Cover Page

Contact Author

Paper Info

Name
Email
Addr
Tel

Ref. No.
Topic Area
Category

Title
Authors
Topics relevant to the paper

Shurug A. Al-Khalifa

shurug@eecs.umich.edu

1913 Lindsay Lane, Ann Arbor, MI 48104, U.S.A
(734) 677 2668

562
Core Database Technology
Research

Combining Operators in XML Query Processing
Shurug A. Al-Khalifa and H. V. Jagadish
Semi-structured Data, XML

Combining Operators in XML Query Processing

Shurug Al-Khalifa and H. V. Jagadish

University of Michigan
Ann Arbor, MI 48109, U.S.A.
{shurug,jag}@Qeecs.umich.edu

Abstract

A core set of efficient access methods is central to
the development of any database system. In the
context of an XML database, there has been con-
siderable effort devoted to defining a good set of
primitive operators and inventing efficient access
methods for each individual operator.

In this paper we devise new access methods to
implement various combinations of two or more
such operators merged together. Specifically, we
consider the influence of projections and set op-
erations on pattern-based selections and contain-
ment joins. We also study multi-way containment
joins. We show, through both analysis and ex-
tensive experimentation, that access methods for
merged operators are frequently far superior to a
pipelined execution of separate access methods for
each operator.

Our results are applicable whether one considers
primitive operators at the macro-level (using a
“pattern tree” to specify a selection, for example)
or at the micro-level (using multiple explicit con-
tainment joins to instantiate a single XPath ex-
pression). Even though our experimental verifica-
tion is only with a native XML database, we have
reason to believe that our results apply equally to
RDBMS-based XML query engines.

1 Introduction

It is well-recognized that set-oriented data processing
is essential for good performance in any data manage-
ment system. XML data is no exception. Towards
this end, there has been considerable recent work to-
wards developing a bulk algebra for XML query, and
efficient access methods for operators in this algebra.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and motice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

(See Sec 2). Much of the work along these lines is
applicable whether the XML database is implemented
natively or on a relational engine.

Quite naturally, the basic operators considered in
such efforts correspond to “intuitive” unit operations
such as selections, projections, joins, and set opera-
tions. Quite naturally, too, the focus in developing ef-
ficient access methods has been restricted to a subset
of these unit operations particularly selections and
joins, since these are often applied early in a query
plan and frequently dominate the computational ef-
fort required. The main idea we explore in this paper
is that subsequent operations, particularly projections
and set operations, may profitably be “pushed in” and
performed at the same time as the early selections and
joins. Similarly, multiple joins can sometimes bene-
fit from being executed together (i.e. multi-way joins
can be substantially faster than a sequence of binary
joins). Realizing these benefits requires a new class
of composite access methods that evaluate these com-
posite operators in one swoop. Of course, the concept
of merging operators has been used effectively in rela-
tional databases for years. Most commercial relational
engines implement semi-joins more efficiently than full
natural joins, for instance. In XML, we’ll see that the
savings are greater, not only due to duplicate elimina-
tion and smaller intermediate results, but also due to
the inherent efficiency of the merged operation com-
pared to its constituent parts, for instance on account
of not having to examine some parts of the input.

With XML, a complication is that there is no uni-
versal agreement on an algebra for XML query eval-
uation. In Sec. 2, we will look at past work on this
subject, and establish the background necessary for
this paper. There are two main alternatives with re-
gard to set-oriented XML manipulation. The first ap-
proach manipulates sets of trees directly. The oper-
ators in such an algebra are heavyweight, but more
directly expressive of user intent. A core operation is
a “pattern tree match” selection (that is, given a set
of documents (XML trees) find all occurrences of a
specified tree pattern in any of these documents). The
second approach is to have a lower level algebra that
manipulates sets of elements (nodes in trees). The op-

erators here more directly reflect the implementation.
In fact a single pattern tree match selection operator
can itself be computed as a sequence of containment
(or structural) joins. We call these two, respectively,
macro-level and micro-level algebras (and operators).

We show that operator merging is valuable for both
macro-level operators (Section 3) and micro-level oper-
ators (Section 4). We develop rewrite rules for pushing
projections and set operations into structural pattern
match selection in Section 3. We also develop new ac-
cess methods for the various merged operators. Specif-
ically, in Section 4, we present access methods for:

e Projection merged with Containment Join.

e Negation (Set Difference) merged with Contain-
ment Join, and

e Multiway Containment Join (merging two or more
binary containment joins).

We then present a brief analytical assessment in
Section 4.4 and an extensive experimental evalua-
tion,in Section 5. These sections show the benefit to
be obtained from the new composite operators for a
wide variety of data sets and query types.

A significant consequence of the work presented
here is a substantial expansion of the class of access
methods considered for XML query processing. We
conclude with this and other implications of our work
in Section 6.

2 Background and Related Work
2.1 Query Algebra and Operators

There is no shortage of algebras for data manipulation.
Ever since Codd’s seminal paper there have been ef-
forts to extend relational algebra in one direction or
another.

In the context of the Web, we should mention
Hy+ [8] and the models for semi-structured data (see,
e.g., Lore [15] and UnQL [5]); all propose query lan-
guages, with more or less effort at an accompanying
algebra. Even in the XML context, several algebras
have been proposed. [2] is an influential early work
that has impacted XML schema specification. The
W3C working group on XML Query has recently is-
sued an algebra document [9]. The focus of this alge-
bra is to provide a formal semantics for XQuery [6]. It
is not suitable for set-oriented processing.

Set-oriented algebras for XML can be divided in two
main classes those that deal with trees and those that
deal with tuples/elements. We consider each in turn
below.

Tree Algebras and Macro Operators

XML documents are tree-structured. Therefore it is
appropriate to treat an XML database as a collection
of trees. An algebra for processing XML queries should

book

author

year > 1995 name

FOR $b IN document(”db.xml")//
book[author/name/last="Bernstein” |
WHERE $b//year > 1995

RETURN $b/title

last = "Bernstei@®'

(a) An XQuery expression (b) Its Pattern Tree

Figure 1: A simple example

therefore comprise queries that map one or more col-
lections of trees to collections of trees. Queries in most
query languages proposed for XML, and XQuery in
particular, typically specify patterns of selection pred-
icates on multiple elements that have some specified
structural relationships. (These structural selections
may be specified either through XPath expressions in
the FOR clause of an XQuery expression or as logi-
cal predicates in the WHERE clause, or both). Such a
structural pattern match can be considered a “selec-
tion” operator in a macro-level algebra. The result is a
set of trees, one tree corresponding to each set of bind-
ings that satisfies the given predicates and structural
relationships.

Ideas along these lines have been incorporated into
an object-oriented database, and an algebra developed
for these in the Aqua project [17]. The focus of this
algebra is the identification of pattern matches, and
their rewriting, in the style of grammar production
rules. These ideas are also the basis for TAX [13] a
tree algebra for XML, that is being used as the ba-
sis for the implementation of the Timber native XML
database[18]. There is also a grammar-based algebra,
shown equivalent to a calculus, for manipulating tree-
structured data using production rules [11].

EXAMPLE 2.1 Fig. 1 shows a simple XQuery ex-
pression and its corresponding pattern tree. We are
seeking titles of books in the database that have an
author with a last name of Bernstein and have an as-
sociated year after 1995.

A macro-level algebra would implement this entire
expression as a single pattern-tree based selection op-
erator (to select matching books) followed by a pro-
jection operator (to return their titles). (The title is a
sub-element rather than an attribute of book. Strictly
speaking, we would perform a projection on book and
then follow pointers from each book in the result to
output its title.)

Tuple Algebras and Micro-Level Operators

Tree pattern selections are unlikely to be implemented
atomically. Most implementations, whether in a native
XML database or on top of a relational engine, will
break down a tree pattern selection into a sequence
of simple (single-node) selections and “containment

joins” that capture the required structural relation-
ships. A micro-level algebra can be defined for this
purpose.

EXAMPLE 2.2 A micro-algebra would break up the
selection pattern of Fig. 1 into one selection operator
per node (e.g. tag= "book” or (tag= “year") && (con-
tent > 1995)) and one containment join operator per
edge (e.g. a containment join of these two node lists
will satisfy the left-most edge in the query pattern, and
find books with a year greater than 1995). The result
of the sequence of joins would then be projected on
the book element, after which its title can be obtained
navigationally as before.

In [7], the authors present an algebra for XML, de-
fined as an extension to relational algebra, that is prac-
tical and implemented. A “bind” operator is used to
create sets of (tuples of) bindings for specified labelled
nodes. Similarly, [14] describes a navigational algebra
for querying XML, treating individual nodes as the
unit of manipulation, rather than whole trees. The
algebra in [10], used as the basis for the Niagara[19]
XML data management system, is also in the same
category.

2.2 Query Processing Implementation

The key access method of concern for a macro-algebra
is one for structural pattern matching. This task is
complex enough that it is performed in three (concep-
tual) stages:

1. Identify lists of candidate elements in the
database to match each node in the specified
structural pattern. These lists are obtained
through evaluation of predicates local to these
nodes, using indices where available.

2. Find combinations of candidate elements, one
from each list, that satisfy the required struc-
tural relationships. These combinations are usu-
ally built up one structural relationship at a time.
The choice of order is a critical determinant of
performance.

3. Apply any conditions that involve multiple nodes
in the structural pattern to eliminate some com-
binations.

This access plan can be expressed as a sequence
of physical micro-algebra operators, and looks some-
what like a relational join plan where local selections
are applied first, the join is computed, and additional
global conditions can be checked in a final step. In
short, the actual implementations are likely to be sim-
ilar whether the query optimization is carried out in a
micro-algebra or a macro-algebra.

A central operation in all cases is the containment
join. Given two sets of elements U and V, a contain-
ment join returns pairs of elements (u,v) such that
u€eU,veV,and u “contains” v (that is, node w is
an ancestor of node v in the tree representation of the
appropriate document). A containment join is asym-
metric, and we will refer to one node (u) as the ances-
tor node and the the other node (v) as the descendant
node. (E.g. in Fig. 1, there are four containment joins,
one corresponding to each edge. For the leftmost edge,
the ancestor node is the “book” node and the descen-
dant node is the “year” node.) A special case of the
containment join is the immediate containment join,
where we require that node u be a direct parent (rather
than any ancestor) of node v. This special case could
have performance implications, but no new conceptual
issues, so we will not separately mention such joins for
the bulk of our paper.

A simple node numbering scheme[19, 1, 20, 4] is
commonly used to avoid computing transitive closures
of inclusion relationships to determine a containment
join. This scheme associates a pair of numbers (start,
end) with each node (element) in the tree (XML doc-
ument) where these represent the word offset of the
element start tag and end tag respectively in the doc-
ument. In other words, each element is transformed
into an integer interval. Element u contains element v
if and only if start(u) < start(v) and end(u) > end(v).
One can keep lists of elements sorted by their start
value where possible, to make such containment joins
easier to compute. When we say “sorted by u” in the
sequel, we’ll mean “sorted by start(u)”.

Containment Join Implementation

As we saw above, containment joins are central to
XML query processing, and structural pattern match-
ing in particular. A typical containment join has a
(simple) selection predicate at each end, applied lo-
cally to the node in question. Indices are likely to be
available to help evaluate these selection predicates (at
least partially, if the predicate has multiple clauses).
We have three main options in evaluating such a join:
we could scan the entire database, we could use an
(the most selective) index to find candidate nodes for
one end of the join and then navigate from there (fol-
lowing parent/child pointers), or we could use indices
to find candidates for both ends of the join and then
compute a containment join between these candidate
sets. Previous work [21, 1, 4] has shown conclusively
that the last of these options is almost always the best.

While the specific choice of join algorithm used for
containment join is orthogonal to the issues we wish to
explore in this paper, to make matters concrete we will
restrict our description (and our experimentation) to
the class of algorithms shown to be the best in [1]. The
basic idea is to exploit the tree structure of XML — a
depth first pre-order traversal of the tree will, at some

point in the traversal, place every contained node (de-
scendant) on top of every containing node (ancestor)
in the stack. Rather than traverse every node in the
tree, one could restrict the traversal to just the candi-
date ancestor and candidate descendant nodes (which
potentially satisfy the respective local selection con-
ditions, as identified by indices). Thus a single pass
over the (sorted by start position) lists of candidate
ancestor and descendant nodes suffices to compute the
containment join.

The order in which outputs are produced is usu-
ally material in query processing. The simple stack-
based join suggested above generates output sorted by
the start position of the descendant node in the con-
tainment join. In [1], a variant of this algorithm is
also presented, where the computed results are saved
and output sorted by the start position of the ances-
tor node. A clever list management technique permits
this saving and sorting with very little memory and at
most one write to and read back from disk. These al-
gorithms serve as the starting point for the new access
methods we develop in Section 4.

3 Macro Operator Merging

We consider several operators that could follow a pat-
tern tree selection: projection, intersection, union, and
set difference. For each of these four operators, we con-
sider the benefit of merging it with the pattern tree
selection(s) that it follows.

3.1 Projection Merging

EXAMPLE 3.1 Counsider pattern tree presented in
Fig. 1. The query seeks books with author last name
”Bernstein” and year greater than 1995. We will alter
it a bit to return last. Fig. 2a is a plan that can be
used to evaluate the query. To evaluate this query, as
described above, we would first generate lists of candi-
date nodes that match individual nodes in the pattern
(e.g. “book” nodes, “author” nodes, and so on). Then
we will compute a sequence of containment joins, one
for each edge in the pattern. For instance, suppose the
first join is name-last. The result of this join is a set
of pairs of nodes that jointly satisfy the relevant por-
tion of the pattern. The next containment join, say
between author and name actually joins a set of name-
last pairs with a set of author pairs to produce a set of
author-name-last triples. Finally, after all containment
joins have been evaluated, we have a set of 5-tuples,
that are the result of the pattern match selection. A
projection operator is then used to focus on the last
nodes and eliminate the others.

What we discussed in the above example is what
we call a sequence of full containment joins (FJoin).
Each of these retain both inputs tuples. We argue the
need for a projection-aware select operator. Like the
select operator, this operator requires a pattern tree

Io
ast
Project(last)
ID,

IDbuok’lDyearlguhtulenamleD last . fast

. PJoin
ID, ID FJomm ID_ID P Dt
book’ % &uhlor name” last

FJoin FJoin PJoin PJoin

D ID
IDb/K \\Dyear D / \D ID % \Yeaf '%74 \Dlast
aughor name " last

book year author FJoin book year author PJoin
IDna e IDlast ana e IDlast
name last name last

(a) Full Join Plan (b) Partial Join Plan

Figure 2: The difference between Full and Partial contain-
ment joins.

as a parameter, and finds sub-trees in each input data
tree that match the pattern tree. But, in addition, this
operator comes with a projection list comprising ref-
erences to pattern tree nodes. Only nodes referenced
in this list are retained in the output. The rest are ig-
nored. The projection-aware select operator, just like
the ordinary select operator, is evaluated by decom-
posing it into a series of containment joins. Fig. 2b
is a plan that performs project-aware selection. Each
binary containment join is aware of what needs to be
retained (last in our example.) Instead of passing the
two inputs’ tuples, it passes only the ones to be pro-
jected (or needed in a later join). We call this type
of join, partial containment join. Formally, we can
define:

Definition 3.1 Full Containment Binary Join:
A full containment binary join is as an operator
FJoin: EM™xE" x [1...m] x [L...n]—=E™™), Given
inputs (z1,...,Zm), (Y1,--.,Yn), i, and j, the output is
(1, s Tm,Y1,---,Yn), the concatenation of the first
two inputs, provided that z; is an ancestor of y;, and
is empty otherwise.

Here, £ is the set of all XML elements in the database.
E™ is a vector of m elements, representing some tree
fragment. z7 is the ID of a node that has partici-
pated in a previous join. And so are zs through x,,.
In Fig. 2a, in the topmost FJoin, x; corresponds to
IDs of tuples satisfying book and x5 corresponds to
IDs of tuples satisfying year. For the same FJoin,
corresponds to IDs of tuples satisfying author, ys cor-
responds to IDs of tuples satisfying name, and y3 cor-
responds to IDs of tuples satisfying last.

Definition 3.2 Partial Binary Containment
Join: A partial binary containment join is as an op-
erator PJoin : &M x " x [1...m] x [1...n] x
{0, 1}mF "y Ex. Given inputs (z1,...,%m),
(Y1,---yYn), 4 J, PL, the output is {zp|(zx €

(TlaaTm)HZl € (ylaayn))&&(k € PL)} pro-
vided that z; is an ancestor of y;, and is empty
otherwise.

The projection list, PL, is formally recorded as an
m+mn-long bit vector, with each bit indicating whether
the corresponding node is retained in the projection.
Ex is a vector of an undetermined number of elements
(but this number is exactly the number of 1s in PL
and hence is no larger than m + n). In other words,
the output is that for the full binary containment join,
(1, -y Tm, Y1,---,Yn), Projected down to elements in
PL, the projection list. Basically, PJoin acts in the
same exact way as F'Join does, except that it does not
concatenate the input vectors blindly. Instead, it out-
puts a new vector with only nodes that are referred to
in the PL. In Fig. 2b, the topmost PJoin outputs only
IDs of last because it is the only one in the projection
list.

Given a pattern tree selection operation, based on a
pattern PT', let PT; = PT—PT;, where PT}; includes
the node j, j is the parent of node ¢ in PT', and i is
root of PTj.

Selectpr (D) =
FJoin(Selectpr; (D), Select pr, (D), j, i) (1)

Thus, a selection on pattern tree PT is expressed in
terms of selections on simpler pattern tree PT; and
PTj;. This rule is applied recursively until all pattern
trees are reduced to single nodes, at which point stan-
dard selection techniques can be used.

When there is a projection immediately following
the selection operation, the rewrite rule can be modi-
fied to push the projection in, as follows:

Projectpr(Selectpr(D)) =
= Projectpy(FJoin(Select pr; (D),
Selectpr, (D), j,1)) (2)
= Projectpr(FJoin(Projectppuij (Selectpr; (D)),
Projectprugiy (Selectpr, (D)), j,1)) (3)
= PJoin(Projectpryy;y(Selectpr; (D)),
Projectpryy (Selectpr, (D)), j,4, PL)) (4)

This rule is also applied recursively until all pattern
trees are reduced to single nodes. Once the base single
node selections are evaluated, all the remaining oper-
ations are repeated executions of PJoin. (Projection
pattern lists may mention nodes not in their operands,
but these make no computational difference, and can
easily be removed, if desired.) Note that the projec-
tion pattern list is not invariant — as the projections are
pushed in, additional information has to be retained
to permit future joins to be evaluated correctly.

Definition 3.3 Projection Minimal: An expres-
sion is said to be projection-minimal if every projection

book . i
Projection List = PL = {book, yeat

Nodes needed for future joins =

year author
\ S = {name, name, authoi
name
-/
first last
name PJoin first—= name S = {name, autho
name PJoin last—= name S = {author}
name PJoin author— author s={
author PJoin book= book sSs={
book FJoin year——= book,year S ={}

Input vectors
to partial joins

output vector Set of nodes not in
(input to next PL but need to be

join) kept for future joins
Figure 3: Execution of a sequence (one of many possible)
of partial binary containment joins to evaluate a specified

pattern tree selection.

is applied as early as possible. That is, every inter-
mediate result in the expression has all unnecessary
elements projected out. <

Theorem 3.1 Let Q' be the expression obtained af-
ter rewrite rule (4) has been applied as many times as
possible recursively to a given project-select expression
Q. Then, Q' is projection minimal and is equivalent

to Q. &

We devise a simple algorithm to push projections in,
based on the above theorem and the observation that
each edge in the pattern tree represents exactly one
containment join. Therefore each node in a pattern
must participate in exactly as many containment joins
as there are edges incident on it. To keep track of this,
we create a multi-set S comprising each node in the
pattern tree repeated as many times as it has edges,
minus 1. To save space, we can leave out projection
list nodes from S altogether. A node w is retained in
the result of a binary containment join if it is in the
final projection list or is included in S. Otherwise, u
is projected out. Every time a node is used in a join,
remove one occurrence of u from S.

EXAMPLE 3.2 Fig. 3 presents a pattern to be
matched (an extension of the pattern tree in Fig. 1).
PL, the projection list, is specified to be book and
year. The set S has nodes name in it twice because
it has three edges incident. book is not in .S since it
is in PL. The other three (leaf) nodes have only one
edge incident each. A possible sequence of partial bi-
nary containment joins to evaluate this query is shown,
along with the manipulations of the set S. In the first
step, name is joined with first. first is not retained in
the result since it is neither in S nor in PL. name is
retained since it is in S, but one occurrence of name
is removed from S. In the last step, book and year are
retained in the result since both are in PL.

3.2 Set Operations

In the relational world, union compatibility is an im-
portant consideration with respect to set operations.
In XML, since heterogeneous collections are allowed,
this is not an issue. (One consequence is likely to be
that set operations are more prevalent in XML query
processing than in relational query processing — though
we do not have enough knowledge of XML query pro-
cessing to verify this hypothesis.)

3.2.1 Set Union

The standard technique to perform set operations is to
sort the two inputs and then merge them. An appro-
priate choice of query plan can avoid the need to sort
the lists. Specifically, we would like each input set to
be sorted by the root node of each element tree.

In the relational context, union distributes selection
over the same relation as follows:
opRU0GR = o0pyeRR where p, q are selection predi-
cates. Given the more complex pattern-tree selections
we have to deal with, we must find the equivalent rule
for merging two pattern trees. We observe the follow-
ing equivalence:
Given two pattern trees, P17 and P13, let PT, be a
common component of the two pattern trees such that
(i) PTy — PT, = PT{ and PTy, — PT, = PTj are
both also trees, and (ii) Node ¢ in PT, has node j in
PTy such that edge (7, j) is in PTy, if and only if node
i also has some node k in PTj such that edge (7, k) is
in PTQ

Lemma 3.1 There exists exactly one such node i pro-
vided that PT,., PTy, and PT} are each non-empty. <

The lemma follows from the definition of a tree. If PT}
is a tree and is decomposed into two trees, then the
two component trees have exactly one edge between
them. Using this lemma, we can develop a rewriting
rule:

Selectpr, (D) U Selectpr, (D) =
UJoin(Selectpr, (D),
Select pr (D), Select pry (D),i,5,k) (5)

All variables in this rule are defined as above.
UJoin is a new Union Containment Join operator.
It is similar to F'Join. It differs in that it takes two
candidate descendant tree sets (the second and third
arguments) and correspondingly two descendant node
identifiers (the last two arguments), rather than just
one each in F'Join. Consider a variant of our running
example in Fig 4, where we seek books with author
last name of “Bernstein” OR year > 1995. This is the
union of two pattern match selections, one for each
disjunct (PT; and PT5 in Fig. 4). PT. is the common
part of the two patterns, the root node book in this

PTl\//Booki\\\\
! E al,‘lt OF. j ' | 2/\,— book : i
!PT, name N emkee-- 0 % PT.:book
L '\ \PT,year>1995:k
| N L
N N last="Bernstein’} ; N o Tt . !
Join
Union / \
Select(PT) Unjon
Select(PT) Select(RT) d P
SelecT,) Sel&y)
Planl Plan2

Figure 4: Different pattern trees and plans involved in
evaluating a query that asks for books with author last
name of “Bernstein” OR year > 1995

case. This is also node marked i. PT] is the remain-
der of the first pattern, author, name, and last nodes,
with the first of these being the k node. An ij edge
“connects” the two patterns. Similarly, PTj comprises
the single node year. This is the node marked k.

A common case where this occurs is when j and k
are each the root for the corresponding sub-pattern,
as in our running example. We thus have a choice of
unioning books that satisfy either disjunct (planl in
Fig. 4), or unioning the disjunctive condition and then
joining only once with book (plan2 in Fig. 4).

Selectpr, (D) U Selectpr, (D) =
FJoin(Selectpr, (D),
Selectpr; (D) U Selectpry (D), ,5) (6)

3.2.2 Set Intersection

An intersection is really the same thing as a conjunc-
tive condition, which is what the pattern tree repre-
sents. So no new operators or access methods are re-
quired. Once the intersection has been pushed in ap-
propriately, it can be replaced by merging the pattern
trees corresponding to the selection results being in-
tersected. For instance, it is easy to see that the final
intersection query in the example above is the same as
the more complex single pattern match of Fig. 1.

3.2.3 Set Difference

Suppose we wish to find books published since 1995
except those with Bernstein as the last name of the
author. This is easily expressed as the difference of
two selection queries: the first finds books published
since 1995 and the second finds books with Bernstein
as (last name of) author.

Set difference, unlike intersection, cannot be ex-
pressed directly as part of a pattern tree selection.
However, an access method to compute set difference
merged with containment join, we call it negated con-
tainment join, turns out to be very useful, as we shall
shortly see.

4 Micro-Operator Merging: New Ac-
cess Methods

At the macro-level, we considered a pattern tree se-
lection as a single (heavy-weight) operator in the pre-
vious section, and discussed benefits that this opera-
tor could derive from operators that follow. An alter-
native, micro-level algebra approach is to break up a
pattern tree selection into multiple containment join
operators. In this section, we will show that merging
operators that follow is a good idea even for contain-
ment joins. Not only is this true for the projection
and set operators we have discussed before, but in ad-
dition it is frequently worthwhile to merge multiple bi-
nary containment join operators and evaluate a single
multi-way containment join instead. For lack of space,
we only touch upon highlights of the algorithms here.
Greater detail can be found in the appendix.

4.1 Partial Binary Containment Join

In this section, we discuss modifications made to the
original algorithms presented in [1] to achieve the par-
tial binary containment joins.

We start with the simplest case, the descendant-
sorted containment join. Since we wish to retain only
the descendant nodes in the output, we need not join
the descendant with all stack elements. If the stack has
at least one (ancestor) element in it, the descendant is
output immediately. We can additionally get rid of the
stack altogether for an ancestor-descendant join (vs. a
parent-child join), merely retaining the single cell at
the bottom of the stack. If this cell is occupied when
a candidate descendant node is considered, then the
descendant node is output, and otherwise it is not.

Turning to a binary containment join with only an-
cestor nodes retained, several optimizations are possi-
ble. The greatest benefit is that no lists need to be
kept since we do not need to output the descendant.
Furthermore, all nodes on the stack can be reported
(in bottom-to-top order) as soon as one descendant is
found. After that one can skip all descendants that
might have joined with the popped elements.

In the general case, we may retain all, some or none
of the elements in the previously joined lists on ei-
ther side of the containment join. Retaining elements
from one side does not affect any of the techniques
presented above. If we retain elements from both sides
of the containment join, we do not get the significant
“semijoin-like” algorithmic benefits discussed in this
section. However, we still benefit due to reduction in
the size of the output.

4.2 Negated Containment Join

A negated binary containment join is a primitive oper-
ator in the evaluation of set difference. The algorithm
for this access method is almost identical to that for
the ancestor-projected partial binary join operation.

When a matching descendant node is compared with
the top of the stack, all candidate ancestor nodes on
the stack are popped, as before. However, these nodes
are not output; instead they are rejected. Any can-
didate ancestor nodes that survive until popped from
stack due to the start cursor having gone too far for-
ward (a new node has a start key greater than the end
key of surviving ancestors on stack) are the ones that
should be output.

4.3 Multiway Joins

When there is a sequence of joins in relational
databases, it is frequently the case that the join at-
tributes are different for each join. In the case of the
multiple containment joins required in a pattern tree,
though, the join “attribute” is the position of the ele-
ment in the document. All candidate matches for all
nodes in the pattern tree are sorted by start position
for the various binary containment join access meth-
ods discussed above. Recent results in this regard are
reported in [4].

There are two ways in which patterns can grow —
there can be longer chains, or there can be more chil-
dren at a given node. While a general pattern will
require both of these operations to grow from a sin-
gle node, it is instructive to consider the two extreme
cases in isolation. This is what we do next.

Given a chain pattern, the multi-way chain contain-
ment join access method will evaluate it in one fell
swoop rather than in multiple smaller pieces. Rather
than just keep one type of candidate ancestor node on
the stack, we keep all nodes on the chain except the
bottom-most descendant node. When a descendant
candidate node arrives it is compared against nodes in
the stack as before. If it matches, then entire chains
of matches can be created and output in the specified
order.

Now consider a twig pattern (two descendants share
an ancestor), and an associated multi-way twig con-
tainment join access method. When a candidate de-
scendant node arrives, it has to be retained as a par-
tial match with the candidate ancestors on the stack
at that time. At the same time, we can create some
output based on previous partial matches that have
been stored. The output too has to stay in lists, in the
manner described above. In this algorithm, unlike the
original one, the bottom element in the stack needs to
keep lists of descendants too for future matches.

4.4 Analysis

To understand the effect of the various algorithms sug-
gested above, we construct a cost model using a num-
ber of simplifying assumptions for tractability. We
measure data in the units of “elements”, ignoring dif-
ferences in size between elements. Each “element” unit
corresponds to some number of bytes or some frac-
tion of a disk page. A summary of our analysis re-

Algorithm Cost Notes
Descendant-sorted full binary join vi*n1 + v2xn2 + (v1+v2)*ni2 ni2 < N1 *na2
Ancestor-sorted full binary join vy *ny + vakng + (v1+v2)*niz* (14 2f1) ancestor node is 1
Descendant-sorted partial binary join | v1 *xn1 + va2*na2 + uxm u < v 4+ v2, m < N
Ancestor-sorted partial binary join vy Ny 4+ vaxng + uxmx(14+2f) u < v +v2, m < nie
Negated binary containment join vixng + ng + vixmx(14+2f) m < np
Chain three-way containment join V1*N1 + V2 kno + UzkNg + uxm* (1 + 2f1) u < v+ v2 +v3, m < nia3
Bushy three-way containment join Vi kN1 + vakna + vzxng + uxmx (14 2f1)

+ ko xva*xny + k3 *xv3*ng u < v +v2 +v3, m < niag

Table 1: 1/0O Cost for Various Merged Containment Join Operations

Data Set Project Descendant Project Ancestor
Parent Child Join Ancs Desc Join Parent Child Join Ancs Desc Join
Origi- Proj Origi- Proj Origi- Proj Origi- Proj

nal Pushed % nal Pushed % nal Pushed % nal Pushed %
SIGMOD 35.77 3327 (93) | 11.70 940 (81) | 44.73 3849 (36) | 13.70 10.00 _ (73)
DBLP 24.90 23.10 (93) 25.36 23.34 (92) 32.58 27.95 (85) 31.66 26.26 (83)
Club 11.68 10.43 (89) 12.21 10.84 (89) 14.66 11.06 (75) 13.92 9.60 (96)
Bibliography 39.51 36.87 (94) 39.56 34.61 (88) 46.17 34.97 (76) 44.98 30.34 (68)
Actors 32.06 29.93 (94) | 82.21 2853 (89) | 37.58 2873 (76) | 36.80 25.21 (69)
Movies 14.03 13.10 (94) | 14.24 12.60 (89) | 16.43 12.62 (77) | 16.25 11.15 _ (69)
Personnel 45.13 4276 (94) 44.73 39.82 (89) 52.53 40.63 (78) 50.32 34.85 (69)
Organization 40.95 39.15 (95) 31.48 22.19 (70) 52.27 46.95 (90) 147.87 22.49 (15)

Table 2: Time (in seconds) measuring the effect of pushing projections into selections on multiple real and synthetic data

sets

Data Set Union Intersection Difference
Original | Pushed % Original | Pushed % Original | Pushed %

SIGMOD 34.72 24.79 (71) 26.41 21.09 (80) 33.07 11.69 (35)
DBLP 21.30 16.02 (75 17.38 1477 (35) 30.58 7.08 (23)
Club 30.41 20.52 (68) 26.48 20.32 (77) 31.25 20.41 (65)
Bibliography 31.45 2806 (92) 12.59 12.08 (96) 108.49 65.20 (60)
Actors 95.71 71.66 (75) 87.54 71.66 (32) 25.43 0.06 (0.24)
Movies 35.53 23.89 (67) 30.68 23.47 (76) 28.55 13.47 (47)
Personnel 57.20 55.60 (97) 31.88 31.37 (98) 57.39 8.52 (15)
Organization 188.07 | 158.88 (85) 105.16 60.76 (58) 390.50 14.65 @)

Table 3: Time (in seconds) measuring the effect of pushing set operations into selections on multiple real and synthetic

data sets

-8~ Select then project
=¥ Projects pushed in

60

Time (seconds)
®
S

IS
S

20

1400

1200

1000

@
S
=]

-3
=1
=]

Time (seconds)

IS
S
=]

N
=1
=]

1 2 3
Query complexity

()

5
Chain Length

(b)

Figure 5: (a) Pushing projections with increasing query complexity (b) Multi-way chain containment joins with increasing

chain length

sults is presented in Table 1. A detailed derivation
is presented in the appendix. In this table, n; is the
cardinality of the i*" input, and v; is its “tuple”-size
(number of elements already joined). n;; (or m) is
the cardinality of the output, and u is the number of
elements retained in the output. f; is a nesting fac-
tor, which takes a value between 0 and 1, and is used
to indicate how “recursively nested” node ¢ is in the
given data set. Let 7 represent the set of all nodes
in the database that satisfy the predicates to match
with node 4 in the containment join at hand. f; is
the fraction of nodes in Z that have a descendant in
T. Typical data sets have low nesting factors for most
element types. A nesting factor of 0 is called the no
overlap property. For instance, a book cannot be a de-
scendant of a book. k; is the fraction of input ¢ that
will be considered for output. It appears in the bushy
multi-way equation because in the algorithm, lists of
input are kept with stack elements as well as an output
list.

5 Experiments

We ran an extensive set of experiments on a wide range
of real and synthetic data. We expect, based on the
analysis in the previous section, that operator merging
is a good idea for relational implementations as well as
native implementations. Our experimental results are
limited to Timber [18], a native XML database we are
building, not just because we had this one database
easily available, but additionally because good XML
query processing requires appropriate access method
support in relational engines, and the requirements for
these are only now being discovered through research,
so they have not yet made their way into commercial
products that we could use.

Our code is implemented in Visual C++. All exper-
iments were run on a Windows NT 550 MHz machine
with 256 MB of RAM. Each experiment was run five
times. The least and greatest values were ignored and
the average of the middle three was taken.

5.1 Imitial Experiments

The first question to ask is, does operator merging
make a difference? In Tables 2 and 3, we show the im-
pact of operator merging on a wide variety of data sets.
These include both real data (parts of Sigmod Record
and DBLP) and synthetic data created with the IBM
XML generator [12] using “real” DTDs, including sev-
eral obtained from [19], and the popular Organization
DTD obtained from AT&T.

We ran numerous queries over all of the data sets,
and report in Table 2 results for a representative set of
two-node selection pattern queries. In each case, the
pattern comprised an ancestor node and a descendant
node. We ran two queries: with the selection requir-
ing that the descendant node be an immediate child
of the ancestor node (corresponding to a single “/” in

Xpath), and with this requirement not being imposed
(corresponding to a double “//” in Xpath). The two
queries are referred to respectively as “parent-child”
and “ancestor-descendant”. We present the results of
evaluating a projection after the two-node pattern se-
lection versus pushing it in to occur along with the
containment join. We do this for both projection of
the ancestor node and projection of the descendant
node. We find that in all cases pushing in projections
is a good idea. The benefit is typically small in the case
of descendant node projection, but quite significant in
the case of ancestor node projection.

In Table 3 we present the results of evaluating a set
operation after tree pattern selections. For the same
tree pattern selections, we consider the evaluation of
set union, set intersection, and set difference of the
results. In each case, we present timing numbers with
the set operation computed afterwards versus the set
operation pushed in. We find in all cases that pushing
in set operations is beneficial.

When pushing in operators, the more complex the
query, the greater the benefit — we find ancestor-
descendant queries uniformly benefitting more from
the projection push in than the corresponding parent-
child queries. Among the data sets, the one where
the greatest benefit was observed was the organization
data set, which involved the greatest degree of nest-
ing, leading to complex evaluation. We will see more
of this complexity effect in the next subsection.

To study the benefits of multi-way containment
joins, we present results in Table 4a and b for the two
extreme cases: a bushy “twig” pattern and a chain
pattern. In each case, we focus on simple three-node
queries. We require results sorted by the pattern root
node in all cases. In a 3-node chain, we compute the
lower containment join first, sorted by ancestor, and
use the result as the descendant part of the upper con-
tainment join. In a 3-node twig, we can compute ei-
ther containment join first, but must sort by ancestor,
and use the result as the ancestor part of the other
containment join. We present timing numbers for var-
ious queries on several data sets, evaluated as such
sequences of two binary joins and also as single multi-
way joins.

The conclusion is that chain multi-way joins are
always advantageous. The extent of the benefit is
greater when there is nesting in the root node of the
chain. Twig multi-way joins, though, more often did
worse rather than better, compared to the sequence of
binary joins. This is for the reasons we predicted in
our analysis in Section 4.4. We also ran several ex-
periments with more complicated pattern trees, and
saw similar results, though less clearly, because of the
confounding of multiple effects. Our conclusion is that
containment join merging is beneficial only for chains
in the pattern. We focus on chain multi-way joins for
the remainder of our study.

400 1600

- - -8~ Select then Difference
350 - Union pushed in 1400} | =% Difference pushed in

300 1200
3

250 \\B\
1]
2
Length of uncommon part

=
o
S
S

Time (seconds)
Ny
(=3
(=]

Time (seconds)
®
S
(=]

o
S
=]

.
15}
=
IS
S
S

a
=]
N
o
S

3
Common nodes in query

(a) Set Union (b) Set Difference

Figure 6: Comparing degrees of set operation push into pattern tree selection

10000 = 300
—B- Select then Proj n —& Select then Proj n
=¥ Proj merged with Select 250 =¥ Proj merged with Select]
8000
& ©200 1
£ 6000 2
S 3
8 3150 1
2 4000 g
= =100 1
2000 50]
= — 7
= # ¥ * 0K
7 9 11 13 15 17 19 21 23 0 4 6 8 10
Data set depth Data set size (Millions of nodes)
(a) Varying Depth of Data Set (b) Varying Size of Data Set

Figure 7: Evaluating the effect of pushing in projections as the data set is scaled

Data Set Binary Joins | Merged %

SIGMOD 27.37 23.05 (84) Data Set Binary Jotns | Merged %
DBLP 18.36 17.72 (97) SIGMOD 22.72 17.64 (78)
Club 145.61 154.57 (106) Club 21.43 17.37 (81)
Bibliography 397.95 446.71 (112) Bibliography 17.79 15.13 (85)
Actors 15.07 15.82 (105) Actors 52.36 48.77 (93)
Movies 150.82 184.30 (122) Movies 12.32 10.28 (83)
Personnel 20.34 14.70 (72) Personnel 19.53 16.36 (84)
Organization 55.16 67.87 (123) Organization 16.26 6.43 (40)

(a) Twig Pattern (b) Chain Pattern

Table 4: Performance (in seconds) of Three-way Containment Joins

Query Union Intersection

Structure Orig Push % Orig Push % Query No Merged Push
Pair 16.76 16.30 (97) 7.88 8.24 (104) Optim. Chain Union in
Twig 1111.93 | 573.87 (52) 10.95 9.53 87)

Chain 1 102.197 35.441 89.879
(low nesting) 102.20 89.88 (83) 15.49 | 12.28 (79)

Chain 2 188.070 189.734 158.879
(high nesting) 188.07 | 158.88 (85) | 105.16 | 60.76 (58)

(a) (b)

Table 5: (a)Time (in seconds) measuring the effect of query structure in pushing set operations into tree pattern selections
(b)Comparing (in seconds) two exclusive optimizations on two different queries

5.2 Query Scaling

In the preceding subsection we hinted at the fact that
the greater the complexity of the query evaluation, the
greater the benefits of operator merging. Here, we see
this result in spades. To be able to present compar-
ative results, this section onwards we present results
on a single data set, corresponding to the organization
DTD. We chose this data set because of its complexity.
Complex queries are not even possible on very simple
data sets. For instance, the DBLP data set is only
around two levels deep, so we cannot evaluate com-
plex chain queries on it. We did run some of these
experiments on other data sets, and observed similar
trends.

Fig. ba shows this effect for projection queries.
We kept adding to the query complexity (measured
in terms of the number of constituent binary contain-
ment joins) and projecting out only one node. Table
5a shows this effect for set union and set intersection
queries.

Fig. 5b shows that the benefits of chain multi-way
joins increase with the length of the chain, and hence
the arity of the multi-way join, increases. This hap-
pens because of the reduced amount of disk I/O in-
volved when performing a multi-way chain.

When pushing operators into complex tree pattern
selections, we also have the option of pushing in only
part way. Fig. 6a shows the result of pushing in a
union operator in stages. As the common part pulled
out after the union goes up, the benefit of operator
merging also goes up. Fig. 6b shows the same effect for
pushing in set difference in stages. As the uncommon
part goes up, the difference in performance and thus
the benefit of pushing in difference increases. This
happens with the larger uncommon part because it
costs more to evaluate.

5.3 Data Set Scaling

Based on our analysis and previous experiments, we
expect that operator merging should provide greater
benefits as the size and complexity of the data set
grows. To test this hypothesis we generated a number
of different synthetic data sets using the same DTD
(the organization DTD). The depth of the data set
greatly affects the complexity of the query evaluation,
so we wanted to study the effect of depth in addition
to sheer size.

In all cases, we present results for a simple three-
node chain selection followed by a projection on the
ancestor node. This query is similar to one that asks
for all authors with the last name being “Bernstein”.
(The three nodes in the selection are author, name,
and last. The result is projected on author). Similar
trends were observed with other queries, including pair
queries.

Figure 7a shows the times for evaluating the same
query against several data sets all the same size (10

million nodes) but with varying depth. We see that
the cost of evaluating a projection after the selection
increases greatly with depth whereas the cost of the
merged operator is barely affected. The reason is that
there are more ancestor-descendant relationships in a
deeper data set, so the size of the pre-projection in-
termediate result is much larger while the size of the
final output is not affected much. The merged opera-
tor succeeds in never creating this large result that it
has subsequently to pare down.

Fig. 7b shows the time to evaluate the same query,
with and without projection pushed in, for a number
of data sets of varying size, with the depth kept fixed
at 13 levels. As the size of the data set increases,
the query takes longer to evaluate, irrespective of the
access plan chosen. However, on a relative basis, the
merged operator evaluation does better on larger data
sets.

5.4 Operator Combinations

Thus far, we have considered one operator merge at
a time. In this section, we turn to the issue of ap-
plying multiple operator merges concurrently. Fig. 8
shows the effect of pushing projections in and using
a multi-way chain containment join. The three curves
show respectively the case with just projections pushed
in while using binary joins, the case with a multi-way
containment join followed by a projection, and the case
where the projection has been pushed into a multi-way
containment join. We do not show the base case, with
no optimizations applied, since this performs substan-
tially worse — plotting this curve would make it hard
to see the differences between the three curves of in-
terest. The reader interested in the base case can refer
to Fiig. 5b which considers the same data set and same
queries.

Our conclusion from Fig. 8 is that there is benefit
to applying the different operator merging optimiza-
tions in tandem. However, the incremental benefits
are small as a law of diminishing returns sets in.

Whereas projections can be pushed into multi-way
containment joins, set operations cannot be pushed in.
In Table 5b we investigate this issue with respect to
the union operator for different queries. Both Query 1
and 2 are three-node long chain queries. Query 1 has
a lower nesting of the root. We find, as our analysis
predicts, that the benefits due to pushing unions in
could be more or less than the benefits due to using
multi-way containment joins. The two optimizations
are exclusive, and a good query optimizer will have to
choose one or the other depending on its estimates of
the cost for the particular data set and query.

6 Conclusion

XML query processing has been modelled in terms of
macro-algebras (which operate on entire trees) and

200

-8~ Binary joins push projections
=¥~ Merge joins then project
-A- Merge joins push projections

Vi

-
a
=]

Time (seconds)
=
o
(=]

;%:ﬁ
1]
4 5 6 7

3
Chain length

Figure 8: Comparing alternative optimizations as pattern
chain length is varied

micro-algebras (which operate on individual nodes).
In this paper, we have explored the relative ease of
certain optimizations in one versus the other. In both
cases, we have shown that it is often very valuable
to merge operators, and have a single access method
evaluate a combination of operators.

The contributions of this paper include the develop-
ment of an optimization framework that exploits the
duality between macro-algebras and micro-algebras for
XML; the development of new access methods for op-
erator combinations, including a projection contain-
ment join, a negation containment join, and a multi-
way containment join; an analytical assessment of the
benefits of the new access methods compared to their
unmerged originals; and an extensive experimental
evaluation of these benefits, with a variety of data sets,
a variety of queries, and the variation of various oper-
ating conditions.

A significant consequence of our work is that it
is not enough to consider XML query optimization
purely at the micro-algebra or purely at the macro-
algebra level, with simple algebraic operators. Instead,
one has to consider access methods for combinations
of operators, switching between the micro and macro
levels as needed.

References

[1] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. Patel, D.
Srivastava and Y. Wu. Structural Joins: A Primitive
for Efficient XML Query Pattern Matching. In Proc.
of ICDE, 2002.

[2] D. Beech, A. Malhotra, and M. Rys. A formal data
model and algebra for XML. W3C XML Query Work-
ing Group Note, Sep. 1999.

[3] C. Beeri and Y. Tzaban. SAL: An algebra for Semi-
Structured Data and XML. ACM SIGMOD Workshop
on the Web and Databases, pp. 37-42, Philadelphia,
PA, June 1999.

[4] N. Bruno, D. Srivastava, and N. Koudas. Holistic
Twig Joins: Optimal XML Pattern Matching. In
Proc. of SIGMOD, 2002.

[5] P. Buneman, S. Davidson, G. Hillebrand, and D. Su-
ciu. A query language and optimization techniques
for unstructured data. In Proc. ACM SIGMOD, June
1996.

[6] S. Boag, D. D. Chamberlin, M. Fernandez, D. Flo-
rescu, J. Robie, J. Simon and M. Stefanescu. XQuery
1.0: An XML Query Language. W3C Working Draft.
http://www.w3.0org/TR/xquery/, December 20, 2001.

[7] V. Christophides, S. Cluet, and J. Simeon. On wrap-
ping query languages and efficient XML integration.
In Proc. SIGMOD, pages 141-152, 2000.

[8] M. Consens and A. Mendelzon. Hy": A hygraph-
based query and visualization system. In Proc. SIG-
MOD, pages 511-516, 1993.

[9] P. Fankhauser, M. Fernandez, A. Malhotra, M. Rys,
J. Simeon, and P. Wadler. XQuery 1.0 Formal Seman-
tics. W3C Working Draft. June 7, 2001.

[10] Leonidas Galanis, Efstratios Viglas, David J. De-
Witt, Jeffrey. F. Naughton, and David Maier. Follow-
ing the Paths of XML Data: An Algebraic Frame-
work for XML Query Evaluation. 2001. Available at
http://www.cs.wisc.edu/niagra/papers/algebra.pdf.

[11] M. Gyssens, J. Paredaens, and D. Van Gucht. A
grammar-based approach towards unifying hierarchi-
cal data models. In Proc. ACM SIGMOD, pages 263—
272, 1989.

[12] IBM. XML Generator available from
http://www.alphaworks.ibm.com/tech /xmlIgenerator

[13] H. V. Jagadish, L. V. S. Lakshmanan, Divesh Srivas-
tava, and Keith Thompson. TAX: A Tree Algebra for
XML. In Proc. of Intl. Workshop on Databases and
Programming Languages, Marino, Italy, Sep. 2001.

[14] B. Ludascher, Y. Papakonstantinou, and P. Ve-
likhov. Navigation-driven evaluation of virtual me-
diated views. In Proc. EDBT, pp. 150-165, 2000.

[15] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A database management systems for
semistructured data. SIGMOD Record 26(3), pages
54-66, 1997.

[16] A. Sahuguet. Kweelt.
http://db.cis.upenn.edu/Kweelt/.

Available from

[17] B. Subramanian, T. W. Leung, S. L. Vandenberg, S.
B. Zdonik. The AQUA approach to querying lists and
trees in object-oriented databases. In Proc. ICDE,

1995.

[18] U. of Michigan. The Timber system.
http://www.eecs.umich.edu/db/timber/.

[19] U. of Wisconsin. The Niagara system.

http://www.cs.wisc.edu /niagara/.

[20] Y. Wu, J. Patel, and H. V. Jagadish. Estimating An-
swer Sizes for XML Queries. In Proc. of EDBT, 2002.

[21] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and
G. Lohman. On supporting containment queries in re-
lational database management systems. In Proc. of the
ACM SIGMOD Conference on Management of Data,
2001.

Appendix A: Stack-Based Negated Con-
tainment Join

In this appendix, we describe one of the containment
joins presented in this paper, the negated containment
join. We also discuss using it in pushing set difference
into selections. The negated containment join reads in
two lists, a list (AList) of potential ancestors and of
potential descendants (DList). It outputs nodes from
AList that are not ancestors of any node in DList using
a stack data structure to keep track of ancestors. For
example, consider a query that seeks employees who
do not have a phone number. The algorithm would
read in from an index all elements that matched the
tag employee and from another index all elements that
matched the tag phone-number. Afterwards, it would
output employee elements that do not have a descen-
dant phone-number.

Each node in the document is assigned a pair of
numbers; a start key and an end key. These two num-
bers correspond to the offsets of the start and end tags
of the element in the XML document. Therefore, an
ancestor has a start key less than the start keys of all
of its descendants and an end key that is greater than
the end keys of all of its descendants. So, for a given
pair of nodes, comparing the two start keys and the
two end keys would decide whether or not one node is
an ancestor of the other.

Fig. 9 presents pseudo-code of the stack-based
negated containment join algorithm. Following up on
the employee-phone example, AList would be the list
of index entries that matched the tag employee. DList
would be the list of index entries that matched the tag
phone-number. The algorithm starts by reading in the
first values from both lists. If the stack has elements
in it, it checks if any of them is ready to be popped
(lines 4-10 in Fig. 9). An element is to be popped
if it has an end key smaller than the start key of ei-
ther of the inputs. When it is time to pop an element
from the stack, a flag (marked) associated with each
stack element is checked; if it is still in its initial state
(false), then this element did not join with any descen-
dant and therefore should be output. The next step in
the algorithm deals with either the potential ancestor
or the potential descendant depending on which has
the least start key (line 11). If the ancestor node (a)
comes first, it gets pushed into the stack, its flag gets
initialized to false, and the next ancestor node is read
in. If the descendant node (d) comes first, we know
that all stack elements are ancestors of d. Therefore,
none of them should be output and their flags are set
to true (line 19). Afterwards, the next descendant is
read from the index. Even though this algorithm is
somehow similar to the ancestor containment join pre-
sented in 77, it performs much better because it does
not keep lists of output. It is closer to the partial join
version of the ancestor containment join.

This algorithm is used to merge selections with set

Algorithm Negated-Containment-Join (AList, DList) {

/* AList is the list of potential ancestors sorted by dist.start */
/* DList is the list of potential descendants sorted by dist.start */
/* Each entry in each list is a vector of elements, one of which,
called dist, is the one that participates in the join. */

/* We want to keep elements of AList that

DO NOT have descendants in DList*/

1. a = Alist first;

2. d = Dlist.first; //cursors for the lists

3. while (a & d) {

4 while ((a.dist.start > stack.top.end) OR

5. (d.dist.start > stack.top.end)) {

6. //time to pop the top element in the stack

7 if (stack.top.marked == false)

8 output(stack.top)

9. stack.pop();

10.

11. if (a.dist.start < d.dist.start) { // process ancestor node
12. stack.push(a.dist);

13. stack.top.marked = false //initialize marked as false
14. a = AlList.next;

15.

16. else {// process descendant node

17. for each element i on stack if (d joins with a.dist)
18. // mark the element as NOT ouput

19. stack.element(i).marked = true

20. d = DList.next ;

21.

2.}

}

Figure 9: Negated Containment Join Algorithm

difference. Back to our example query; we want all em-
ployees who do not have phone numbers. This trans-
lates into a query plan that performs set difference be-
tween employees and employees with phone numbers.
This is the upmost plan in Fig. 10. The selection is ba-
sically a sequence of binary containment joins. There-
fore, the selection on the right side of the difference is
broken into a single binary containment join with em-
ployee as ancestor and phone-number as descendant.
This is the second plan in Fig. 10. The final step is to
replace the difference followed by a containment join
with the negated containment join, which is the bot-
tom plan in Fig. 10. Comparing the second and third
plans, we find that the third plan obviously wins be-
cause it has less number of containment joins and less
number of index reads.

Difference

VRN

employee
Select(employee)
Select ‘
phone—number
L

Difference

e AN

Select(employee) Join

RN

Select(employee) Select(phone—num

<

NegatedJoin

/ AN

Select(employee) Select(phone—number)

Figure 10: Steps in pushing difference in selection

Appendix B: Derivation of Algorithms
Cost Formulae

In appendix B, we present the derivation of formulae
in Table 1. An initial discussion of the formulae is in
section 4.4.

Binary Containment Joins

The basic full binary containment join, with output
sorted by descendant, requires reading the two input
lists of candidate nodes and then writing out the result.
There is no memory storage except for the small stack.
If the ancestor candidate nodes have previously been
joined multiple times, we could have a large value for
v1, which makes each stack entry very large. Even so,
we do not expect the total size of stack to occupy a
significant amount of buffer. The input cost of this join
is v1 * ny 4+ v * no where ni, ny are the cardinalities
of the two inputs respectively, and vy, vy are their
respective vector sizes in number of elements. The
output cost is (v1+wva)*n12 where nis is the cardinality
of the output.

Considering the full binary containment join, with
output sorted by the ancestor, there could be the need
to write out intermediate results. In the worst case,
this could be as large as the final output written out
and read back once. In the best case, this is zero.
The best case is actually not infrequent — it occurs
whenever we can be guaranteed that no two instances
of the sort key in the candidate ancestor set have an
ancestor-descendant relationship. This happens be-
cause the bottom element in the stack does not retain
lists, it outputs results immediately. We model this
by introducing a nesting factor, fi, that takes a value
between 0 and 1. The cost of the intermediate write
is (v1 + v2) * nya * f1, and the cost of the intermedi-
ate read back is also the same. Thus the total cost is
vy xny 4 v x ng + (v1 +v2) * nia *x (14 2f1).

In a partial binary containment join, the vector size
of the output is decreased to u < vy + va. The car-
dinality of the output is also decreased, to m < mis.
The input costs remain unaffected. The total cost is
vy xny + v kng +uxm* (14 2f), with f; forced to
zero if the output is sorted by the descendant node in
the join. Comparing this with the formula for the full
binary containment join, we see that the savings due
to the partial join are greater the smaller the value of
m, of u, and the larger the size of the output compared
to the input. The savings are also greater when the
output is sorted by ancestor rather than descendant,
and greater when the sort key is more deeply nested.

The formula for negated binary containment join
computation is exactly the same as for the partial bi-
nary containment join, except that w and m have cor-
respondingly different meanings. Also, v = 1 because
there is no point in keeping nodes of the negated part
except the one that is actually joining with the ances-

tor. Furthermore, the output vector is v1 only. All the
trends described above for partial binary containment
joins apply to negated joins as well.

Multiple Containment Joins

First, we will discuss the multi-way chain containment
join. Consider a chain pattern with three nodes
and two edges. Each of the three nodes has sets
of candidate matches that must be input, at a cost
of n1 + na + ng. (The vector size is just one in
each case, if this is the entire pattern. Otherwise,
it is v1,vy and w3, respectively). The output size
is (v1 4+ v2 + v3) * ni23, where nia3 is the output
cardinality. Again, f; is the nesting factor of the top
(“ancestor-most”) node in the chain. The disk I/O
involved is simply (v; + va + v3) * niag * (1 + 2f1).
This is always a savings over performing the chain
using two binary joins (where disk I/O may occur
while joining the middle node with the leaf node
as well as while joining the root with the middle
node). Therefore, the formula for the three-way chain
containment join is:

V1 %N+ V2 ¥ Ng + U3 Nz + (V1 + V2 +v3) *N123* (1+2f1)

A three node twig pattern has two descendants
sharing the same ancestor. A twig join can be per-
formed as one three way twig join. The input cost is
n1 +n2+ng. Output cost is again (vq + vz +v3) *n123.
The output cost is (vy + va + v3) * niag * (1 + 2f1).
Unlike the previous algorithms though, the bottom-
most element in the stack needs to retain lists of
inputs to make sure that all matches are found. We
introduce another factor, k; (i = 2,3). k; (between
0 and 1) is the fraction of input ¢ that participates
in the output. This includes parts of the input that
are considered for output even though they did not
actually participate in it. For example, a descendant
from input i comes and the stack is empty. This
descendant is not part of k; * n;. On the other hand,
a descendant that comes and the stack size is greater
than one is always part of k; x n; even if it does not
become part of the output. For bookkeeping of input
lists, the amount of I/O needed is k; * v; * n; for each
input i (i = 2,3). Therefore, the formula for the twig
three-way containment join is:

U1 *x N1+ V2 *xNo +’U3*n3+(’01 +1)2+1)3)*71123*(1+
2f1) 4 ko * va x ng + k2 * va % ng

Pushing in projections will simply reduce both
v1 + v2 + vz to u and nia3 to m in the multi-way
containment joins.

The stack-based containment join access method is
equally applicable to native XML databases and to
relational implementations of XML data management.
As such, the analysis presented in this section apply
equally to a variety of XML implementations.

