
Automating the Design and Construction of Query Forms∗

Magesh Jayapandian H. V. Jagadish

University of Michigan
Ann Arbor, MI 48109-2122
{jmagesh,jag}@umich.edu

Abstract

One of the simplest ways to query a database is through
a form, where a user can fill in relevant information and
obtain desired results by submitting the form. Designing
good static forms is a non-trivial manual task, and the de-
signer needs a sound understanding of both the data or-
ganization and the querying needs. Furthermore, form de-
sign has two conflicting goals: forms should be simple to
understand, and at the same time must provide the broad-
est possible querying capability to the user. In this paper,
we present a framework for generating forms in an auto-
matic and principled way, given the database schema and
a sample query workload. We design a tunable clustering
algorithm for establishing form structure based on multiple
“similar” queries, which includes a mechanism for extend-
ing form structure to support other “similar” queries the
system may see in the future. The algorithm is adaptive and
can incrementally adjust the form structure to reflect the
addition or removal of queries in the workload. We have
implemented our form generation system on a real data-
base and evaluated it on a comprehensive set of query loads
and database schemas. We observe that our system can sig-
nificantly reduce the numbers of forms needed for various
query loads by exploiting similarities across queries, even
after placing a strict bound on form complexity.

1. Introduction

A database is only as useful as its query interface allows
it to be. If a user is unable to convey to the database what
he or she wants from it, even the richest data store provides
little or no value. Writing well-structured queries, in lan-
guages such as SQL and XQuery, can be challenging due to
a number of reasons, including the user’s lack of familiar-
ity with the query language and the user’s ignorance of the

∗Supported in part by NSF 0438909, NIH 1-U54-DA021519-01A1,
DARPA W81XWH-04-2-0012, and Michigan Economic Development
Corporation-Life Sciences Corridor Fund GR-238.

underlying schema. A form-based query interface, which
only requires filling blanks to specify query parameters, is
valuable since it helps make data accessible to users with
no knowledge of formal query languages or the database
schema. In practice, form-based interfaces are used fre-
quently, but usually, each form is designed ad hoc and its
applicability is restricted to a small set of fixed queries.

Query languages were developed to specify to a data-
base engine how a query should be evaluated and not to help
users understand the semantics of the query and decide if it
matches the query in their head. Furthermore, given a query
in a declarative language, it is not always obvious how to
create a corresponding form that is comprehensible to the
user and captures the information required. Although the
constraint predicates and return attributes are constant and
dictated by the query, it does not directly specify the struc-
tural relationships between the attributes involved, nor does
it suggest how they can be presented to a user in a mean-
ingful way. It is easy for a person conversant with the query
and the underlying data structure to design a form for it,
and map the user-input fields to the appropriate query pred-
icates. While such a form would do the job very nicely for
the query at hand, it is usually not extensible, and brings to
bear external human knowledge. As queries and schema be-
come more complex, manual form generation is no longer
easy, and hidden assumptions come into play much more
frequently. On the other hand, creating forms automatically
is far from trivial because it is difficult to satisfy simultane-
ously three important properties desired of any form-based
interface:conciseness, clarity andexpressivity. In this pa-
per, we present an automated technique to generate a form-
based query interface that maximizes these qualities.

2. Form Generation

To design a form for a declarative query, we must first
analyze it and identify its constraints and the required re-
sults. Then we use information gathered from this analysis,
as well as from the schema of the database, to create the
necessary set of form-elements. Finally, we arrange these



elements in groups, label them suitably, and lay them out
in a meaningful way on the form. Our algorithm is pre-
sented in Fig. 1. We extend the form generation technique
to design forms for an entire set of queries. Given a set of
interesting queries, the naı̈ve approach would be to build
one form for each one of them. However, queries against a
single schema will more often than not have similarities be-
tween them, which we can exploit to minimize redundancy.
To control a form’s readability, we introduce aform com-
plexity threshold(FCT): a measure of complexity that we
would like no form to exceed. However, this threshold may
be unenforceable if set too low, or if some of the queries in-
volved are too complex. In such cases, even a single query
may have complexity that exceeds the FCT. In the general
case, FCT is satisfied by splitting a query cluster covered
by a complex form into smaller clusters covered by simpler
forms. To measure how useful a form is, we define itsex-
pressivityas how many different queries it can express.

3. Evaluation

To evaluate system performance we conducted three sets
of experiments. We used queries in the XMark bench-
mark [1, 2], which are relatively disjoint, and built a cor-
responding set of forms. We also obtained a query trace of
real web databases hosted on our EECS department’s data-
base server and used them to build forms incrementally.

XMark Benchmark : The XMark benchmark [1, 2] was
designed to test the various capabilities of an XQuery im-
plementation. The queries are broad in scope and bear little
similarity to one another. Such a setup is far from ideal for
our system, as we expect that users of a real database of-
ten have interests similar to other users, and tend to pose
queries that have parts in common with queries posed by
others. However, we saw this diverse query set as an oppor-
tunity to test the worst case performance of our system.

The benchmark has 20 queries in total which is fairly tiny
compared to a real query log. We ran our form-generator
on this query set for varying thresholds on form-complexity
and our results are displayed in Fig. 2. Despite the high
variance between queries, we only needed to create 7 forms
for a reasonable upper bound of 25 elements per form.
We computed the expressivity of the forms with the same
thresholds and observed, as expected, that the number of
queries expressible using the form-set increased when the
threshold was raised. It was interesting to note that by plac-
ing a reasonable bound of 10 elements-per-form, the set of
7 forms that were generated (using only 20 queries) could
be used to express close to 5 million different queries. But
the expressivity does not go up smoothly as the FCT is in-
creased. Depending on precisely which forms get retired
and which new forms get pressed into service, there may
even be a small drop in expressivity as FCT is increased.

Algorithm GenerateForm

Input : A queryQ (as an Evaluation Plan)
Output : A form F

// Element Construction and Grouping

Create a new form-groupg and add it to the form-treeT ;
foreachoperationo ∈ Q when traversed top-downdo

caseo is a “selection”
Create a constraint-element using the selection
predicate;
Put this constraint-element ing;

caseo is a “projection”
Create a result-element using each projected
attribute;
Put these result-elements ing;

caseo is an “aggregate function”
Create an aggregate-element using the the group-by
attribute, the grouping-basis and the aggregate
function;
Put this aggregate-element ing;

caseo is a “join”
Create a join-element using the two (left and right)
attributes of the join condition;
Put this join-element ing;
Create a new groupg′ as a child ofg in T ;
Setg ← g′;

end

// Element and Group Labeling

foreach form-groupg ∈ T do
Labelg relative to its parent group (use absolute path if
g is the root);
foreach form-elemente ∈ g do

Labele relative tog;
end

end
Figure 1: AlgorithmGenerateForm

The overall trend in the relationship between the number
of form-elements and expressivity is exponential, in accor-
dance with our theoretical analysis.

EECS Query Trace: We now report on experiments
run with a real workload obtained from a log consisting of
queries posed during a single day, to web databases hosted
on a MySQL server in our EECS department. We analyzed
10,000 queries in the workload, and observed the following
characteristics: In all, 17 different databases were accessed
by users over the approximately 1-day period, and queries
involved a total of 115 different tables (not necessarily the
complete set of tables). The queries themselves had an aver-
age close to 1 selection predicate and 5 projected attributes.
On average, 1 out of every 13 queries involved an aggregate
computation, and about 1 out of every 64 queries involved
a join. Fig. 3 shows the effect of threshold on the size of
the form-set we generated. The results do not differ much
from the previous experiment, except that now well under



0


2


4


6


8


10


12


14


16


18


20


3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25


Form-complexity Threshold


N
u

m
b

e
r 

o
f 

F
o

rm
s



1.E+00


1.E+01


1.E+02


1.E+03


1.E+04


1.E+05


1.E+06


1.E+07


1.E+08


1.E+09


1.E+10


1.E+11


1.E+12


1.E+13


1.E+14


1.E+15


1.E+16


1.E+17


1.E+18


3
 4
 5
 6
 7
 8
 9
 10
 11
 12
13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25


Form-complexity Threshold


E
x
p

re
s
s
iv

it
y



Figure 2. Forms for XMark Queries

100 forms can cover 10,000 queries. We also see that the
curve is smoother than for the smaller XMark query set.

Given the full workload, it is more interesting to under-
stand the dynamics of form creation. Therefore, we created
the forms incrementally, starting from scratch. Fig. 3 shows
the growth in the size of the form-set with each query an-
alyzed. We performed this experiment with two different
complexity-thresholds: 10 form-elements-per-form, and 20
form-elements-per-form. We observed an initial learning
period in which a large number of forms are created, but
following this, the rate of form creation dropped signifi-
cantly. With a complexity-threshold of 10, the first 1,000
queries required the creation of 41 forms, while the next
9,000 queries only required 48 more forms. With a thresh-
old of 20, only 24 forms were needed to express the first
1,000 queries, and only 25 more for the remaining 9,000.
As we can see from the figure, the curve flattens towards
the end of the workload, as fewer and fewer new queries are
found substantially dissimilar to ones seen before.

Discussion: Our experiments show how the complexity
threshold affects size and expressivity of the form-set, but
the results are of little use if no meaningful insight can be
obtained from them. The asymptotic nature of Figs. 2 and
3 helps us choose ideal values for this threshold in the 3
scenarios, to best balance complexity versus size. Based on
our observations, we could recommend a DBA to set the
threshold at about 12-15, since beyond this range, increased
complexity shows little gain in terms of interface simplicity.
The same can be said for the expressivity of the interface as
well, further strengthening the case for this trade-off point.
Obviously, this is a design choice that depends heavily on

0


20


40


60


80


100


120


140


160


180


200


3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25


Form-complexity Threshold


N
u

m
b

e
r 

o
f 

F
o

rm
s




0


20


40


60


80


100


0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000
 10000


Number of Queries


N
u

m
b

e
r 

o
f 

F
o

rm
s




FCT = 10


FCT = 20


Figure 3. Forms for EECS Query Trace

the distribution of queries, but having analyzed several dis-
parate workloads (some not presented in this paper), we be-
lieve that this is a reasonable rule of thumb for a practitioner.

4. Conclusion

Query interfaces play a vital role in determining the use-
fulness of a database. A form-based interface is widely
regarded as the most user-friendly querying method. In
this paper, we have developed mechanisms to overcome the
challenges that limit the usefulness of forms, namely their
restrictive nature and the tedious manual effort required to
construct them. Specifically, we introduced an algorithm
to generate a set of forms automatically given the expected
query workload. We presented a study of system perfor-
mance using a real query trace, as well as queries from a
standard XML benchmark. We feel that such an automated
self-managing interface-builder will help bring novice users
closer to the rich database resources they need to use, and
maximize their efficiency with a sizeably reduced learning
curve. While our focus has been on pushing the limits of
automated form generation with minimal human input, it is
conceivable that appropriate hints from a human could pro-
duce even better results. Techniques to exploit such com-
plementarity are the subject of future work.

References

[1] XMark: An XML Benchmark Project: http://www.xml-
benchmark.org/.

[2] A. R. Schmidt et al. The XML Benchmark Project. Technical
Report INS-R0103, CWI.


