As can be seen, for such queries in FE tasks
(Task 1-10), the advantage of synonym expansion is evident,
while for SD tasks, synonym expansion does not provide bet-
ter results. For SD tasks, almost all user queries with a verb
use the same word “download”, which is contained by all
transactional features of SD pages. S-ANT performs worse
than S-ANT-NE for Task 9 and 14 due to the abnormal-
ities discussed previously: (i) there is no form for Task 9
in the dataset; and (ii) no query specified for Task 14 con-
tains the actual software name. When we consider all the
user queries for each task (including those without a verb),
the comparison of S-ANT and S-ANT-NE is shown in Fig-

6Our query set includes 154 such queries, out of a total of
394 unique queries.
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Figure 6: Reciprocal rank on individual queries.
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Figure 7: MRR for S-TDC and S-ANT.

ure 8(b). Among the FE tasks, tasks 2, 6, 7 and 10 still show
considerable improvement of S-ANT over S-ANT-NE, while
the difference is marginal for the rest. This can be explained
by the fact that a larger fraction of user queries for these four
tasks contain a verb, as opposed to the other tasks.

The cost of synonym expansion in terms of index size is
89.3%, with the size of Lucene index increases from 1.77MB
for S-ANT-NE to 3.35MB for S-ANT.

5. DISCUSSION
It is clear from the experimental results above that pre-

identifying and annotating transactional pages leads to a
vastly superior performance in transactional search. In this
section, we consider why that might be the case.

5.1 Collection Size
We begin by noting that for the experimental dataset, as

expected, the size of the transactional collection was 434,211
pages, only a very small fraction of the total collection size
of 22,967 pages are transactional. A fundamental question
to ask is whether the transactional collection as identified
by our classifier is indeed the correct set. Could there be
errors in classification?

We manually took a random sample of 100 documents
from the transactional collection and found that each of
these was indeed transactional. We then took a random
sample of 500 documents from the full document collection.
Of these, we found that all documents that were identified as
transactional, indeed were transactional, but not vice versa.
Specifically, we found 30 transactional pages in total, of
which 23 were included in the transactional collection by
the classifier, and 7 had been missed. In other words, our
transaction annotator is identifying roughly 3/4 of the trans-
actional pages. This gives us more confidence in our superior
search performance as it indicates that a fair-sized fraction of
the transactional pages from S-DOC are present in S-ANT.

5.2 Probabilistic Model
For the most part in our experiments the retrieval engine,

Lucene, has been treated as a black-box thus making it dif-
ficult to isolate the different aspects of transactional search
and evaluate them. To understand the value of identify-
ing transactional pages, we implemented a simple language-
model retrieval engine where all assumptions can be made
explicitly. A standard language model, in response to a
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Figure 8: MRR for S-ANT and S-ANT-NE.

query, ranks documents based on7

P (Q|Ωd) · P (d) (1)

where Q is the keyword query, P (Q|Ωd) is the likelihood
of producing the query Q given Ωd the language model for
document d. P (d) is the prior probability for document d
often assumed to be uniform.

Since our goal is transactional search, apriori we have a
bias towards pages that are transactional. It is precisely
this belief that we encode in the computation of P (d) where
each page has a prior probability that is proportional to
the number of transactional objects identified in Section 2.
Similar reasoning for home page search can be found in [13].

P (d) =
1 + O(d)

N + O(Nd)
(2)

where O(d) is the number of transactional objects in docu-
ment d, O(Nd) is the total number of transactional objects
identified in the collection and N is the total number of
documents in the collection. Smoothing has been added to
account for documents that have no transactional objects.

Ωd was modeled as a multinomial and the following mix-
ture probability was used to compute P (Q|Ωd)

8.

P (Q|Ωd) =
Y
t∈Q

(λ ∗ P (t|Ωd) + (1 − λ) ∗ P (t)) (3)

where t refers to an individual term; P (t) is the collection
level probability for term t computed as the ratio of the
number of times term appears in the collection and the to-
tal number of terms in the collection. Term-level synonym
expansion was not performed for the language model imple-
mentation.

The results obtained are shown in Figure 9. As can be
seen, transactional prior help to increase search effective-
ness in almost all tasks on document collection (S-DOC).
These results are very pleasing and validate our intuition
that pre-identifying transactional pages is important. Cer-
tainly, more powerful language models incorporating other
assumptions (transactional terms and important parts of
speech) is possible but beyond the scope of this paper. We

7Strictly speaking we are interested in the posterior P (d|Q)

which is given by P (Q|Ωd)·P (d)
P (q)

where P (Q|d) has been re-

placed by the model for d.
8Some details are not mentioned here in the interests of
space such as minimal feature selection using stop-word lists,
removal of very frequent terms etc.

Figure 9: MRR for S-DOC with uniform prior and
with transactional prior.

intend to continue this line of research further to better un-
derstand transactional search.

6. RELATED WORK
This research has its roots in web page search, web genre

detection, and information extraction. The following section
discuss related work in these fields.

Web Genre Detection: Automatic web genre identifi-
cation (AWGI) has been recently studied as a key factor to
improve search results [5, 12]. For example, genre classifica-
tion could allow users to sort search results according to their
immediate interests [12]. While current AWGI techniques
could improve navigational search (e.g., home pages [5]), we
are not aware of similar work for transaction search.

Web Page Search: Structural information on a Web
page, such as URL, anchor text, and title, has been used to
improve entry page search and link-based page classification
with great success [4, 7, 9, 13, 19]. We have shown that
structural information can also be exploited in transaction
annotators to improve transactional search.

Most work on web page search is focused on Internet
search. A notable exception is [6]. In this study, the au-
thors identified a few fundamental differences between in-
tranet and Internet. Among these differences, the following
directly motivated our work: (i) “intranet documents are of-
ten created for simple dissemination of information;”(ii) “a
large fraction of queries tend to have a small set of correct
answers (often unique), and the unique answer pages do not
usually have any special characteristic;” (iii) “intranets are
spam-free.” Our example annotators are also designed by
taking such differences into consideration.



Search Goal Detection: Techniques based on classifi-
cation and user behavior [9, 10, 11, 14] have been proposed
to support automatic user goal identification in web search.
These techniques are important for transactional search, as
it is often necessary to identify transaction queries before
search. The most relevant work to ours is [9], in which
Kang proposed the notion of Service Link and used it to
improve query type classification. The idea behind Service
Link bears great similarity to that of our transaction anno-
tator: both classify pages based on structural information
within each page. One key difference is that [9] does not
support careful extraction of transaction features. In the
Internet, the context of [9], simple adjustment based on Ser-
vice Link to the search results of commercial search engine
seems serve the purpose well. However, as our comparison
study has shown, such page level annotation is not adequate
for intranets, which is far less search-engine-friendly. For
such environments, supporting extraction of transactional
features are necessary for better transactional search .

Information Extraction: Transaction annotators of-
ten heavily depend on information extraction techniques for
page classification and transactional feature extraction. De-
pending on the type of transaction and/or dataset of in-
terest, different information extraction techniques can be
applied. For example, in object identification for software
download pages (Sec. 2), finding software name on each
web page is essentially a Named Entity Recognition (NER)
task [2], which is to identify proper names in text, such
as geographic names [1, 15]. Our current implementation
of transaction annotator mostly relies on structural pattern
matching. But more advanced information extraction tech-
niques can be easily adopted to improve transaction anno-
tators and benefit transactional search.

7. CONCLUSIONS
In this paper we introduced a methodology for transac-

tional search that is based upon identifying and pre-annotating
transactional pages. We developed a template-driven archi-
tecture for a rule-based transaction annotator that is capa-
ble of highly specific labeling of many distinct transaction
types. We showed the robustness of our annotator design
by constructing and optimizing it on one data set (from a
corporate intranet) and reporting results of its use, with
no modifications, on a different data set (from a university
intranet). Even without dataset specific optimization, the
new methodology was able to show dramatic improvement
in search results produced.

Transactional search is very important, and is growing in
importance on the web. On the extranet web, better serving
transactional need has significant economic benefit potential
associated with it. It is typically the case that a user is will-
ing to spend $500 to book a hotel on the web, including a $50
commission to the web site, but is unwilling to spend even
an amount smaller than $50 for information to help choose
the hotel. The business model for many web businesses is
to provide information for free in the hope of making money
from a transaction that eventually results. Not surprisingly,
generic search engines (as far as we can tell) already spe-
cial case selected transactional searches. For instance, a
Google query naming a pair of cities will bring up a link to
flight booking services as the top hit, before providing the
standard list of matches. It is therefore in the interests of
companies like Orbitz and Expedia to provide appropriate

additional information to search engines, in order to enable
them to support transactional requests better.

On the other hand, intranets are usually managed in a
de-centralized fashion (e.g., departments in universities and
geographical boundaries or product divisions in large multi-
national companies). Groups within the organization that
support various transactions (such as filing a claim and down-
loading software) have little coordination while exposing
these services. Since the economic imperatives for the in-
tranet are simply not as strong as the extranet, it is un-
likely that anyone will manually identify and manage web-
pages that serve transactional requests. Furthermore, only a
small fraction of pages in the intranet are typically relevant
to transactional search, and ordinary search is not good at
finding such pages. Therefore we expect that techniques de-
veloped in this paper, while useful for all transactional web
searches, will be of greatest value for intranet searches.
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