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Abstract. We describe the construction of a generic natural language query in-
terface to an XML database. Our interface can accept an arbitrary English sen-
tence as a query, which can be quite complex and include aggregation, nesting,
and value joins, among other things. This query is translated, potentially after
reformulation, into an XQuery expression. The translation is based on mapping
grammatical proximity of natural language parsed tokens in the parse tree of the
query sentence to proximity of corresponding elements in the XML data to be
retrieved. Our experimental assessment, through a user study, demonstrates that
this type of natural language interface is good enough to be usable now, with no
restrictions on the application domain.

1 Introduction

In the real world we obtain information by asking questions in a natural language, such
as English. Supporting arbitrary natural language queries is regarded by many as the
ultimate goal for a database query interface, and there have been numerous attempts
towards this goal. However, two major obstacles lie in the way of reaching the ultimate
goal of support for arbitrary natural language queries: first, automatically understand-
ing natural language is itself still an open research problem, not just semantically but
even syntactically; second, even if we could fully understand any arbitrary natural lan-
guage query, translating this parsed natural language query into a correct formal query
remains an issue since this translation requires mapping the understanding of intent into
a specific database schema.

In this paper, we propose a framework for building a generic interactive natural
language interface to database systems. Our focus is on the second challenge: given a
parsed natural language query, how to translate it into a correct structured query against
the database. The issues we deal with include those of attribute name confusion (e.g.
asked “Who is the president of YMCA,” we do not know whether YMCA is a country,
a corporation, or a club) and of query structure confusion (e.g. the query “Return the
lowest price for each book” is totally different from the query “Return the book with the
lowest price,” even though the words used in the two are almost the same). We address
these issues in this paper through the introduction of the notions oftoken attachmentand
token relationshipin natural language parse trees. We also propose the concept ofcore
tokenas an effective mechanism to perform semantic grouping and hence determine
both query nesting and structural relationships between result elements when mapping
tokens to queries. Details of these notions can be found in Sec. 3.
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Of course, the first challenge of understanding arbitrary natural language cannot be
ignored. But a novel solution to this problem per se is out of the scope of this paper.
Instead, we leverage existing natural language processing techniques, and use an off-
the-shelf natural language parser in our system. We then extract semantics expressible
by XQuery from the output of the parser, and whenever needed, interactively guide the
user to pose queries that our system can understand by providing meaningful feedback
and helpful rephrasing suggestions. Sec. 4 discusses how the system interacts with a
user and facilitates query formulation during the query translation process.

We have incorporated our ideas into a working software system called NaLIX3,
which we evaluated by means of a user study. Our experimental results in Sec. 5 demon-
strate the feasibility of such an interactive natural language interface to database sys-
tems. In most cases no more than two iterations appears to suffice for the user to submit
a natural language query that the system can parse. Previous studies [4, 25] show that
even casual users frequently revise queries to meet their information needs. Therefore,
our system can be considered to be usable in practice. In NaLIX, a correctly parsed
query is almost always translated into a structured query that correctly retrieves the
desired answer (average precision = 95.1%, average recall = 97.6%).

Finally, we discuss related work in Sec. 6 and conclude in Sec. 7. We begin with
some necessary background material in Sec. 2.

In summary, we have been able to produce a natural language query interface for
a database that, while far from being able to pass the Turing test, is perfectly usable
in practice, and able to handle even quite complex queries, e.g. involving nesting and
aggregation, in a variety of application domains.

2 Background

Keyword search interfaces to databases have begun to receive increasing attention [6,
10–12, 16, 18], and can be considered a first step towards addressing the challenge of
natural language querying. Our work builds upon this stream of research, so we present
some essential background material here. Additional efforts at constructing natural lan-
guage interfaces are described in Sec. 6.

There are two main ideas in using keyword search for databases. First, sets of key-
words expressed together in a query must match objects that are “close together” in
the database (using some appropriate notions of “close together”). Second, there is a
recognition that pure keyword queries are rather blunt – too many things of interest are
hard to specify. So somewhat richer query mechanisms are folded in along with the
basic keyword search. A recent effort in this stream of work is Schema-Free XQuery
[16, 18].

The central idea in Schema-Free XQuery is that of ameaningful query focus(MQF)
of a set of nodes. Beginning with a given collection of keywords, each of which iden-
tifies a candidate XML element to relate to, the MQF of these elements, if one exists,
automatically finds relationships between these elements, if any, including additional
related elements as appropriate. For example, for the query “Find the director of Gone
with the Wind,” there may betitle of movie, andtitle of bookwith value “Gone with
the Wind” in the database. However, we do not need advanced semantic reasoning ca-
pability to know that only movies can have a director and hence “Gone with the Wind”
should be thetitle of amovieinstead of abook. Rather, the computation ofmqf(director,

3 NaLIX was demonstrated at SIGMOD 2005, and voted the Best Demo [17].
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Query 1: Return every director who has directed as many movies as has Ron Howard.
Query 2: Return every director, where the number of movies directed by the director is the same
as the number of movies directed by Ron Howard.
Query 3: Return the directors of movies, where the title of each movie is the same as the title of
a book.

Fig. 1. Querying XML database with natural language queries

title) will automatically choose onlytitle of movie, as thistitle has a structurally mean-
ingful relationship withdirector. Furthermore, it does not matter whether the schema
hasdirector undermovieor vice versa (for example, movies could have been classi-
fied based on their directors). In either case, the correct structural relationships will be
found, with the correctdirector elements be returned.

Schema-Free XQuery greatly eases our burden in translating natural language queries
in that it is no longer necessary to map the query to the precise underlying schema. We
will use it as the target language of our translation process. From now on, we will refer
to Schema-Free XQuery as XQuery for simplicity, unless noted otherwise.

3 From Natural Language Query To XQuery

The relationships between words in the natural language query must decide how the
corresponding components in XQuery will be related to each other and thus the seman-
tic meaning of the resulting query. We obtain such relationship information between
parsed tokens from a dependency parser, which is based on the relationship between
words rather than hierarchical constituents (group of words) [20, 28]. The parser cur-
rently used in NaLIX is Minipar [19]. The reason we chose Minipar is two-fold: (i) it
is a state-of-art dependency parser; (ii) it is free off-the-shelf software, and thus allows
easier replication of our system.

There are three main steps in translating queries from natural language queries into
corresponding XQuery expressions. Sec. 3.1 presents the method to identify and clas-
sify terms in a parse tree output of a natural language parser. This parse tree is then
validated, but we defer the discussion of this second step until Sec. 4. Sec. 3.2 demon-
strates how a validated parse tree is translated into an XQuery expression. These three
key steps are independent of one another; improvements can be made to any one with-
out impacting the other two. The software architecture of NaLIX has been described
in [17], but not the query transformation algorithms. Figure 1 is used as our running
example to illustrate the query transformation process.



Table 1.Different Types of Tokens
Type of Token Query Component Description

Command Token(CMT) Return Clause Top main verb or wh-phrase [24] of parse tree, from an enum set of words and phrases
Order by Token(OBT) Order By Clause A phrase from an enum set of phrases

Function token(FT) Function A word or phrase from an enum set of adjectives and noun phrases
Operator Token(OT) Operator A phrase from an enum set of preposition phrases

Value Token(VT) Value A noun or noun phrase in quotation marks, a proper noun or noun phrase, or a number
Name token(NT) Basic Variable A non-VT noun or noun phrase
Negation (NEG) function not() Adjective “not”

Quantifier Token(QT) Quantifier A word from an enum set of adjectives serving as determiners

Table 2.Different Types of Markers
Type of Marker Semantic Contribution Description

Connection Marker(CM) Connect two related tokensA preposition from an enumerated set, or non-token main verb
Modifier Marker(MM) Distinguish two NTs An adjective as determiner or a numeral as predeterminer or postdeterminer
Pronoun Marker(PM) None due to parser’s limitationPronouns
General Marker(GM) None Auxiliary verbs, articles

3.1 Token Classification

To translate a natural language query into an XQuery expression, we first need to iden-
tify words/phrases in the original sentence that can be mapped into corresponding com-
ponents of XQuery. We call each such word/phrase atoken, and one that does not match
any component of XQuery amarker. Tokens can be further divided into different types
shown in Table 1 according to the type of query components they match.4 Enumer-
ated sets of phrases (enum sets) are the real-world “knowledge base” for the system. In
NaLIX, we have kept these small - each set has about a dozen elements. Markers can be
divided into different types depending on their semantic contribution to the translation.
A unique id is assigned to each token or marker. The parse tree after token identification
for Query 2 in Figure 1 is shown in Figure 2. Note that node11 is not in the query, nor
in the output of the parser. Rather, it is animplicit node (formally defined in Sec. 4) that
has been inserted by the token validation process.

Note that because of the vocabulary restriction of the system, some terms in a query
may not be classified into one of the categories of token or marker. Obviously, such
unclassified terms cannot be properly mapped into XQuery. Sec. 4 describes how these
are reported to the user during parse tree validation, when the relationship of the “un-
known” terms with other tokens (markers) can be better identified.

3.2 Translation into XQuery

Given a valid parse tree (discussion on parse tree validation is deferred until Sec. 4), we
show here how to translate it into XQuery. XML documents are designed with the goal
to be “human-legible and reasonably clear.” [32] Therefore, any reasonably designed
XML document should reflect certain semantic structure isomorphous to human con-
ceptual structure, and hence expressible by human natural language. The challenge is to
utilize the structure of the natural language constructions, as reflected in the parse tree,
to generate appropriate structure in the XQuery expression (If we do not establish this
structure, then we may as well just issue a simple keyword query!!). For simplicity of
presentation, we use the symbol for each type of token (resp. marker) to refer to tokens

4 When a noun/noun phrase matches certain XQuery keywords, such as “string”, special han-
dling is required. Such special cases are not listed in the table, and will not be discussed in the
paper due to space limitation.
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Fig. 2. Parse tree for Query 2 in Figure 1
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Fig. 3. Parse tree for Query 3 in Figure 1

(markers) of that type, and use subscripts to distinguish different tokens (markers) of
the same type if needed. For instance, we will write, “GivenNT 1, NT 2, ...” as a short
hand for “Given name tokensu andv, ...”

3.2.1 Concepts and Definitions.

A natural language query may contain multiple name tokens (NTs), each corre-
sponding to an element or attribute in the database.NTs “related” to each other should
be mapped into the samemqf function in Schema-Free XQuery and hence found in
structurally related elements in the database. However, this relationship among the
NTs is not straightforward. Consider the example in Figure 3, nodes2 (director) and
4 (movie) should be considered as related to nodes6 (title) and8 (movie), since the two
movienodes (4, 8) are semantically equivalent. However, they are not related to nodes9
(title) or 11 (book), although the structural relationship between nodes9, 11 and nodes
2, 4 is exactly the same as that between nodes6, 8 and nodes2, 4. An intuitive explana-
tion for this distinction is that the two sets ofNTs (director, movie) and (title, movie) are
related to each other semantically because they shareNTs representing the samemovie
elements in the database, whereas the (title, book) pair does not. We now capture this
intuition formally.
Definition 1 (Name Token Equivalence).NT 1 andNT 2 are said to be equivalent if
they are (i) both not implicit5 and composed of the same noun phrase with equivalent
modifiers6; OR (ii) both implicit and correspond toVTs of the same value.

In consequence of the above definition, if a query has two occurrences ofbook,
the corresponding name tokens will be considered equivalent, if they are not qualified
in any way. However, we distinguishfirst bookfrom second book: even though both
correspond tobook nodes, the corresponding name tokens are not equivalent, since
they have different modifiers.
Definition 2 (Sub-Parse Tree).A subtree rooted at an operator token node that has at
least two children is called a sub-parse tree.

5 An implicit NT is a NT not explicitly included in the query. It is formally defined in Defini-
tion 11, Sec. 4.

6 Two modifiers are obviously equivalent if they are the same. But some pairs of distinct modi-
fiers may also be equivalent. We do not discuss modifier equivalence further in this paper for
lack of space.



Definition 3 (Core Token). A name token is called a core token if (i) it occurs in a
sub-parse tree and has no descendant name tokens;OR (ii) it is equivalent to a core
token.

Definition 4 (Directly Related Name Tokens).NT1 and NT2 are said to be directly
related to each other, if and only if they have a parent-child relationship (ignoring any
intervening markers, andFT and OT nodes with a single child).

Definition 5 (Related by Core Token).NT1 and NT2 are said to be related by core
token, if and only if they are directly related to the same or equivalent core tokens.

Definition 6 (Related Name Tokens).NT1 andNT2 are said to be related, if they are
directly related, or related by core token, or related to the sameNT.

For Query 3 in Figure 3, only one operator token (OT), node5 exists in the parse
tree. The lowestNTs of the OT’s sub-parse trees, nodes8 (movie) and11 (book), are
the core tokens in the query. Nodes2, 6 and9 are directly related to nodes4, 8 and
11 respectively, by Definition 4. Node4 is equivalent to node8. Hence, according to
Definition 6, two sets of related nodes{2, 4, 6, 8} and{9, 11} can be obtained.

All NTs related to each other should be mapped to the samemqf function since we
seek elements (and attributes) matching theseNTs in the database that are structurally
related.

Additional relationships between tokens (not just name tokens) needed for query
translation are captured by the following definition ofattachment.

Definition 7 (Attachment). Given any two tokensTa andTb, whereTa is the parent of
Tb in the parse tree (ignoring all intervening markers), ifTb followsTa in the original
sentence, thenTa is said to attach toTb; otherwise,Tb is said to attach toTb.

3.2.2 Token Translation.

Given the conceptual framework established above, we describe in this section how
each token in the parse tree is mapped into an XQuery fragment. The mapping process
has several steps. We illustrate each step with our running example.

Identify Core Token Core tokens in the parse tree are identified according to Defi-
nition 3. Two different core tokens can be found in Query 2 in Figure 1. One isdirector,
represented by nodes2 and7. The other is a differentdirector, represented by node
11. Note although node11 and nodes2, 7 are composed of the same word, they are
regarded as different core tokens, as node11 is an implicitNT, while nodes2, 7 are not.

Variable Binding EachNT in the parse tree should be bound to a basic variable in
Schema-Free XQuery. We denote such variable binding as:〈var〉 → NT

Two name tokens should be bound to different basic variables, unless they are re-
garded as the same core token, or identical by the following definition:

Definition 8 (Identical Name Tokens).NT1 and NT2 are identical, if and only if (i)
they are equivalent, and indirectly related;AND (ii) the NTs directly related with them,
if any are identical;AND (iii) no FT or QT attaching to either of them.

We then define the relationships between two basic variables based on the relation-
ships of their correspondingNTs as follows:



Table 3.Variable Bindings for Query 2
Variable Associated ContentNodesRelated To

$v∗1 director 2,7 $v2
$v2 movie 5 $v1
$v3 movie 9 $v4
$v∗4 director 11 $v3
$cv1 count($v2) 4+5 N/A
$cv2 count($v4) 8+9 N/A

Table 4.Direct Mapping for Query 2
Pattern Query Fragment

$v1 for $v1 in 〈doc〉//director
$v2 for $v2 in 〈doc〉//movie
$v3 for $v3 in 〈doc〉//movie
$v4 for $v4 in 〈doc〉//director

$cv1+〈eq〉+$cv2 where $cv1 = $cv2
$v4+〈constant〉 where $v4 = “Ron Howard”
〈return〉 + $v1 return $v1

Definition 9 (Directly Related Variables).Two basic variables〈var1〉 and〈var2〉 are
said to be directly related, if and only if for anyNT 1 corresponding to〈var1〉, there
exists aNT 2 corresponding to〈var2〉 such thatNT 1 and NT 2 are directly related,
and vice versa.

Definition 10 (Related Variables).Two basic variables〈var1〉 and〈var2〉 are said to
be related, if and only if anyNTs corresponding to them are related or there is no core
token in the query parse tree

Patterns〈FT + NT 〉|〈FT 1 + FT 2 + NT 〉 should also be bound to variables. Vari-
ables bound with such patterns are calledcomposed variables, denoted as〈cmpvar〉,
to distinguish them from the basic variables bound toNTs. We denote such variable
binding as:

〈function〉 → FT
〈cmpvar〉 → (〈function〉+ 〈var〉)|(〈function〉+ 〈cmpvar〉)

Table 3 shows the variable bindings7 for Query 2 in Figure 1. The nodes referred to
in the table are from the parse tree of Query 2 in Figure 2.

Mapping Certain patterns of tokens can be mapped directly into clauses in XQuery.
A complete list of patterns and their corresponding clauses in XQuery can be found in
Figure 4. Table 4 shows a list of direct mappings from token patterns to query fragments
for Query 2 in Figure 1 (Ã is used to abbreviate ‘translates into’).

3.2.3 Grouping and Nesting.

The grouping and nesting of the XQuery fragments obtained in the mapping process
has to be considered when there are function tokens in the natural language query, which
correspond to aggregate functions in XQuery, or when there are quantifier tokens, which
correspond to quantifiers in XQuery. Determining grouping and nesting for aggregate
functions is difficult, because the scope of the aggregate function is not always obvious
from the token it directly attaches to. Determining grouping and nesting for quantifiers
is comparatively easier.

Consider the following two queries: “Return the lowest price for each book,” and
“Return each book with the lowest price.” For the first query, the scope of function min()
corresponding to “lowest” is within each book, but for the second query, the scope of
function min() corresponding to “lowest” is among all the books. We observe thatprice,
the NT the aggregate function attaching to, is related tobook in different ways in the
two queries. We also notice that theCM “with” in the second query implies that aprice
node related tobookhas the same value as the lowest price of all thebooks. Based on
the above observation, we propose the transformation rules shown in Figure 5 to take
the semantic contribution of connection markers into consideration.

7 The∗ mark next to $v1, $v4 indicates that the corresponding NTs are core tokens.



– FOR clause:
Let basic() be the function that returns the name token corresponding to basic variable in〈var〉 or 〈cmpvar〉
〈var〉 Ã for 〈var〉 in 〈doc〉//basic(〈var〉)

– WHERE clause:
〈variable〉 → 〈var〉|〈cmpvar〉
〈constant〉 → V T
〈arg〉 → 〈variable〉|〈constant〉
〈opr〉 → OT
〈neg〉 → NEG
〈quantifier〉 → QT
〈var〉+〈constant〉 Ã where 〈var〉 = 〈constant〉
(〈variable〉+〈opr〉+〈arg〉)|(〈opr〉+〈var〉+〈constant〉) Ã where 〈variable〉+〈opr〉+〈arg〉
〈variable〉+〈neg〉+〈opr〉+〈arg〉 Ã where not (〈variable〉+〈opr〉+〈arg〉)
〈opr〉+〈constant〉+〈variable〉 Ã 〈cmpvar〉 → count(〈variable〉)

where 〈cmpvar〉+ 〈opr〉+ 〈constant〉
〈neg〉+〈opr〉+〈constant〉+〈variable〉 Ã 〈cmpvar〉 → count(〈variable〉)

where not (〈cmpvar〉+ 〈opr〉+ 〈constant〉)– ORDERBY clause:
〈sort〉 → OBT
〈sort〉+ 〈variable〉 Ã orderby 〈variable〉

– RETURN clause:
〈cmd〉 → CMT
〈cmd〉+ 〈variable〉 Ã return 〈variable〉

Fig. 4. Mapping from token patterns to query fragments

Let innerFT() be function returning innermost FT in〈cmpvar〉
〈connector〉 → CM
〈cmpvar〉 → FT + 〈var2〉〈var1〉+ 〈connector〉+ 〈cmpvar〉 Ã 〈var2〉new → basic(〈cmpvar〉)

if innerFT(〈cmpvar〉) 6= null , then
where 〈innerFT(〈cmpvar〉)〉+ 〈var2〉new = 〈cmpvar〉

else
where 〈var2〉new = 〈cmpvar〉

Record〈var2〉new as related to〈var1〉, 〈var2〉 as unrelated to〈var1〉

Fig. 5. Semantic contribution of connection marker in query translation

We then propose the mapping rules shown in Figure 6 to determine the nesting
scope for aggregate functions. Specifically, we identify two different nesting scopes
that result from using an aggregate function -inner andouter, with respect to the basic
variable〈var〉 that the function directly attaches to. The nesting scope of theLET clause
corresponding to an aggregate function depends on the basic variable that it attaches to.
The idea is that if an aggregate function attaches to a basic variable that represents a
core token, then all the clauses containing variables related to the core token should be
put inside theLET clause of this function; otherwise, the relationships between name
tokens (represented by variables) via the core token will be lost. For example, given
the query “Return the total number of movies, where the director of each movie is
Ron Howard,” the only core token ismovie. Clearly, the condition clause “where $dir =
‘Ron Howard’” should be bound with eachmovieinside theLET clause. Therefore, the
nesting scope of aLET clause corresponding to the core token is marked asinner with
respect to〈var〉 (in this case $movie). On the other hand, if an aggregate function
attaches to a basic variable〈var〉 representing non-core token, only clauses containing
variables directly related to〈var〉 should be put inside of theLET clause, since〈var〉 is
only associated with other variables related to it via a core token. The nesting scope of
theLET clause should be marked asouter, with respect to〈var〉. Similarly, when there
is no core token,〈var〉may only be associated with other variables indirectly related to
it via value joins. The nesting scope of theLET clause should also be marked asouter
with respect to〈var〉. In such a case, the nesting scope determination for Query 2 can



Denote 〈core〉 as the core token related to 〈var〉, if any; else as a variable 〈var〉
attaching to and directly related to, if any; else as a randomly chosen variable
indirectly related to 〈var〉.
Denote 〈v〉 as variables directly related to 〈var〉.
if 〈cmpvar〉 → 〈function〉+〈var〉

then 〈cmpvar〉 Ã
– if 〈var〉 is not a core token itself, or there is no core token, then

let 〈vars〉 := {
for 〈core1〉 in 〈doc〉//basic(〈core〉)
where 〈core1〉 = 〈core〉
return 〈var〉}

Replace 〈cmpvar〉 with 〈function〉+ 〈vars〉.
Mark 〈var〉 and 〈core〉, 〈v〉 and 〈core〉 as unrelated.
Mark 〈var〉 and 〈core1〉, 〈v〉 and 〈core1〉 as related.
Mark nesting scope for the LET clause as outer with respect to 〈var〉.

– else if 〈var〉 is a core token itself, or no 〈core〉 exists, then
let 〈vars〉 := { return 〈var〉}

Replace 〈cmpvar〉 with 〈function〉+ 〈vars〉.
Mark nesting scope for the LET clause as inner with respect to 〈var〉.

else if 〈cmpvar〉 → 〈function〉+〈cmpvar1〉
then 〈function〉+〈cmpvar1〉 Ã

let 〈vars〉 := {〈cmpvar1〉}
Recursively rewrite 〈cmpvar1〉.
Replace 〈cmpvar〉 with 〈function〉+ 〈vars〉.

Fig. 6. Grouping and nesting scope determination for aggregate functions

be found in Figure 8. The updated variable bindings and relationships between basic
variables for the query can be found in Table 5.

The nesting scope determination for a quantifier (Figure 7) is similar to that for
an aggregate function, except that the nesting scope is now associated with a quantifier
inside aWHEREclause. The nesting scope of a quantifier is marked asinnerwith respect
to 〈var〉 the quantifier attaching to, when the variable〈var〉 is a core token. Otherwise,
it is marked asouter with respect to〈var〉. The meanings ofinner andouter are the
same as those for aggregate functions, except that now onlyWHEREclauses may be put
inside of a quantifier.

MQF Function As we have previously discussed in Sec. 3.2, all name tokens re-
lated to each other should be mapped into the samemqf function. Hence, basic vari-
ables corresponding to such name tokens should be put into the samemqf function.
One WHERE clause containingmqf function can be obtained for each set of related
basic variables:

〈vars〉 → the union of all〈var〉s related to each other
〈vars〉 Ã where mqf(〈vars〉)

As can be seen from Table 5, two sets of related variables can be found for Query 2
in Figure 1:{$v5,$v2} and{$v3,$v6}. The correspondingWHERE clauses containing
mqf function are:where mqf($v5,$v2) andwhere mqf($v3,$v6).

3.2.4 Full Query Construction.

Multiple XQuery fragments may be obtained from token translation. These frag-
ments alone do not constitute a meaningful query. We need to construct a semantically
meaningful Schema-Free XQuery by putting these fragments together with appropriate
nestings and groupings.



/* 〈core〉 is the same as that defined in Figure 6*/

if 〈cmpvar〉 → 〈quantifier〉+〈var〉
then 〈cmpvar〉 Ã

– if 〈var〉 is not a core token itself, or there is no core token, then

let 〈vars〉 := {
for 〈core1〉 in 〈doc〉//basic(〈core〉)
where 〈core1〉 = 〈core〉
return 〈var〉}

where 〈quantifier〉 〈var1〉 in 〈vars〉 satisfies { }
Mark 〈var〉 and 〈core, 〉, 〈core1〉 as unrelated.
Replace 〈var〉 elsewhere with 〈var1〉, except in FOR clause.
Mark nesting scope for the WHERE clause with the quantifier as outer with
respect to 〈var〉.

– else if 〈var〉 is a core token itself, or no 〈core〉 exists, then
let 〈vars〉 := { return 〈var〉}
where 〈quantifier〉 〈var1〉 in 〈vars〉 satisfies { }

Mark nesting scope for the WHERE clause with the quantifier as inner with
respect to 〈var〉.
Replace 〈var〉 elsewhere with 〈var1〉, except in FOR clause.

Fig. 7. Grouping and nesting scope determination for quantifier

(1) $cv 1→count($v 2)
$v2 is not a core token, and the core

token related to it is $v 1, therefore
$cv 1 Ã

let $vars 1 := {
for $v5 in 〈doc〉//director
where mqf($v 2,$v 5)

and $v5 = $v 1
return $v2}

Replace all $cv 1 with count($vars 1).
Mark $v 2, $v 1 as unrelated.
Mark $v 2, $v 5 as related.
Mark nesting scope for the LET

clause as outer with respect to $v 2.

(2) $cv 2→count($v 3)
$v3 is not a core token, and the core

token related to it is $v 4, therefore
$cv 1 Ã

let $vars 2 := {
for $v6 in 〈doc〉//director
where mqf($v 3,$v 6)

and $v6 = $v 4
return $v3}

Replace all $cv 2 with count($vars 2).
Mark $v 3, $v 4 as unrelated.
Mark $v 3, $v 6 as related.
Mark nesting scope for the LET

clause as outer with respect to $v 3.

Fig. 8. Grouping and nesting scope determination in Query 2

Following the defined nesting scopes (Figure 6,7), we construct the query starting
from innermost clauses and work outwards. If the scope defined isinnerwith respect to
〈var〉, then all the other query fragments containing〈var〉 or basic variables related to
〈var〉 are put within an inner query following the FLOWR convention (e.g., conditions
in WHEREclauses are connected byand) as part of the query at outer level. If the scope
defined isouter with respect to〈var〉, then only queries fragments containing〈var〉,
and clauses (in case of quantifier, onlyWHERE clauses) containing basic variables di-
rectly related to〈var〉 are put inside the inner query, while query fragments of other
basic variables indirectly related to〈var〉 are put outside of the clause at the same level
of nesting. The remaining clauses are put in the appropriate places at the outmost level
of the query following the FLOWR convention. Full translation for Query 2 in Figure 1
can be found in Figure 9.

4 Interactive Query Formulation

The mapping process from natural language to XQuery requires our system to be able
to map words to query components based on token classification. Due to the limited vo-



for $v1 in doc(“movie.xml”)//director,
$v4 in doc(“movie.xml”)//director

let $vars1 := {
for $v5 in doc(“movie.xml”)//director,

$v2 in doc(“movie.xml”)//movie
where mqf($v2,$v5)

and $v5 = $v1
return $v2}

let $vars2 := {
for $v6 in doc(“movie.xml”)//director,

$v3 in doc(“movie.xml”)//movie
where mqf($v3,$v6)

and $v6 = $v4
return $v3}

where count($vars1) = count($vars2)
and $v4 = “Ron Howard”

return $v1

Fig. 9. Full translation for Query 2

Return (CMT)

Director(NT)

directed by

(CM)

Movie(NT)

as

Ron Howard (VT)

Director(NT)

Fig. 10.Parse tree for Query 1 in Figure 1

Table 5.Updated variable bindings for Query 2

Variable Associated ContentNodesRelated To
$v∗1 director 2,7 null
$v2 movie 5 $v5
$v3 movie 9 $v6
$v∗4 director 11 null
$v∗5 director N/A $v2
$v∗6 director N/A $v3
$cv1 count($vars1) 4+5 N/A
$cv2 count($vars2) 8+9 N/A

Table 6.Grammar supported by NaLIX
Symbol “+” represents attachment relation between two

tokens; “[]” indicates implicit token, as defined in Def. 11

1. Q→ RETURN PREDICATE* ORDERBY?
2. RETURN→ CMT+(RNP|GVT|PREDICATE)
3. PREDICATE→ QT?+((RNP1|GVT1)+GOT+(RNP2|GVT2)
4. |(GOT?+RNP+GVT)
5. |(GOT?+GVT+RNP)
6. |(GOT?+[NT]+GVT)
7. |RNP
8. ORDERBY → OBT+RNP
9. RNP→ NT |(QT+RNP)|(FT+RNP)|(RNP∧RNP)
10. GOT→ OT|(NEG+OT)|(GOT∧GOT)
11. GVT→ VT |(GVT∧GVT)
12. CM→ (CM+CM)

cabulary understood by the system, certain terms cannot be properly classified. Clever
natural language understanding systems attempt to apply reasoning to interpret these
terms, with partial success. We make no attempt at superior understanding of natural
language. Rather, our approach is to get the user to rephrase the query into terms that
we can understand. By doing so, we shift some burden of semantic disambiguation from
the system to the user, to whom such task is usually trivial. In return, the user obtains
better accessibility to information via precise querying.

To ensure that this process proceeds smoothly for the user, we provide the user with
specific feedback on how to rephrase. In this section we describe the validation process
we use to determine whether we can translate a user specified query. We also discuss
the informative error messages we produce when validation fails.

NaLIX is designed to be a query interface for XML by translating natural language
queries into Schema-Free XQuery. As such, the linguistic capability of our system is
essentially restricted by the expressiveness of XQuery. This is to say, a natural language
query that may be understood and thus meaningfully mapped into XQuery by NaLIX is
one whose semantics is expressible in XQuery. Furthermore, for the purpose of evaluat-
ing the query, only the semantics that can be expressed by XQuery need to be extracted
and mapped into XQuery.

Consider the following query: “Find all the movies directed by director Ron Howard.”
The meaning of “directed by” cannot be directly expressed in XQuery. It is neither
possible nor necessary for NaLIX to understand such semantics. Instead based on the
dependency parse tree, we can determine that “movie” and “director” are related and
should be mapped into the samemqf function. Then the structural relationship be-
tweenmovieanddirector nodes in the database, which corresponds to “directed by,”
will be properly captured by Schema-Free XQuery. Generally, the semantics extracted



by NaLIX from a given natural langauge query comprise two parts: (i) tokens that can
be directly mapped into XQuery; (ii) semantic relationships between tokens, which are
inexpressible in XQuery, but are reflected by database schema, such as the attachment
relation between “movie” and “director” via “directed by” in the above example.

The grammar for natural language corresponding to the XQuery grammar supported
by NaLIX is shown in Table 6 (ignoring all markers).We call a normalized parse tree
that satisfies the above grammar avalid parse tree.

A valid parse tree can be translated to an XQuery expression as described in Sec 3.2.
An invalid parse tree, however, will be rejected by the system, with error message(s).8

Each error message is dynamically generated, tailored to the actual query causing the
error. Inside each message, possible ways to revise the query are also suggested. For
example, Query 1 in Figure 1 is found to be an invalid query, since it contains an un-
known term “as” as highlighted in the parse tree in Figure 10. An error message will be
returned to the user, and suggest “the same as” as a possible replacement for “as.” Query
3 in Figure 3 is likely to be the new query written by the user by using the suggested
term “the same as.” Screenshots of the above iteration can be found in [17]. By provid-
ing such meaningful feedback tailored to each particular query instance, we eliminate
the need to require users to study and remember tedious instructions on the system’s
linguistic coverage. Instead, through such interactive query formulation process, a user
will gradually learn the linguistic coverage of the system. Note that we assume user
queries are written in correct English, and thus do not specify any rules to deal with
incorrect English.

For some queries, the system successfully parses and translates the queries, yet
may not be able to correctly interpret the user’s intent. These queries will be accepted
by the system, but with warnings. For example, determining pronoun references (the
“anaphora” resolution problem) remains an issue in natural language processing. When-
ever there exists a pronoun in a user query, we include a warning message in the feed-
back and let the user be aware of the potential misunderstanding.

During the validation process, we also perform the following additional tasks con-
cerned with database specific situations.

Term ExpansionA user may not be familiar with the specific attributes and element
names in the database. Therefore, a name token specified in the user query may be
different from the actual name(s) of element or attribute in the database matching this
particular name token. The task of finding the name(s) of element or attribute in the
database that matches with a given name token is accomplished by ontology-based
term expansion using generic thesaurus WordNet [36] and domain-specific ontology
whenever one is available.

Implicit Name Token In a natural language query, we may find value tokens where
the name tokens attaching to them are implicit in the query. For example, in Query 1 of
Figure 10, elementdirector in the database is related to value token “Ron Howard,” but
is not explicitly included in the query. We call such name tokensimplicit name tokenas
defined below. See Table 6 for the definitions ofGVT, GOT andRNP.

Definition 11 (Implicit Name Token). For anyGVT, if it is not attached by aCMT, nor
adjacent to aRNP, nor attached by aGOT that is attached by aRNPor GVT, then each
VT within theGVT is said to be related to an implicitNT (denoted as[NT]). An implicit
NT related to aVT is the name(s) of element or attribute with the value ofVT in the
database.

8 More details on the generation of error and warning messages in NaLIX can be found on the
Web athttp://www.umich.edu/ yunyaol/NaLIX/index.html.



If no name matching a name token or the value of a value token can be found in
the database, an error message will be returned. If multiple element or attribute with
different names matching the name token or value token are found in the database,
the disjunctive form of the names is regarded as the corresponding name for the given
name token, or implicit name token for the given value token. Users may also change
the query by choosing one or more of the actual names.

5 Experimental Evaluation

We implemented NaLIX as a stand-alone interface to the Timber native XML database [13,
33] that supports Schema-Free XQuery. We used Minipar [19] as our natural language
parser. To evaluate the relative strength of NaLIX, we experimentally compared it
with a keyword search interface that supports search over XML documents based on
Meet [26]. We would have liked to compare NaLIX with an existing NLP system. Un-
fortunately, existing NLP systems are mainly designed for textual content, not for struc-
tured data. As such, NLP question answering system cannot handle queries as complex
as NaLIX and we believe no meaningful comparison is possible.

5.1 Methods

Participants were recruited with flyers posted on a university campus. Eighteen of them
completed the full experiment. Their age ranged from 19 to 55 with an average of 27. A
questionnaire indicated that all participants were familiar with some form of keyword
search (e.g. Google) but had little knowledge of any formal query language.

Procedures. The experiment was a within-subject design, with each participant using
either NaLIX or keyword search interface in one experimental block. The order of the
two blocks was randomly assigned for each participant. Within each block, each partic-
ipant was asked to accomplish 9 search tasks in a random order determined by a pair of
orthogonal 9 by 9 Latin Squares.

The search tasks were adapted from the “XMP” set in the XQuery Use Cases [31].
Each search task was described with the elaborated form of an “XMP” query9 taken
from XQuery Use Cases [31]. Participants received no training at all on how to formu-
late a query, except being instructed to use either an English sentence or some keywords
as the query depending on which experiment block the participant was in.

We noted that in an experimental setting, a participant could be easily satisfied
with poor search quality and go on to the next search task. In order to obtain objective
measurement of interactive query performance, a search quality criteria was adopted.
Specifically, the results of a participant’s query were compared against a standard re-
sults set, upon which precision and recall were automatically calculated. A harmonic
mean of precision and recall [27] greater than 0.5 was set as passing criteria, beyond
which the participant may move on to the next task. To alleviate participants’ frustration
and fatigue from repeated passing failures, a time limit of 5 minutes was set for each
task. If a participant reached the criteria before the time limit, he or she was given the
choice to move on or to revise the query to get better results.

9 Q12 is not included, as set comparison is not yet supported in Timber. Q5 is not included,
as NaLIX current only supports queries over a single document. Q11 contains two separate
search tasks: the second task was used as Q11 in our experiment; the first task, along with Q2,
is the same as Q3, and thus is not included, as they only differ in the form of result display,
which is not the focus of NaLIX.



Measurement. We evaluated our system on two objective metrics: how hard it was for
the users to specify a query (ease of use); and how good was the query produced in
terms of retrieving correct results (search quality).

Ease of UseFor each search task, we recorded the number of iterations and the
actual time (from the moment the participant started a search task by clicking on a
button) it took for a participant to formulate a system-acceptable query that returned
the best results (i.e., highest harmonic mean of precision and recall) within the time
limit for the task. We also evaluated NaLIX subjectively by asking each participant to
fill out a post-experiment questionnaire.

Search QualityThe quality of a query was measured in terms of accuracy and com-
prehensiveness using standard precision and recall metrics. The correct results for each
search task is easy to obtain given the corresponding correct schema-aware XQuery.
Since the expected results were sometimes complex, with multiple elements (attributes)
of interest, we considered each element and attribute value as an independent value for
the purposes of precision and recall computation. Thus, a query that returned all the
right elements, but only 3 out of 4 attributes requested for each element, would have a
recall score of 75%. Ordering of results was not considered when computing precision
and recall, unless the task specifically asked the results be sorted.

Finally, we measured the time NaLIX took for query translation and the time Timber
took for query evaluation for each query. Both numbers were consistently very small
(less than one second), and so not of sufficient interest to be worth reporting here. The
fast query translation is expected, given that query sentences were themselves not very
large. The fast evaluation time is an artifact of the miniscule data set that was used.
The data set we used was a sub-collection of DBLP, which included all the elements on
books in DBLP and twice as many elements on articles. The total size of the data set
is 1.44MB, with 73142 nodes when loaded into Timber. We chose DBLP because it is
semantically close to the data set for the XMP use case such that the “XMP” queries
can be applied with only minor changes (e.g., tag nameyear is used to replaceprice,
which is not in the data set but has similar characteristics). A pilot study showed that
slow system response times (likely with very large data sets) resulted in frustration and
fatigue for the participants. Since query evaluation time is not a focus of this paper,
we felt that it is most appropriate to use this data set to balance the trade-off between
performance and realism: we minimized the overhead resulting from the use of a larger
data set both in terms of query evaluation and precision/recall computation time; at the
same time, the correct results obtained for any “XMP” query from our data set were the
same as those would have been obtained by using the whole DBLP, as correct answers
for each query included elements related tobookelements only.

5.2 Results and Discussion

Ease of Use.The time and the number of iterations needed for participants to formulate
a valid natural language query with the best search results is shown in Figure 11. As
can be seen, the average total time needed for each search task is usually less than 90
seconds, including the time used to read, understand the task description, mentally for-
mulate a query, type in the query, read the feedback message, revise the query, browse
the results and decide to accept the results. In consequence, there seems to be a floor of
about 50 seconds, which is the average minimum time required for any query. The av-
erage number of iterations needed for formulating a query acceptable by NaLIX is less
than 2, with an average of 3.8 iterations needed for the worst query. For about half of



Search Task Number

Fig. 11.Average time (insec.) and average num-
ber of iterations needed for each “XMP” search
task. Error bars show standard errors of means

Search Task Number

Fig. 12. Average precision and recall for each
“XMP” search task

the search tasks (not the same tasks for each participant), all the participants were able
to formulate a natural language query acceptable by NaLIX on the first attempt (i.e.,
with zero iterations). Also, for each task, there was at least one user (not the same one
each time) who had an acceptable phrasing right off the bat (i.e. the minimum number
of iterations was zero for each task).

It is worth noting that there was no instance where a participant became frustrated
with the natural language interface and abandoned his/her query attempt. However, two
participants decided to stop the experiment due to frustration during the keyword search
block.

According to the questionnaire results, the users felt that simple keyword search
would not have sufficed for the query tasks they had to do. They welcomed the idea of
a natural language query interface, and found NaLIX easy to use. The average partici-
pants’ levels of satisfaction with NaLIX was 4.11 on a scale of 1 to 5, where 5 denotes
“extremely easy to use.”

Search quality. Figure 12 compares the average precision and recall of NaLIX with
that of a keyword search interface in the experiment. As can be seen, the search quality
of natural language queries was consistently better than that of keyword search queries.
The precision of NaLIX is 83.0% on average, with an average precision of 70.9% for
the worst query; for 2 out of the 9 search tasks, NaLIX achieved perfect recall, with an
average recall of 90.1% for all the queries and an average recall of 79.4% for the worst
query. In contrast, keyword search performed poorly on most of the search tasks10,

10 Each search task corresponds to an “XMP” query in [31] with the same task number.



Table 7.Average Precision and Recall
avg.precision avg.recall total queries

all queries 83.0% 90.1% 162
all queries specified correctly 91.4% 97.8% 120

all queries specified parsed correctly 95.1% 97.6% 112

especially on those requiring complex manipulations such as aggregation or sorting
(e.g. Q7, Q10). Even for queries with simple constant search conditions and requiring
no further manipulation (e.g. Q4, Q11), keyword searches produced results that were
less than desirable.

In our experiments, we found two major factors contributing to search quality loss
for NaLIX. First, the participants sometimes failed to write a natural language query
that matched the exact task description. For instance, one of the users expressed Q6
as “List books with title and authors” (rather than only list the title and authors of the
book), resulting in a loss of precision. The second had to do with parsing error. Given
a generic natural language query, it is sometimes difficult to determine what exactly
should be returned, and the parse tree obtained may be incorrect.11 For example, one
of the users formulated Q1 as “List books published by Addison-Wesley after 1991,
including their year and title.” Minipar wrongly determined that only “book” and “title”
depended on “List,” and failed to recognize the conjunctive relationship between “year”
and “title.” Consequently, NaLIX failed to returnyearelements in the result, resulting
in a loss of both precision and recall. Table 7 presents summary statistics to tease out
the contributions of these two factors. If one considers only the 112 of 162 queries that
were specified and parsed correctly, then the error rate (how much less than perfect
are the precision and recall) is roughly reduced by 75%, and NaLIX achieved average
precision and recall of 95.1% and 97.6%, respectively, in the experiments.

6 Related Work

In the information retrieval field, research efforts have long been made on natural lan-
guage interfaces that take keyword search query as the target language [5, 8]. In recent
years, keyword search interfaces to databases have begun to receive increasing atten-
tion [6, 10–12, 16, 18], and have been considered a first step towards addressing the
challenge of natural language querying. Our work builds upon this stream of research.
However, our system is not a simple imitation of those in information retrieval field in
that it supports a richer query mechanism that allow us to convey much more complex
semantic meaning than pure keyword search.

Extensive research has been done on developing natural language interfaces to
databases (NLIDB), especially during the 1980’s [2]. The architecture of our system
bears most similarity to syntax-based NLIDBs, where the resulting parse tree of a user
query is directly mapped into a database query expression. However, previous syntax-
based NLIDBs, such as LUNAR [35], interface to application-specific database sys-
tems, and depend on the database query languages specially designed to facilitate the
mapping from the parse tree to the database query [2]. Our system, in contrast, uses
a generic query language, XQuery, as our target language. In addition, unlike previ-
ous systems such as the one reported in [29], our system does not rely on extensive
domain-specific knowledge.

11 Minipar achieves about 88% precision and 80% recall with respect to dependency relations
with the SUSANNE Corpus [19].



The idea of interactive NLIDB has been discussed in some early NLIDB litera-
ture [2, 15]. The majority of these focus on generating cooperative responses using
query results obtained from a database with respect to a user’s task(s). In contrast, the
focus of the interactive process of our system is purely query formulation: only one
query is actually evaluated against the database. There has also been work to build in-
teractive query interfaces to facilitate query formulation [14, 34]. These works depend
on domain-specific knowledge. Also, they assist the construction of structured queries
rather than natural language queries.

There are a few notable recent works on NLIDB ([21–23, 30]). A learning approach
as a combination of learning methods is presented in [30]. We view such learning ap-
proaches and our approach as complimentary to each other - while learning techniques
may help NaLIX to expand its linguistic coverage, NaLIX can provide training sources
for a learning system. A NLIDB based on a query formulator is described in [21]. A
statistical approach is applied to determine the meaning of a keyword. The keywords
can then be categorized into query topics, selection list, and query constraints as the
input of query formulator. No experimental evaluation on the effectiveness of the sys-
tem has been reported. PRECISION [22, 23] is a NLIDB that translatessemantically
tractable NL questions into corresponding SQL queries. While PRECISION exten-
sively depends on database schema for query mapping, NaLIX does not rely on the
availability of a schema for query translation. In addition, PRECISION requires each
database attribute be manually assigned with a compatiblewh-value, while NaLIX does
not. Finally, NaLIX covers a much broader range of natural language questions than
PRECISION with promising quality.

In NaLIX, we obtain the semantic relationships between words via a dependency
parser. Recent work in question answering [3, 7, 9] has pointed out the value of utilizing
the dependency relation between words in English sentence to improve the precision of
question answering. Such dependency relations are obtained either from dependency
parsers such as Minipar [3, 7] or through statistic training [9]. These works all focus on
full text retrieval, and thus cannot directly apply to XML databases. Nevertheless, they
inspired us to use a dependency parser to obtain semantic relationship between words,
as we have done in NaLIX.

7 Conclusion and Future Work

We have described a natural language query interface for a database. A large class of
natural language queries can be translated into XQuery expressions that can then be
evaluated against an XML database. Where natural language queries outside this class
are posed, an interactive feedback mechanism is described to lead the user to pose an
acceptable query. The ideas described in this paper have been implemented, and actual
user experience gathered. Our system as it stands supports comparison predicates, con-
junctions, simple negation, quantification, nesting, aggregation, value joins, and sort-
ing. In the future, we plan to add support for disjunction, for multi-sentence queries, for
complex negation, and for composite result construction. Our current system is oriented
at structured XML databases: we intend to incorporate support for phrase matching by
incorporating full-text techniques in XQuery such as TeXQuery [1], thereby extending
our applicability to databases primarily comprising text stored as XML.

The system as we have it, even without all these planned extensions, is already very
useful in practice. We already have a request for production deployment by a group
outside computer science. We expect the work described in this paper to lead to a whole
new generation of query interfaces for databases.
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