Multi-level Operator Combination in XML Query Processing

Shurug Al-Khalifa and H. V. Jagadish *
University of Michigan
Ann Arbor, Ml 48109, U.S.A.
{shurug,jag}@eecs.umich.edu

ABSTRACT

A core set of efficient access methods is central to the develop-
ment of any database system. In the context of an XML database,
there has been considerable effort devoted to defining a good set
of primitive operators and inventing efficient access methods for
each individual operator. These primitive operators have been
defined either at the macro-level (using a “pattern tree” to spec-
ify a selection, for example) or at the micro-level (using multiple
explicit containment joins to instantiate a single XPath expres-
sion).

In this paper we argue that it is valuable to consider operations
at each level. We do this through a study of operator merging:
the development of a new access method to implement a combi-
nation of two or more primitive operators. It is frequently the
case that access methods for merged operators are superior to a
pipelined execution of separate access methods for each operator.
We show operator merging to be valuable at both the micro-level
and the macro-level. Furthermore, we show that the correspond-
ing merged operators are hard to reason with at the other level.

Specifically, we consider the influence of projections and set
operations on pattern-based selections and containment joins.
We show, through both analysis and extensive experimentation,
the benefits of considering these operations all together. Even
though our experimental verification is only with a native XML
database, we have reason to believe that our results apply equally
to RDBMS-based XML query engines.

Categories and Subject Descriptors:
H.2.2[Database Management|:Physical Design—Access Meth-
ods.

General Terms: Design, Performance.

Additional Key Words and Phrases: XML, Query Pro-
cessing.

*Supported in part by NSF under grant 115-0208852 and DM1
0075447.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies aré¢ inment Join and negation
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
CIKM’'02, November 4-9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-492-4/02/0013$5.00.

1. INTRODUCTION

It is well-recognized that set-oriented data processing is
essential for good performance in any data management sys-
tem. XML data is no exception. Towards this end, there
has been considerable recent work towards developing a bulk
algebra for XML query, and efficient access methods for op-
erators in this algebra. (See Sec 2). Much of the work along
these lines is applicable whether the XML database is im-
plemented natively or on a relational engine.

Unfortunately, there is not yet universal agreement on an
algebra for XML query evaluation. We argue in this pa-
per that there may be good reason for this. In Sec. 2, we
will look at past work on this subject, and establish the
background necessary for this paper. There are two main
alternatives with regard to set-oriented XML manipulation.
The first approach manipulates sets of trees directly. The
operators in such an algebra are heavyweight, but more di-
rectly expressive of user intent. A core operation is a “pat-
tern tree match” selection (that is, given a set of documents
(XML trees) find all occurrences of a specified tree pattern in
any of these documents). The second approach is to have a
lower level algebra that manipulates sets of elements (nodes
in trees). The operators here more directly reflect the im-
plementation. In fact a single pattern tree match selection
operator can itself be computed as a sequence of contain-
ment (or structural) joins. We call these two, respectively,
macro-level and micro-level algebras (and operators).

In both macro-level and micro-level algebras, the basic
operators considered correspond to “intuitive” unit opera-
tions such as selections, projections, joins, and set opera-
tions. Quite naturally, the focus in developing efficient ac-
cess methods has been restricted to these unit operations.
In this paper we explore the benefits that can be obtained by
pushing in projections and set operations. Realizing these
benefits requires a new class of composite access methods
that evaluate these composite operators in one swoop.

We show that operator merging is valuable for both macro-
level operators (Section 3) and micro-level operators (Sec-
tion 4). We develop rewrite rules for pushing projections
and set operations into structural pattern match selection
in Section 3. We also develop new access methods for the
various merged operators. Specifically, in Section 4, we
present access methods for projection merged with Con-
(Set Difference) merged with
Containment Join.

We then present a brief analytical assessment in Section 4.3
and an extensive experimental evaluation,in Section 5. These
sections show the benefit to be obtained from the new com-

posite operators for a wide variety of data sets and query
types.

A significant consequence of the work presented here is a
substantial expansion of the class of access methods consid-
ered for XML query processing. More importantly, there is
a strong case made for working with separate algebras at
two levels: to obtain maximum benefit it appears that XML
query processing requires both a macro-algebra and a micro-
algebra! We conclude with this and other implications of our
work in Section 6.

2. BACKGROUND AND RELATED WORK
2.1 Query Algebra and Operators

There is no shortage of algebras for data manipulation.
Ever since Codd’s seminal paper there have been efforts
to extend relational algebra in one direction or another.
Even in the XML context, several algebras have been pro-
posed. [3] is an influential early work that has impacted
XML schema specification. The W3C working group on
XML Query has recently issued an algebra document [8].
The focus of this algebra is to provide a formal semantics
for XQuery [6]. It is not suitable for set-oriented processing.

Set-oriented algebras for XML can be divided in two main
classes — those that deal with trees and those that deal with
tuples/elements. We consider each in turn.

Tree Algebras and Macro Operators

XML documents are tree-structured. Therefore it is appro-
priate to treat an XML database as a collection of trees. An
algebra for processing XML queries should therefore com-
prise queries that map one or more collections of trees to
collections of trees. Queries in most query languages pro-
posed for XML, and XQuery in particular, typically specify
patterns of selection predicates on multiple elements that
have some specified structural relationships. (These struc-
tural selections may be specified either through XPath ex-
pressions in the FOR clause of an XQuery expression or as
logical predicates in the WHERE clause, or both). Such a
structural pattern match can be considered a “selection” op-
erator in a macro-level algebra. The result is a set of trees,
one tree corresponding to each set of bindings that satisfies
the given predicates and structural relationships.

Ideas along these lines have been incorporated into an
object-oriented database, and an algebra developed for these
in the Aqua project [15]. The focus of this algebra is the
identification of pattern matches, and their rewriting, in the
style of grammar production rules. These ideas are also
the basis for TAX [12] a tree algebra for XML, that is be-
ing used as the basis for the implementation of the Timber
native XML database[16]. There is also a grammar-based
algebra, shown equivalent to a calculus, for manipulating
tree-structured data using production rules [10].

EXAMPLE 2.1. Fig. 1 shows a simple XQuery expres-
sion and its corresponding pattern tree. We are seeking titles
of books in the database that have an author with a last name
of Bernstein and have an associated year after 1995.

A macro-level algebra would implement this entire expres-
sion as a single pattern-tree based selection operator (to se-
lect matching books) followed by a projection operator (to
return their titles). (The title is a sub-element rather than
an attribute of book. Strictly speaking, we would perform a
projection on book and then follow pointers from each book
in the result to output its title.) &

book

author

FOR $b IN document(”db.xml")
//book[author/name/last

= "Bernstein"]

WHERE $b//year > 1995
RETURN $b/title

year > 1995 name

last = "Bernstei

(a) An XQuery expression (b) Its Pattern Tree

Figure 1: A simple example

Tuple Algebras and Micro-Level Operators

Tree pattern selections are unlikely to be implemented atom-
ically. Most implementations, whether in a native XML
database or on top of a relational engine, will break down
a tree pattern selection into a sequence of simple (single-
node) selections and “containment joins” that capture the
required structural relationships. A micro-level algebra can
be defined for this purpose.

EXAMPLE 2.2. A micro-algebra would break up the se-
lection pattern of Fig. 1 into one selection operator per node
(e.g. tag= "“book” or (tag= "year") && (content > 1995))
and one containment join operator per edge (e.g. a contain-
ment join of these two node lists will satisfy the left-most
edge in the query pattern, and find books with a year greater
than 1995). The result of the sequence of joins would then
be projected on the book element, after which its title can be
obtained navigationally as before.

In [7], the authors present an algebra for XML, defined
as an extension to relational algebra, that is practical and
implemented. A “bind” operator is used to create sets of (tu-
ples of) bindings for specified labelled nodes. Similarly, [13]
describes a navigational algebra for querying XML, treating
individual nodes as the unit of manipulation, rather than
whole trees. The algebra in [9], used as the basis for the
Niagara[17] XML data management system, is also in the
same category.

2.2 Query Processing Implementation

The key access method of concern for a macro-algebra is
one for structural pattern matching. This task is complex
enough that it is performed in three (conceptual) stages:

1. Identify lists of candidate elements in the database to
match each node in the specified structural pattern.
These lists are obtained through evaluation of predi-
cates local to these nodes, using indices where avail-
able.

2. Find combinations of candidate elements, one from
each list, that satisfy the required structural relation-
ships. These combinations are usually built up one
structural relationship at a time. The choice of order
is a critical determinant of performance.

3. Apply any conditions that involve multiple nodes in
the structural pattern to eliminate some combinations.

This access plan can be expressed as a sequence of phys-
ical micro-algebra operators, and looks somewhat like a re-
lational join plan where local selections are applied first,

the join is computed, and additional global conditions can
be checked in a final step. In short, the actual implementa-
tions are likely to be similar whether the query optimization
is carried out in a micro-algebra or a macro-algebra.

A central operation in all cases is the containment join.
Given two sets of elements U and V, a containment join
returns pairs of elements (u,v) such that v € U, v € V,
and u “contains” v (that is, node w is an ancestor of node
v in the tree representation of the appropriate document).
A containment join is asymmetric, and we will refer to one
node (u) as the ancestor node and the the other node (v)
as the descendant node. (E.g. in Fig. 1, there are four
containment joins, one corresponding to each edge. For the
leftmost edge, the ancestor node is the “book” node and
the descendant node is the “year” mnode.) A special case
of the containment join is the immediate containment join,
where we require that node u be a direct parent (rather
than any ancestor) of node v. This special case could have
performance implications, but no new conceptual issues, so
we will not separately mention such joins for the bulk of our
paper.

A simple node numbering scheme[17, 1, 18, 5] is commonly
used to avoid computing transitive closures of inclusion re-
lationships to determine a containment join. This scheme
associates a pair of numbers (start, end) with each node (el-
ement) in the tree (XML document) where these represent
the word offset of the element start tag and end tag re-
spectively in the document. In other words, each element
is transformed into an integer interval. Element u contains
element v if and only if start(u) < start(v) and end(u) >
end(v). One can keep lists of elements sorted by their start
value where possible, to make such containment joins easier
to compute. When we say “sorted by u” in the sequel, we’ll
mean “sorted by start(u)”.

Containment Join Implementation

As we saw above, containment joins are central to XML
query processing, and structural pattern matching in par-
ticular. A typical containment join has a (simple) selection
predicate at each end, applied locally to the node in ques-
tion. Indices are likely to be available to help evaluate these
selection predicates (at least partially, if the predicate has
multiple clauses). We have three main options in evaluating
such a join: we could scan the entire database, we could
use an (the most selective) index to find candidate nodes for
one end of the join and then navigate from there (follow-
ing parent/child pointers), or we could use indices to find
candidates for both ends of the join and then compute a
containment join between these candidate sets. Previous
work [19, 1, 5] has shown conclusively that the last of these
options is almost always the best.

While the specific choice of join algorithm used for con-
tainment join is orthogonal to the issues we wish to explore
in this paper, to make matters concrete we will restrict our
description (and our experimentation) to the class of algo-
rithms shown to be the best in [1].

3. MACRO OPERATOR MERGING

We consider several operators that could follow a pattern
tree selection: projection, intersection, union, and set dif-
ference. For each of these four operators, we consider the
benefit of merging it with the pattern tree selection(s) that
it follows. At the macro level, merging operators seems in-

ID

last
Project(last)
ID
1Diooic!Dyear 'Rthor Drarrd Drast e
i PJoin
in
ID D, D
bo auth last
IDbOOk’I Dy% %uthofl Dr\am’elDlaa / \ o
Floin Floin PJoin Ploin
ID D,
lDbfz{ \Syeer |g)u)'4 \DnamélDlag 74 \yeﬂ’ 'E)u% \meelDlasl
book year auhor Floin book year author PJoin
ID D,
D,/ \IDg 7! \m
name last name last
(a) Full Join Plan (b) Partia Join Plan

Figure 2: The difference between Full and Partial con-
tainment joins.

tuitive and simple. But since both the micro level operators
that compose the selection and the mapping between the
macro selection and the micro containment joins will get
affected, the merging process is no longer as simple.

3.1 Projection Merging

EXAMPLE 3.1. Consider pattern tree presented in Fig. 1.
The query seeks books with author last name ”Bernstein”
and year greater than 1995. We will alter it a bit to re-
turn last. Fig. 2a is a plan that can be used to evaluate the
query. To evaluate this query, as described above, we would
first generate lists of candidate nodes that match individual
nodes in the pattern (e.g. “book” nodes, “author” modes,
and so on). Then we will compute a sequence of contain-
ment joins, one for each edge in the pattern. For instance,
suppose the first join is name-last. The result of this join is
a set of pairs of nodes that jointly satisfy the relevant por-
tion of the pattern. The next containment join, say between
author and name actually joins a set of name-last pairs with
a set of author pairs to produce a set of author-name-last
triples. Finally, after all containment joins have been eval-
uated, we have a set of 5-tuples, that are the result of the
pattern match selection. A projection operator is then used
to focus on the last nodes and eliminate the others. <{»

What we discussed in the above example is what we call a
sequence of full containment joins (FJoin). Each of these re-
tain both inputs tuples. We argue the need for a projection-
aware select operator. Like the select operator, this operator
requires a pattern tree as a parameter, and finds sub-trees
in each input data tree that match the pattern tree. But, in
addition, this operator comes with a projection list compris-
ing references to pattern tree nodes. Only nodes referenced
in this list are retained in the output. The rest are ignored.
The projection-aware select operator, just like the ordinary
select operator, is evaluated by decomposing it into a series
of containment joins. Fig. 2b is a plan that performs project-
aware selection. Each binary containment join is aware of
what needs to be retained (last in our example.) Instead of
passing the two inputs’ tuples, it passes only the ones to be
projected (or needed in a later join). We call this type of
join, partial containment join. Formally, we can define:

DEFINITION 3.1. Full Containment Binary Join: A
full containment binary join is as an operator FJoin : E™ X

book o)
Projection List = PL = {book, year}

year author Nodes needed for future joins =
\ S = {name, name, author}

name
/N
first last

name PJoin first———= name S ={name, author}

name PJoin last —= name S = {author}
name PJoin author - author sS={}
author PJoin book —= book S={}

book FJoin year ——= book,year S={}

Input vectors
to partial joins

output vector Set of nodes not in

(input tonext PL but need to be

join) kept for future joins

Figure 3: Execution of a sequence (one of many pos-
sible) of partial binary containment joins to evaluate a
specified pattern tree selection.

E" x [1...m] x [1...n]—=E™™ | Given inputs

(1, Zm), (Y1,---,Yn), i, and j, the output is

(1, yTm,Y1,...,Yn), the concatenation of the first two
inputs, provided that x; is an ancestor of yj, and is empty
otherwise. <

Here, £ is the set of all XML elements in the database. £™
is a vector of m elements, representing some tree fragment.
z1 is the ID of a node that has participated in a previous
join. And so are zz through z,,. In Fig. 2a, in the top-
most FJoin, x1 corresponds to IDs of tuples satisfying book
and x2 corresponds to IDs of tuples satisfying year. For the
same FJoin, y1 corresponds to IDs of tuples satisfying au-
thor, y2 corresponds to IDs of tuples satisfying name, and y3
corresponds to IDs of tuples satisfying last.

DEFINITION 3.2. Partial Binary Containment Join:
A partial binary containment join is as an operator PJoin :
EMXE"X[1...m]x[Ll...n]x{0,1}"" —uEx. Given inputs
(1, y2m), (Y1,.--,Yn), &, 4, PL, the output is {zx|(zk €
(1, zm)||zi € (Y1,...,yn))&&(k € PL)}, provided that
z; 15 an ancestor of y;, and is empty otherwise. {

The projection list, PL, is formally recorded as an m + n-
long bit vector, with each bit indicating whether the corre-
sponding node is retained in the projection. £x is a vector
of an undetermined number of elements (but this number is
exactly the number of 1s in PL and hence is no larger than
m+n). In other words, the output is that for the full binary
containment join, (Z1,...,ZTm,Y1,.-.,Yn), Projected down
to elements in PL, the projection list. Basically, PJoin
acts in the same exact way as F'Join does, except that it
does not concatenate the input vectors blindly. Instead, it
outputs a new vector with only nodes that are referred to
in the PL. In Fig. 2b, the topmost PJoin outputs only IDs
of last because it is the only one in the projection list.

DEeFINITION 3.3. Projection Minimal: An expression
is said to be projection-minimal if every projection is applied
as early as possible. That is, every intermediate result in the
expression has all unnecessary elements projected out. <>

THEOREM 3.1. Let Q' be the expression obtained after
rewrite Tule (4) has been applied as many times as possi-
ble recursively to a given project-select expression Q. Then,
Q' is projection minimal and is equivalent to Q.

We devise a simple algorithm to push projections in, based
on the above theorem and the observation that each edge
in the pattern tree represents exactly one containment join.
Therefore each node in a pattern must participate in exactly
as many containment joins as there are edges incident on it.
To keep track of this, we create a multi-set S comprising
each node in the pattern tree repeated as many times as it
has edges, minus 1. To save space, we can leave out projec-
tion list nodes from S altogether. A node w is retained in the
result of a binary containment join if it is in the final projec-
tion list or is included in S. Otherwise, u is projected out.
Every time a node is used in a join, remove one occurrence
of u from S.

EXAMPLE 3.2. Fig. 8 presents a pattern to be matched
(an extension of the pattern tree in Fig. 1). PL, the pro-
jection list, is specified to be book and year. The set S has
nodes name in it twice because it has three edges incident.
book is not in S since it is in PL. The other three (leaf)
nodes have only one edge incident each. A possible sequence
of partial binary containment joins to evaluate this query
is shown, along with the manipulations of the set S. In the
first step, name is joined with first. first is not retained in the
result since it is neither in S nor in PL. name is retained
since it is in S, but one occurrence of name is removed from
S. In the last step, book and year are retained in the result
since both are in PL. $

3.2 Set Operations

In the relational world, union compatibility is an impor-
tant consideration with respect to set operations. In XML,
since heterogeneous collections are allowed, this is not an is-
sue. (One consequence is likely to be that set operations are
more prevalent in XML query processing than in relational
query processing — though we do not have enough knowledge
of XML query processing to verify this hypothesis.) Set in-
tersection is really the same thing as a conjunctive condition.
So, no new operators or access methods are required. Un-
like intersection, set difference cannot be expressed directly
as part of a pattern tree selection. However, a new access
method that merges containment join and difference, we call
it negated containment join, turns out to be very useful, as
we shall shortly see.

3.2.1 Set Union

The standard technique to perform set operations is to
sort the two inputs and then merge them. An appropriate
choice of query plan can avoid the need to sort the lists.
Specifically, we would like each input set to be sorted by the
root node of each element tree.

In the relational context, union distributes selection over

the same relation as follows:
opRUoyR = opvgR where p, g are selection predicates.
Given the more complex pattern-tree selections we have to
deal with, we must find the equivalent rule for merging two
pattern trees. We observe the following equivalence:
Given two pattern trees, PT} and PTx, let PT. be a common
component of the two pattern trees such that (i) PTy —
PT. = PT{ and PT» — PT. = PTj5 are both also trees,
and (ii) Node i in PT, has node j in PT] such that edge
(4,7) is in PTh, if and only if node ¢ also has some node k
in PT5 such that edge (i, k) is in PT5.

LEMMA 3.1. There exists exactly one such node i provided
that PT., PT{, and PTj are each non-empty. <

P~ book:i
// //'Li;“‘\\\\\ PT e
/ . aUt‘hor_] N 2/\/ book - i .
CPr neme WL /oo PTG book
o Vo PTYyear>1995: k)
! 8¢ ke
\ ‘\laSl:"Befnaa‘n",'l/ \\\\ \»,,,_/7"/
Join
Union / \
Select(PT,) niol
Select(PT) Select(PT)
Planl Plan2

Figure 4: Different pattern trees and plans involved in
evaluating a query that asks for books with author last
name of “Bernstein” OR year > 1995

The lemma follows from the definition of a tree. If PT}
is a tree and is decomposed into two trees, then the two
component trees have exactly one edge between them. Using
this lemma, we can develop a rewriting rule:

Selectpr, (D) U Selectpr, (D) =
UJoin(Selectpr,. (D), Select pry (D), Select pry (D), i, j, k)

All variables in this rule are defined as above. UJoin
is a new Union Containment Join operator. It is similar
to FJoin. It differs in that it takes two candidate descen-
dant tree sets (the second and third arguments) and cor-
respondingly two descendant node identifiers (the last two
arguments), rather than just one each in F'Join. Consider a
variant of our running example in Fig 4, where we seek books
with author last name of “Bernstein” OR year > 1995. This
is the union of two pattern match selections, one for each
disjunct (P71 and PT5 in Fig. 4). PT, is the common part
of the two patterns, the root node book in this case. This
is also node marked i. PT} is the remainder of the first
pattern, author, name, and last nodes, with the first of these
being the k£ node. An ij edge “connects” the two patterns.
Similarly, PT5 comprises the single node year. This is the
node marked k.

A common case where this occurs is when j and k are
each the root for the corresponding sub-pattern, as in our
running example. We thus have a choice of unioning books
that satisfy either disjunct (planl in Fig. 4), or unioning the
disjunctive condition and then joining only once with book
(plan2 in Fig. 4).

Selectpr, (D) U Selectpr, (D) =
FJoin(Selectpr. (D), Select pry (D) U Select pry (D), i, j)

4. MICRO-OPERATOR MERGING:NEW AC-
CESS METHODS

At the macro-level, we considered a pattern tree selection
as a single (heavy-weight) operator in the previous section,
and discussed benefits that this operator could derive from
operators that follow. An alternative, micro-level algebra
approach is to break up a pattern tree selection into mul-
tiple containment join operators. In this section, we will
show that merging operators that follow is a good idea even
for containment joins. Not only is this true for the pro-
jection and set operators we have discussed before, but in

addition it is frequently worthwhile to merge multiple binary
containment join operators and evaluate a single multi-way
containment join instead. The new multi-way containment
join is very useful especially for long chains. However, bushy
multi-way containment joins (for twig patterns) turn out to
be not a good idea. For lack of space, we don’t include ex-
periments and discussions of the multi-way containment join
in this paper. For further detail, refer to the full-length ver-
sion of the paper found in [2]. In the following subsections,
we touch upon highlights of the algorithms. At the micro
level, it is impossible to reason with operators at the macro
level because operators at the micro level are not aware of
the macro level. Instead, they are used by the macro level
operators to perform the different operations.

4.1 Partial Binary Containment Join

In this section, we discuss modifications made to the orig-
inal algorithms presented in [1] to achieve the partial binary
containment joins.

We start with the simplest case, the descendant-sorted
containment join. Since we wish to retain only the descen-
dant nodes in the output, we need not join the descendant
with all stack elements. If the stack has at least one (an-
cestor) element in it, the descendant is output immediately.
We can additionally get rid of the stack altogether for an
ancestor-descendant join (vs. a parent-child join), merely
retaining the single cell at the bottom of the stack. If this
cell is occupied when a candidate descendant node is con-
sidered, then the descendant node is output, and otherwise
it is not.

Turning to a binary containment join with only ances-
tor nodes retained, several optimizations are possible. The
greatest benefit is that no lists need to be kept since we do
not need to output the descendant. Furthermore, all nodes
on the stack can be reported (in bottom-to-top order) as
soon as one descendant is found. After that one can skip
all descendants that might have joined with the popped el-
ements.

In the general case, we may retain all, some or none of the
elements in the previously joined lists on either side of the
containment join. Retaining elements from one side does not
affect any of the techniques presented above. If we retain
elements from both sides of the containment join, we do
not get the significant “semijoin-like” algorithmic benefits
discussed in this section. However, we still benefit due to
reduction in the size of the output.

4.2 Negated Containment Join

A negated binary containment join is a primitive opera-
tor in the evaluation of set difference. The algorithm for this
access method is almost identical to that for the ancestor-
projected partial binary join operation. When a matching
descendant node is compared with the top of the stack, all
candidate ancestor nodes on the stack are popped, as be-
fore. However, these nodes are not output; instead they are
rejected. Any candidate ancestor nodes that survive until
popped from stack due to the start cursor having gone too
far forward (a new node has a start key greater than the
end key of surviving ancestors on stack) are the ones that
should be output.

Algorithm Cost Notes
Descendant-sorted full binary join vi*ny + vakng + (vi+v2)*xni2 nig < ny * ng
Ancestor-sorted full binary join vi*n1 + vaxng + (vi4v2)*ni2*(1+2f1) | ancestor node is 1
Descendant-sorted partial binary join | v1 *n1 + vexng + usxm u < v +v2, m<nio
Ancestor-sorted partial binary join vi*kny + vakng + uxmx(1+2f1) u < v +ve, m<nio
Negated binary containment join vi*ny + na + vixmx(14+2f1) m < niy

Table 1: I/O Cost for Various Merged Containment Join Operations

4.3 Analysis

To understand the effect of the various algorithms sug-
gested above, we construct a cost model using a number of
simplifying assumptions for tractability. We measure data
in the units of “elements”, ignoring differences in size be-
tween elements. Each “element” unit corresponds to some
number of bytes or some fraction of a disk page. A sum-
mary of our analysis results is presented in Table 1. In this
table, n; is the cardinality of the i*" input, and v; is its
“tuple”-size (number of elements already joined). n;; (or
m) is the cardinality of the output, and u is the number of
elements retained in the output. f; is a nesting factor, which
takes a value between 0 and 1, and is used to indicate how
“recursively nested” node ¢ is in the given data set. Let 7
represent the set of all nodes in the database that satisfy the
predicates to match with node ¢ in the containment join at
hand. f; is the fraction of nodes in Z that have a descendant
in Z. Typical data sets have low nesting factors for most el-
ement types. A nesting factor of 0 is called the no overlap
property. For instance, a book cannot be a descendant of a
book.

5. EXPERIMENTS

We ran an extensive set of experiments on a wide range
of real and synthetic data. We expect, based on the analy-
sis in the previous section, that operator merging is a good
idea for relational implementations as well as native imple-
mentations. Also, we expect it to be beneficial on operators
at both micro and macro levels. Another level of operators
we experimented with include ones that span both micro
and macro levels. These operators have the ability of being
pushed into selection either at the macro level or micro level.
Projection and set difference can be applied after evaluat-
ing parts of the pattern tree (macro level). Also, they can
be applied at the micro level by actually using the partial
containment join for the projection and the negated contain-
ment join for the set difference.

Our experimental results are limited to Timber [16], a
native XML database we are building, not just because we
had this one database easily available, but additionally be-
cause good XML query processing requires appropriate ac-
cess method support in relational engines, and the require-
ments for these are only now being discovered through re-
search, so they have not yet made their way into commercial
products that we could use.

Our code is implemented in Visual C++. All experiments
were run on a Windows NT 550 MHz machine with 256 MB
of RAM. Each experiment was run five times. The least and
greatest values were ignored and the average of the middle
three was taken.

We show the impact of operator merging at both macro
and micro levels on a wide variety of data sets. These include
both real data (parts of Sigmod Record and DBLP) and

synthetic data created with the IBM XML generator [11]
using “real” DTDs, including several obtained from [17],
and the popular Organization DTD obtained from AT&T.

5.1 Macro Level Experiments

In this section, we present experiments with pushing into
selections operators that can only be pushed at the macro
level. This includes set union and intersection. In Table
2a we present the results of evaluating a set operation after
tree pattern selections. For the same tree pattern selections,
we consider the evaluation of set union and set intersection
of the results. In each case, we present timing numbers
with the set operation computed afterwards versus the set
operation pushed in. We find in all cases that pushing in set
operations is beneficial.

We also altered the pattern tree structure used in dif-
ferent queries. In Table 2b, we considered four different
pattern tree structures when applying set union and inter-
section. For each pattern, we measured time when the set
operation is and is not pushed into the selection. The first
pattern tree is the simple pair query consisting of an ances-
tor and a descendant. In this case, the savings are not big.
But the more complex the query gets, the more savings we
achieve. Chainl in the table corresponds to a 3-node chain
with low nesting of root. Chain?2 is similar to chainl except
that the root has high nesting (a root node can have a de-
scendant root node). The query structure experiments were
performed on the organization data set because of its high
nesting of different elements which allows diversity in query
structure.

5.2 Combined Micro and Macro Level Exper-
Iments

In this section, we evaluate the effect of pushing operators
that can be either pushed at the macro or micro level. The
operators are projection and set difference. When pushing
these operators in selections, we have the option of push-
ing at the macro level (not using new containment joins) or
at the micro level (using new joins that replace full binary
containment joins).

First, we will consider pushing projections into selections.
In tables 3 and 4, we present experiments run on multiple
data sets. In each case, the pattern comprised a chain of
three nodes. We ran two queries: with the selection requir-
ing that the middle node in the chain be an immediate child
of the root and the leaf node be an immediate child of the
middle node (corresponding to a single “/” in Xpath), and
with this requirement not being imposed (corresponding to
a double “//” in Xpath). The two queries are referred to re-
spectively as “parent-child” and “ancestor-descendant”. We
present the results of evaluating a projection after the three-
node pattern selection versus pushing it in to occur after a
pair in the pattern has been evaluated and then after the
final join (macro level) versus pushing it in to occur along

Data Set Union Intersection

no push push % no push | pushed % Query Union Intersection
SIGMOD 34.72 24.79 (71) 26.41 21.09 (80) Struct. | no push | pushed % no push | pushed %
DBLD 2130 | 16.02 (75) 1738 | 1477 (35) Pair 1676 | 1630 (97) 7.88 824 (104)
Club 30.41 20.52 (68) 26.48 20.32 (77) Twig 1111.93 573.87 (52) 10.95 9.53 (87)
Bib. 31.45 28.96 (92) 12.59 12.08 (96) Chainl 102.20 89.88 (88) 15.49 12.28 (79)
Actors 9571 | 71.66 (75) 8754 | 71.66 (82) ChainZ | 188.07 | 158.88 (85) | 105.16 | 60.76 (58
Movies 35.53 | 23.80 (67) 30.68 | 23.47 (76)
Personnel 57.29 55.69 (97) 31.88 31.37 (98)
Org. 188.07 | 158.88 (85) | 105.16 | 60.76 (58)

(a) (b)

Table 2: (a)Time (in seconds) measuring the effect of pushing set union and intersection (macro level) into selections
on multiple real and synthetic data sets (b)Effect of pushing set union and intersection on different query structures

Data Set Parent Child Join Ancs Desc Join

not pushed | macro push | micro push % not pushed | macro push | micro push %
SIGMOD 20.10 18.21 16.32 (81) 15.22 13.98 12.54 (82)
DBLP 31.98 31.09 29.78 (93) 33.56 32.21 30.92 (92)
Club 23.22 20.23 19.12 (82) 21.21 18.04 15.24 (72)
Bibliography 41.10 38.69 35.21 (86) 40.02 38.22 33.29 (83)
Actors 43.13 40.52 37.01 (86) 43.12 40.10 35.99 (83)
Movies 18.23 17.98 16.44 (90) 20.98 17.93 16.09 (77)
Personnel 61.88 58.12 55.30 (89) 55.13 51.18 46.12 (84)
Organization 49.10 47.12 45.10 (92) 50.14 47.10 45.34 (90)

Table 3: Time (in seconds) measuring the effect of pushing projections into selections (macro and micro levels) on
multiple real and synthetic data sets when projecting descendant.

Data Set Parent Child Join Ancs Desc Join

not pushed | macro push | micro push % not pushed | macro push | micro push %
SIGMOD 57.52 52.51 47.98 (83) 19.56 15.12 12.56 (64)
DBLP 47.98 46.43 39.78 (83) 46.12 42.53 38.56 (84)
Club 20.11 17.20 13.87 (69) 19.88 16.32 12.45 (63)
Bibliography 60.55 53.20 11.32 (68) 58.10 11.89 37.11 (64)
Actors 25.85 21.10 17.55 (68) 2531 21.09 15.32 (61)
Movies 71.04 55.83 48.98 (69) 73.12 59.20 44.45 (61)
Personnel 63.19 55.84 45.01 (71) 67.85 58.04 43.11 (64)
Organization 59.12 58.29 54.85 (93) 289.23 72.22 38.21 (13)

Table 4: Time (in seconds) measuring the effect of pushing projections into selections (macro and micro levels) on
multiple real and synthetic data sets when projecting ancestor.

Data Set not pushed | macro push | micro push %

SIGMOD 33.07 19.85 11.69 (35)
DBLP 30.58 21.73 7.08 (23)
Club 161.35 108.00 89.12 (55)
Bibliography 108.49 78.10 65.20 (60)
Actors 25.43 10.13 0.06 (0.24)
Movies 28.55 25.99 13.47 (47)
Personnel 57.39 42.55 8.52 (15)
Organization 390.50 308.57 14.65 (4)

Table 5: Time (in seconds) measuring the effect of pushing set difference into selections (macro and micro levels) on
multiple real and synthetic data sets

Figure 5:

160

140

Time (seconds)
B
B D ™ o n
o (=] (=] (=] o

N
=]

-8~ Select then project
=¥ Projects pushed in

i

2 3
Query complexity

(2)

pushing set difference in

1600
-8~ Select then Difference
1400r | =% Difference pushed in

1200

=
o
=3
S

@
<]
=]

Time (seconds)

-3
=3
S

N
S
S

N
=3
S

(b)

2 3
Length of uncommon part

(a) Varying query complexity when pushing projections in (b) varying number of common nodes when

with the containment join (micro level). We do this for both
projection of the leaf node (table 3) and of the root node
(table 4) in the chain pattern tree. We find that in all cases
pushing in projections is a good idea. The benefit is typ-
ically small in the case of leaf node projection, but quite
significant in the case of root node projection.

When pushing in operators, the more complex the query,
the greater the benefit — we find ancestor-descendant queries
uniformly benefiting more from the projection push in than
the corresponding parent-child queries. Among the data
sets, the one where the greatest benefit was observed was
the organization data set, which involved the greatest degree
of nesting, leading to complex evaluation.

Now, we will consider pushing set difference into selection.
In table 5, we present experiments run on multiple data sets.
In each case, we computed the set difference between a pair
pattern and a 3-node chain pattern with the top two nodes
are identical to those of the pair pattern. A query of the
type “get all departments that have employees who do not
have phone numbers”. This will convert to a department-
employee pattern on the left side of the difference operator
and a department-employee-phone on the right side of the
operator. This was a description of the no pushing case.
In the macro push case, the root (department) of both pat-
tern trees was pulled out, and the difference was evaluated
on employee and employee-phone. The department then is
joined with difference output. In the micro push case, the
3-node pattern is evaluated with replacing the join between
the bottom two nodes with the negated containment join.
The percentage column in the table is between the no push
case and the micro push case. In all cases, we benefit the
most from pushing difference all the way in.

Finally, we considered varying query complexity when
pushing projections in and varying number of common nodes
in query when pushing difference in. The results are in fig-
ure 5 a and b. Since the macro push case has always been
inferior to the micro push case, in both figures we ignore the
macro push case and present a comparison between the two
extreme cases: the no push and the micro push.

6. CONCLUSION

XML query processing has been modelled in terms of
macro-algebras (which operate on entire trees) and micro-
algebras (which operate on individual nodes). In this paper,
we have explored the relative ease of certain optimizations in
one versus the other, and shown that there can be substan-
tially differences between the two. In both cases, we have
shown that it is often very valuable to merge operators, and
have a single access method evaluate a combination of op-
erators.

The contributions of this paper include the development
of an optimization framework that exploits the duality be-
tween macro-algebras and micro-algebras for XML; the de-
velopment of new access methods for operator combinations,
including a projection containment join and a negation con-
tainment join; an analytical assessment of the benefits of the
new access methods compared to their unmerged originals;
and an extensive experimental evaluation of these benefits,
with a variety of data sets, a variety of queries, and the
variation of various operating conditions.

A significant consequence of our work is that it is not
enough to consider XML query optimization purely at the
micro-algebra or purely at the macro-algebra level, with sim-

ple algebraic operators. Instead, one has to consider access
methods for combinations of operators, switching between
the micro and macro levels as needed.

7. REFERENCES

[1] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. Patel, D.
Srivastava and Y. Wu. Structural Joins: A Primitive for
Efficient XML Query Pattern Matching. In Proc. of ICDE,
2002.

S. Al-Khalifa and H. V. Jagadish. Combining Operators in

XML Query Processing. University of Michigan technical

report. Available at http://www.eecs.umich.edu/db/timber/

D. Beech, A. Malhotra, and M. Rys. A formal data model

and algebra for XML. W3C XML Query Working Group

Note, Sep. 1999.

[4] C. Beeri and Y. Tzaban. SAL: An algebra for
Semi-Structured Data and XML. ACM SIGMOD
Workshop on the Web and Databases, pp. 37T—42,
Philadelphia, PA, June 1999.

(5] N. Bruno, D. Srivastava, and N. Koudas. Holistic Twig
Joins: Optimal XML Pattern Matching. In Proc. of
SIGMOD, 2002.

[6] S. Boag, D. D. Chamberlin, M. Fernandez, D. Florescu, J.
Robie, J. Simon and M. Stefanescu. XQuery 1.0: An XML
Query Language. W3C Working Draft.
http://www.w3.org/TR/xquery/, December 20, 2001.

[7] V. Christophides, S. Cluet, and J. Simeon. On wrapping

query languages and efficient XML integration. In Proc.

SIGMOD, pages 141-152, 2000.

P. Fankhauser, M. Fernandez, A. Malhotra, M. Rys, J.

Simeon, and P. Wadler. XQuery 1.0 Formal Semantics.

W3C Working Draft. June 7, 2001.

Leonidas Galanis, Efstratios Viglas, David J. DeWitt,

Jeffrey. F. Naughton, and David Maier. Following the Paths

of XML Data: An Algebraic Framework for XML Query

Evaluation. 2001. Available at

http://www.cs.wisc.edu/niagra/papers/algebra.pdf.

[10] M. Gyssens, J. Paredaens, and D. Van Gucht. A
grammar-based approach towards unifying hierarchical data
models. In Proc. ACM SIGMOD, pages 263-272, 1989.

[11] IBM. XML Generator available from
http://www.alphaworks.ibm.com /tech /xmlgenerator

[12] H. V. Jagadish, L. V. S. Lakshmanan, Divesh Srivastava,
and Keith Thompson. TAX: A Tree Algebra for XML. In
Proc. of Intl. Workshop on Databases and Programming
Languages, Marino, Italy, Sep. 2001.

[13] B. Ludascher, Y. Papakonstantinou, and P. Velikhov.
Navigation-driven evaluation of virtual mediated views. In
Proc. EDBT, pp. 150-165, 2000.

[14] A. Sahuguet. Kweelt. Available from
http://db.cis.upenn.edu/Kweelt/.

[15] B. Subramanian, T. W. Leung, S. L. Vandenberg, S. B.
Zdonik. The AQUA approach to querying lists and trees in
object-oriented databases. In Proc. ICDE, 1995.

[16] U. of Michigan. The Timber system.
http://www.eecs.umich.edu/db/timber/.

[17] U. of Wisconsin. The Niagara system.
http://www.cs.wisc.edu/niagara/.

[18] Y. Wu, J. Patel, and H. V. Jagadish. Estimating Answer
Sizes for XML Queries. In Proc. of EDBT, 2002.

[19] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and
G. Lohman. On supporting containment queries in
relational database management systems. In Proc. of the
ACM SIGMOD Conference on Management of Data, 2001.

[2

3

8

9

