
Structural Join Order Selection for XML Query Optimization

Yuqing Wu
Univ of Michigan

yuwu@eecs.umich.edu

Jignesh M. Patel
Univ of Michigan

jignesh@eecs.umich.edu

H. V. Jagadish
Univ of Michigan
jag@eecs.umich.edu

Abstract

Structural join operations are central to evaluating queries against XML data, and are typi-
cally the operations responsible for consuming a lion’s share of the query processing time. Thus,
structural join plan selection is at the heart of query optimization in an XML database, just as
(value-based) join order selection is central to relational query optimization.

In this paper, we introduce five algorithms for structural join order optimization for XML
tree pattern matching. The Dynamic Programming (DP) algorithm is similar to the traditional
RDB optimization technique (including consideration of bushy plans) and selects the optimal
solution. The Dynamic Programming with Pruning (DPP) algorithm prunes unpromising join
plans in early stage, by introducing the notion of an upper bound on the cost of the portion of
the query that is not yet optimized, and using this cost to prune intermediate query plans that
are guaranteed to lead to suboptimal solutions. Thus it finds the optimal solution, identical to
that found by DP, but at substantially lower cost. More aggressive pruning is possible at the cost
of the optimum guarantee, leading to DPAP (Dynamic Programming with Aggressive Pruning)
algorithms. We introduce two, each based on a different heuristic: bounding the expansion by
quantity (DPAP-EB), or structurally, focusing only on left-deep plans (DPAP-LD), following
the popular RDB optimization heuristic. Finally, taking the features of XML pattern matching
into consideration, the Fully Pipelined (FP) algorithm considers the solution space of only fully-
pipelined plans, as a new heuristic.

We present extensive experimental evaluation of our techniques for a variety of queries over
a variety of XML data sets. Our experiments demonstrate that many relational rules of thumb
are no longer appropriate: for instance, using dynamic programming style optimization is not
efficient; limiting consideration to left-deep plans (using DPAP- LD) usually misses the best
solution. Our experiments also show that the DPP algorithm can find the optimal solution, with
low cost relative to the DP algorithm; and the FP algorithm can very quickly choose a plan that
in most cases is close to optimal. Our recommendation is that DPP should be used in XML
query optimizers where query execution time is expected to be significant, and that FP should
be used where it is important to find a good (but not necessarily the best) plan quickly.

1 Introduction

As XML [4] has gained prevalence in recent years, the storage and querying of XML data has become

an important issue. Effective query optimization is crucial to obtaining good performance from an XML

database given a declarative query specification.

1

A join is frequently the most expensive physical operation in evaluating a relational query. Thus, selection

of join order is a key task for a relational query optimizer. This observation is true for an XML query

optimizer as well, but with significant twists. Perhaps the most important of these is the prevalence of

structural joins in XML. The design of the structural join order selection algorithm, which is the kernel of an

XML query optimizer, is the focus of this paper.

A join in the relational context is usually a value-based equi-join, which involves two tables and is based

on the values of two columns, one in each table. In the XML context, even though there are value-based

joins, structural joins occur much more frequently. A structural join focuses on the containment (ancestor-

descendant or parent-child) relationship of the XML elements to be joined. The join condition is specified

not on the value of the XML elements, but on their relative positions in the XML document.

In short, queries on XML data have some features that are different from queries in the traditional rela-

tional context. Therefore, the set of alternative plans, and their relative costs, in the XML context are also

quite different. These structural join characteristics, and their impact on query processing, hold no matter

how XML data is stored: in a native XML database, after mapping to a relational database, or after some

other mapping, such as to an object-oriented database. Our task in this paper is to develop a framework for

XML query optimization. The specific access methods used, and their costs, will be a function of the specific

implementation.

Using simple cost models for structural join algorithms, we develop five XML query optimization algo-

rithms for structural join order selection. The first algorithm we present uses a Dynamic Programming (DP)

style optimization to exhaustively explore every plan in the search space, including bushy query plans. Since

exhaustive searching of the entire search space can be costly in terms of the optimization time, we also de-

velop enhancements to the DP algorithm. The enhanced algorithm, which is called Dynamic Programming

with Pruning (DPP), considers an incomplete query plan and uses pruning techniques to eliminate partial

query plans that are guaranteed to lead to suboptimal solutions.

Even after the pruning enhancement in DPP, the optimization process may remain costly. More aggres-

sive pruning can be done to reduce the search space, and hence reduce the time spent in the optimization

process. Choices of the additional pruning rules for the Dynamic Programming with Aggressive Pruning

(DPAP) can be based on heuristics in different directions. A straightforward heuristic is to limit the number

of intermediate results considered, which leads to DPAP-EB algorithm. Drawing inspiration from relational

query optimizers, which frequently restrict their search to only left-deep plans, the additional pruning rule

can restrict the shape of the intermediate result to be left-deep. We call this algorithm DPAP-LD.

Taking special features of XML data and XML queries into consideration, we introduce a final algorithm,

2

called the Fully-Pipelined (FP) algorithm, which only considers non-blocking query plans and is guaranteed

to select the cheapest non-blocking query plan.

We present extensive experimental evaluation of the proposed optimization techniques in the Timber[21]

native XML database system being developed at the University of Michigan. We demonstrate that many

relational rules of thumb are no longer appropriate. For instance, restricting consideration to left-deep plans is

not a good idea. Our experiments also show that while both DP and DPP algorithms search the entire solution

space and select the optimal solution, the DPP algorithm is much more efficient. In addition, heuristic

techniques (DPAP) can be introduced to speed up the DPP algorithm even further, at the cost of potentially

missing out an optimal plan. The FP algorithm, which exploits features unique to XML data and XML

queries, can quickly choose a non-blocking plan that in most cases is close to optimal.

The main contributions of this paper are the development of a framework for cost-based structural join

order selection for XML query optimization, the development of five optimization algorithms, and an evalu-

ation of the algorithms using an actual implementation. We show that the DPP algorithm is the algorithm of

choice for XML query optimizers that want to explore the entire search space and select the optimal structural

join plan. The FP algorithm very efficiently finds the optimal non-blocking plan, which could be valuable

in systems that want quick and easy optimization solution, such as to support online querying on XML data

sources.

The remainder of this paper is organized as follows. We begin by providing a brief tutorial, in Sec. 2,

on XML queries, pattern matching, and structural join algorithms, and formally defining the objective of

structural join order selection in XML query optimization. The five new algorithms we propose are discussed

in detail in Sec. 3. Then, we present extensive experimental evaluation of alternative optimization techniques

in Sec. 4. Finally, we conclude with a discussion of related work in Sec. 5 and directions for future work in

Sec. 6.

2 Problem Definition

Declarative querying is a central feature of modern database systems. Given a query expressed in a declara-

tive query language, a query optimizer has the task of developing alternative plans to evaluate the query, and

then choosing one amongst these that is expected to be of the least cost. In the relational world, often the

most important optimization step is join order optimization. The counterpart in XML is structural join order

optimization. In the overall relational query optimization process, techniques such as selection push-down,

projection push-down, etc. are also valuable, and we fully expect that such techniques will have similar uses

in a complete XML query optimizer [7]. However, considering all these aspects is beyond the scope of

3

this paper, and we only concentrate on structural join order optimization, which, like its counterpart in the

relational world, is likely to be at the heart of any complete XML query optimizer. We provide below the

necessary background in structural join computation, and its role in XML query processing.

2.1 Pattern Matching

The XPath expressions used to bind variables in XQuery, along with the conditions in the WHERE clause,

can be expressed as the matching of a query pattern tree in a database [8, 1]. In formal terms:

Given a rooted node-labelled tree � � ��� � �� �, representing the database.

A query pattern is a smaller, rooted, node-labelled tree � � ���� ���. The labels at the nodes of � are

boolean compositions of predicates. Edges of � may optionally also be labelled, with a �, to specify the

ancestor-descendant relationship between the nodes.

A match of a pattern query � in � is a total mapping � � �� � � � ����� � � � �� such that:

� For each node � � �, the predicate node label of � is satisfied by ���� in � .

� For each edge ��� 	� in �, ��	� is a descendant (or child) of ���� in � .

To evaluate a query is to find all the matches of a query pattern in the database.

2.2 Structural Join Algorithms and Cost Models

A structural join operation can be evaluated by a database system using a number of different algorithms.

There already exist a wide array of access methods for structural join computation [1, 5, 17] and we expect

new ones to be invented in the future. From the perspective of the design of the query optimizer algorithm

the actual choice of these algorithms is not crucial. (In fact, it does not even matter whether the algorithms

are implemented in a native XML database or through mapping to a relational system). Of course, the cost

models for these algorithms and the effect of any physical properties (such as producing sorted outputs) are

needed to compute the cost of intermediate query plans and to pick the optimal query plan.

2.2.1 Structural Join Algorithms

Given a query pattern, it is usually reasonable to assume that candidate matches for individual query nodes

can be found efficiently, for instance, through an index scan. Consider an edge ��� 	� in a query pattern. This

edge represents a structural inclusion relationship between the elements represented by nodes � and 	. This

inclusion can be specified to be either immediate (� is the parent of) or arbitrary (� is an ancestor of).

Having obtained two lists of candidate nodes that satisfy any predicates associated with each of � and with 	

individually, a structural join outputs pairs that satisfy the required inclusion relationship.

4

A

B D
*

A.elementtag = ’manager’
B.elementtag = ’employee’
C.elementtag = ’name’
D.elementtag = ’manager’
E.elementtag = ’department’
F.elementtag = ’name’E

*

C

F

Figure 1: Example Query Pattern

Example 2.1 Consider the query in Figure. 1, accessing an index built on the element tag names gives us a

list of candidate data nodes for each node in the query pattern. Performing structural join operation on a

pair of pattern tree nodes, for instance, node A (manager) and node B (employee), with the relationship

specified (*), the results are pairs of data nodes (e.g. manager and employee) where each manager node

in a pair is the ancestor of the employee node in the same pair, in the XML database.

A critical issue for the physical join operator is the order in which data sets are input and output. For

most structural join algorithms, it is most useful to order inputs by the structural positions of the nodes in

the original data set. A common structural ordering scheme that is often used is to number the nodes using a

depth-first pre-order node numbering scheme [17, 21]. The output can be ordered by either node participating

in the join. For convenience, we call the output ordered by ancestor when it is ordered by the including node

(�), even if the structural join is based on direct parent-child relationship. When the output is ordered by the

included node (), we say it is ordered by descendant.

We focus on the “Stack-Tree” family of algorithms[1], because they are currently amongst the best algo-

rithms for computing binary structural joins. (The introduction of other binary structural join computation

algorithms will not change the design of the query optimizer: rather, it will simply be folded in as a new

algorithm with its associated costs.) These algorithms are applicable to both relational implementations of

XML storage and native XML systems. These algorithms have properties that are similar to the relational

sort-merge join algorithm. Like the relational sort-merge join algorithm, these algorithms take as input two

data sets that are sorted by the pre-order node number, and can produce output that is ordered by either the

ancestor or descendent. The Stack-Tree-Ancs algorithm, in this family, produces output ordered by ancestor,

whereas the Stack-Tree-Desc algorithm produces output ordered by descendant.

Irrespective of the implementation specifics, the cost of an access method implementing either algorithm

is a linear function of the sizes of the inputs and the size of the output. In other words, if we have estimates of

intermediate result sizes, we can obtain cost estimates for these access methods as linear functions of these

sizes. The specific constants used in the linear functions depend on system specifics.

5

2.2.2 Cost Models

In addition to the two algorithms of focus for structural joins, there are two other key physical operations:

index access and sorting. The cost formulae for these operations are as follows:

Index Access The cost for accessing index and retrieving
 items is �� �
.

Sort The cost for sorting a list of
 items is
�
�
� ��.

Structural Join The cost for joining two nodes A and B (where node A is ancestor of node B) in the pattern

depends on the join algorithm used. In addition to disk I/O, the majority of the CPU cost goes towards

operations on an in-memory stack, as discussed in [1]. The cost formulae of the Stack-Tree algorithms are

as following (with cardinality of the node A expressed as ���, the join results of A join B expressed as ��):

� Stack-Tree-Ancs: �� ���� � ��� � �� ��� � ���.

� Stack-Tree-Desc: �� ��� � ���.

Each implementations of an XML database would have different constants associated with the cost of

each physical operations. We use a set of factors (�� for index access, �� for sorting, ��� for disk IO, and ���

for stack operations) to normalize the cost of different operations when these are to be compared or added.

2.3 Structural Join Order Selection

F

Evaluation Plan (a) Evaluation Plan (b) Evaluation Plan (c)
Left−deep pipelined Bushy pipelined Left−deep with blocking

Evaluation Plan (d)
Bushy with blocking

Structural Join

Index Access

E

D

F

A

B

C

F E

D

A

E

A

B C

D

F

B C

D E

B

C

A

N Sort by N

D D

Figure 2: A Few Plans that Evaluate the Example Query Pattern

Example 2.2 Consider a query in a personnel XML document, which asks for “for each manager �, list

the names of the employees supervised by �, and the name of any department that is directly supervised by

another manager, who is a subordinate of �.” The query defines a pattern tree, shown in Figure. 1, to be

matched.

One possible evaluation plan for this query is to get all manager nodes (candidate for �) from an

index, then, scan the sub-tree of each of these nodes in database, looking for other nodes that satisfy both

the predicate and relationship condition. Notice that the relationship specified for A-B and A-D pair in the

6

pattern are all ancestor-descendant relationships. This means, to find all the pattern matches, the whole sub-

tree for each manager node, no matter how deep it is and how many elements it contains, will be scanned

thoroughly. The performance can be very bad when the XML data is deep and nested.

Evaluation of this query using structural join progresses as follows. First, one identifies all manager

nodes (candidate matches for nodes � and � in the pattern), all employee nodes (candidates for �), all

department nodes (candidates for �) and name nodes (candidates for � and �) in the database. Then,

five structural joins are computed, one for each edge in the pattern, between these six sets of candidates.

The results are a set of 6-node tuples. Each node in such a tuple satisfies the node predicate of one node in

the pattern, and the relationship between the nodes satisfies the relationship specified in the pattern between

corresponding nodes.

The five joins can be evaluated in different orders. The number of alternative plans is to the factorial

order of the number of nodes in the pattern. Figure. 2 shows a few of these evaluation plans. A plan can

be left-deep, as in Figure. 2(a,c), or bushy, as in Figure. 2(b,d); fully pipelined, as in Figure. 2(a,b), or with

blocking, as in Figure. 2(c,d).

Given a query pattern, there are many ways to find matches in the database. The shape of the query

pattern determines how many alternative evaluation plans it can have, and what they are. Given a pattern, it

is not clear which plan has the minimum cost. It is the task of the query optimizer to pick the optimal (or at

least a good) evaluation plan, based on the estimated cost of each alternative plan it considers.

An evaluation plan is a rooted, labeled tree � � ��� � �� �. Each node in the tree is a physical operation

using a specified access method. Each evaluation plan has a cost associated with it, which represents the

time and space requirement to evaluate the query using this plan.

Our goal is to define an algorithm that can find the evaluation plan for a given query pattern which has the

minimum cost among all the plans that can evaluate the query pattern, using only some summary information

about the database. The time required to choose an evaluation plan (run this algorithm) should be only a small

percentage of the time required to execute the plan chosen.

3 Structural Join Order Selection Algorithm

For any given query, there usually are a very large number of possible query plans. We need an effective

means to choose the best of these. Following the dynamic programming approach used for relational join

order selection, we first develop a Dynamic Programming (DP) algorithm. While this algorithm follows

the same style as the relational dynamic programming algorithm, and searches the entire solution space,

7

including bushy plans, there are substantial differences on account of structural joins being different than

relational value joins.

Based on these special features, it is possible to identify non-promising structural join plans early in their

evolution. Thus, some plans can be eliminated before they are fully developed, and the search limited to a

narrow band along the optimal path. The resulting Dynamic Programming with Pruning (DPP) algorithm

still selects the optimal solution in the entire solution space, since it only prunes out consideration of paths

guaranteed not to lead to the optimum.

More aggressive pruning rules can be introduced to reduce the search space, based on heuristics. We call

algorithms in this category Dynamic Program with Aggressive Pruning (DPAP). Faster optimization times

can be obtained, but the optimum is no longer guaranteed.

A very straightforward heuristic is to assume it unlikely that a bad intermediate plan will evolve into a

good final plan. Based on this heuristic, we limit the number of intermediate plans generated and develop the

DPAP-EB algorithm. (An extreme case of DPAP-EB, where the number of intermediate plans is limited to

one, reduces to the greedy heuristic).

Relational query optimizers frequently restrict themselves to left-deep plans since, in the relational con-

text, the optimal evaluation plan is usually left-deep. Imposing such a restriction is straightforward even in

the XML context. (Whether the resulting solutions are good is a different question, and we will argue later

that this restriction is not a good choice). Using this heuristic, we present the DPAP-LD algorithm by making

appropriate modifications to the DPP algorithm.

Pipelining is an important feature of database query evaluation. Query optimizers attempt to minimize

the number of “blocking” operators – trying to build a pipelined evaluation plan in as far as is possible. In

fact, in the relational context, one reason why left-deep plans are preferred is because most sequences of

joins involve joining on different attributes, and hence require ordering the data differently for each join; in a

left-deep plan, at least the right-hand join operands are all base data, and can be ordered/prepared in advance

so as to minimize blocking in the main pipeline.

It turns out that it is always possible to find a bushy non-blocking join plan for XML structural joins. In

Sec. 3.4 we introduce the FP algorithm and show how to enumerate plans with no blocking, and choose the

best from amongst them.

For each of the five algorithms, we develop cost formulae to estimate the number of plans evaluated. We

show that the first four have to consider a number of plans that is exponential in the query size, whereas the

last one is much cheaper.

8

3.1 Searching the Entire Solution Space Using Dynamic Programming (DP) Technique

The traditional dynamic programming algorithm searches the entire solution space by computing the min-

imum cost evaluation plan for each combination of the relations participating in the query. It does so pro-

gressively, using the minimum cost plans for smaller combinations to determine the minimum cost for larger

ones. The same idea can be applied in the XML context with some twists.

3.1.1 Defining Status

In order to keep track of each partial structural join plan, we introduce the notion of status. A status defines

an intermediate stage of query evaluation, in which the structural relationships between some pattern tree

nodes have been evaluated, while others remain unresolved. This partitions the nodes in the pattern tree into

some subsets, each representing a sub-pattern that has been evaluated. A status node is used to represent

each such joined sub-pattern.

Definition 1 Given a query pattern � � ���� ���, a status node �� in a status derived from � is a cluster

of nodes in �� that satisfies the following formulae:

� �� 	 ��;

�
�� 	 � �� �� on path from � to 	 in � � � � ��;

In each status node, one pattern tree node is called the SortBy node, which specifies by which node the

intermediate join results of the sub-pattern are ordered. Note that this SortBy node may be different from the

OrderBy node of the last structural join operation in the sub-plan which evaluates the sub-pattern represented

by the status node.

Definition 2 Given a query pattern � � ���� ���, A status is a tree � � ��� � ���, where

� �� � �	�	 � ���.

�
�� � �
�
� � �� � ��
� �

� � �;

�
�

	��
�

�� � ��;

� �� 	 ��.

�
�� � �� ,
�� 	 � �� � ��� 	� �� �� .

The query pattern � is a status itself, and is called start status, represented by ��. When �� � ������,

the status is called final status, represented by �� . All other statuses are called intermediate statuses.

9

A

D

C

B

DC

AB

DBC

A

DC

AB

DBC

A

D

ABC

C

ABD

CC

B

AD

D

ABC

D

ABC

C

ABD ABD

C

B

AD

BC

ADAD

BC

ADAD

BCBC

S00 (0)

S21 (86)S20 (70)

S15 (104)S14 (110)
S13 (80)S12 (90)S11 (30)S10 (32)

S24 (91) S25 (72) S26 (120) S27
(106)

S28
(111)

S29
(99)

S23 (75)S22 (65)

ABCD ABC DAB CDABCD

S33 (120)S32 (105)S31 (125)S30 (125)

Figure 3: Example Optimization Process Using DP algorithm

Example 3.1 Figure. 3 is a very simple example of the optimization process using the DP algorithm. Status

��� is the start status, each status node in it contains one pattern tree node. Status ���, ���, ���, ��� are

all final statuses. In each of those statuses, there is only one status node, which contains all the pattern tree

nodes in the original query pattern. In an intermediate status, some status node may have more than one

pattern tree nodes. For example, the root node in status ��� has two pattern tree nodes, A and B, and the

SortBy node is A. (The SortBy node is presented in bold in the figure.)

Definition 3 Associated with each status � is a Cost value. The Cost is the accumulated cost of the opera-

tions needed to evaluate all the sub-patterns represented by the status nodes in �.

In other words, for a given status �, the Cost is the accumulated cost needed to transform from the start

status �� to �.

There are many intermediate statuses between the start status and the final status. A move connects two

statuses that differ in only one edge. The physical operations associated with each move include: (1) A

structural join operation, which joins the two nodes at the end of the edge and produces a larger joined sub-

pattern. The choice of join algorithm determines by which node the intermediate results is ordered. (2) An

optional sort operation, which sorts the intermediate results by a node other than the Orderby node specified

by the structural join algorithm used.

Definition 4 A move � from status � is a vector ���� ������
� ��� �
��� , where �� and �� are pattern

10

tree nodes and ���� ��� � �� is the edge to be evaluated; Algo specifies the physical operator; St is the

node to be sorted by, if extra sorting is needed; and Cost is the estimated cost of the join (plus sorting cost,

if St is specified).

The relationship of a move and its two end statuses can be stated as following:

Definition 5 A move � � ���� ������
� ��� �
��� transforms status �� � ���� � ���� to status �� �

���� � ���� iff

� ���� ��� � ��� and ��� � ��� � ����� ����;

� ��� 	 � ��� , �� � � � �� � 	 � ��� � ���� � ��� 	�� � �� � 	�.

� status node �� � ��� � ��� � �� ��
 ��! � ��;

� ����
�� � ����
����
��.

For a given query pattern, the number of moves needed to transform the start status to the final status

equals to the number of edges in the pattern. Each move processes one edge in the query pattern and takes

one step towards the final status, in which all edges have been processed.

Starting from a given status �, there is a set of possible moves that transform the status into a set of

statuses that are one step closer to the final status. We call this set of moves possible moves and represent it

using "����.

Definition 6 Given a status � � ��� � ���, possible moves "���� are a set of moves defined as "���� �

����� ������
� ��� �
������� � ���� � ����
 ��!� � ��
 � ���� � �
��
 ��!��. Algo is the

algorithm chosen to carry out the move, St can be left empty, or be the node in �� ��
, and is not specified

as the OrderBy node in the Algo.

St can be left empty, which means the ordering of the result is determined by the Algo, or can be set to be

any other node in the new joined-sub-pattern generated after this move.

Example 3.2 In Figure. 3, the six moves from status ���, each deals with one edge in the status, transform

status ��� into status ��� � � ����, respectively.

3.1.2 Search Structure

"���� contains all the possible moves that can be made from a given status �. The consideration of all

moves in "����, to estimate the desirability of each resulting new status is called expanding status �.

11

Our goal is to find a sequence of moves that transforms the start status �� to the final status �� , with the

total cost of the moves the lowest among all sequences of moves that can achieve the same transformation.

The set of possible sequences of moves is searched using dynamic programming technique.

Definition 7 Statuses are arranged in a topological graph, with start status as the root. Statuses that are #

moves from the start status are said to be on level #.

The searching is done one level at a time. No status on level # is generated until all possible solutions for

reaching each status on level #� � are checked and the best join plan for each status on level #� � is found.

After the best plan for each status on level # � � is found, the statuses on level # � � will be picked and

expanded one by one. All statuses on the same level have equal priority for picking and expansion. For each

status on level #�� that is picked, all possible moves are considered, and new statuses, which belong to level

are generated. A unique status on level # may be generated more than once, based on different statuses

from level # � �. The costs of all these plans are compared and only the one with minimum cost is kept. All

others are eliminated from further consideration.

Example 3.3 Figure 3 demonstrates the search process using DP algorithm. The statuses on the same level

are arranged in a row. A Cost value is associated with each status. It is presented in the parenthesis following

each status ID.

After the search is done, all statuses have been checked and expanded according to the possible moves

of the statuses. For example, status ��� has 5 possible moves. The new statuses generated are ���, ���, ���,

��� and ���. Also, one status can be generated from more than one status on the level just above it. For

instance, ��� can be generated from ���, ���, or ���. For a given status, the Cost can be different if it is

generated from different statuses. The costs associated with same status are compared against each other

and only the minimum becomes the cost of the status, and the path is kept (we represent these kind of paths

with a solid line and the ones eliminated with a dotted line in the figure).

There is more than one final status when the search is completed. Each has the desired pattern match

result, ordered differently, due to the SortBy node being different. The costs of the final statuses are compared

and the one with minimum cost is picked.

For example, let’s assume that ��� has the minimum cost among all the final statuses . Tracking back

along all the moves, starting from the final status picked (���), all the way back to the start status (���),

we obtain the optimal solution to evaluate the query pattern. The structural join plan selected is to join

node A with node B first, ordered by node A, then, join node D, sort the results by node B, finally, join the

intermediate result with node C and ordered by node C.

12

Consider a pattern with
 nodes. The number of statuses generated during the searching process is

$�
� ���. The number of alternative plans considered is $�
� � ���.

3.2 Dynamic Programming with Pruning (DPP) Algorithm

Example 3.4 In Figure 3, as we can see, lots of nodes that are not potentially good are expanded, only

because they can be generated from a status one level above. For example, status ��� does not contribute to

any path that leads to the final status, in fact, its cost is larger than that of the final status with minimum cost.

So, there is no way that a good plan can be generated from ���. However, in the optimization process using

DP algorithm, ��� is generated and all its possible moves are tried.

The complexity of the DP algorithm is exponential in the number of nodes in the pattern. As we can

see from the example above, some of the structural join plans are far more costly than the optimal; the cost

to carry out a part of the plan, even a small portion of it, may be more than the total cost of the optimal

plan. Taking this observation into consideration, we propose the DPP algorithm, Dynamic Programming

with Pruning.

Our goal here is to find the optimal solution in a more efficient way. Conceptually, we still do exhaustive

search in the set of possible sequences of moves. However, we want to limit the search to a narrow band

along the optimal path. This is done by (i) setting a priority list for the statuses and no longer requesting

that one level be fully developed before the searching is moved on to the next level; (ii) pruning intermediate

plans that are guaranteed to lead to suboptimal solutions.

Besides Cost, the actual cost of the operations, we introduce, for each status, another cost value, ubCost,

which is the upper-bound estimation of the cost needed for transforming the status to the final status. All

un-expanded statuses are arranged in a priority list, ordered by the value of �
�� � �%�
��. The Status at

the head of the priority list, which has the lowest �
��� �%�
�� is always expanded first. A sub-plan is no

longer expanded when other sub-plan with lower cost is found to reach the same status. The expansion of a

sub-plan is terminated when the Cost of the status it reaches exceeds the lowest cost of a final status that has

been reached.

It is a reasonable assumption that a sub-plan with lower cost is likely to lead to low cost solution. By

always expanding sub-plans with lowest �
��� �%�
��, promising plans grow much faster than plans with

larger �
��� �%�
��. Therefore, plans for complex sub-patterns can be generated much earlier than in DP

algorithm. Since the plans for complex sub-patterns are generated based on cheap sub-plans for smaller sub-

patterns, it is likely that the plans for the complex sub-patterns are also cheap. This speeds up the generation

of the first full structural join plan for a query pattern. Also, whenever a full plan is generated, its total cost

13

is computed and used to eliminate more bad plans before they have a chance to grow larger.

Another thing worth noticing is that many statuses generated in the DP algorithm have "���� � �. That

is, they do not lead to any possible solution, let alone a good solution.

Definition 8 A status � is a deadend if the possible moves "���� � �.

A status is deadend if none of the edges left in the status has the status nodes at both ends of it sorted by

the end node of the edge. In the DP algorithm above, these deadend nodes are generated but are useless for

the optimization. The generation of deadend nodes can be prevented by looking ahead one step at the time

of expanding a status.

Example 3.5 In Figure 3, more than half of the nodes on the level above the last level have no outgoing

move. These nodes are all deadends. With the Lookahead Rule, all these nodes could be detected and not be

generated at all.

The Expanding Rules and Pruning Rules of DPP algorithm can be summarized as following:

� Expanding Rule Always expand the status with lowest �
��� �%�
��;

� Pruning Rule A status � is “dead” if the cost of the path from �� to � exceeds the lowest path cost

from �� to �� (recall �� is a final status) . No status is “dead” before one such path is found. A status

is eliminated from further consideration when it is found to be “dead”.

� Lookahead Rule At the time of expanding one status, a new status would not be generated if it is a

deadend.

Since �%�
�� only provides a guideline for the expanding priority of statuses, the quality of the estimate

does not effect the optimal property of the result solution, but only the efficiency of the optimization algorithm

itself. The better the estimate, the narrower the search band along the optimal path. The DP Algorithm is a

special case of the DPP algorithm with �%�
�� set to 0 for all statuses. For DPP, the �%�
�� for a status can

be obtained easily and quickly by computing the cost of the join operations for each un-joined edge in the

status in a bottom-up fashion, plus sorting cost, when necessary.

Consider a pattern that is a complete tree with depth � and fixed fan-out � . The total number of edges

is ��� �

�

�	�
��. The number of possible statuses on level �	 is �����	� � ���� �

�
��

�	

���

�
��, where

���� � $��	�� is the number of OrderBy nodes in each status nodes. The upper-bound for the total number

of statuses evaluated in the searching is
����
��	�

�����	�.

14

3.2.1 Example Optimization Process

Let’s look at the example shown in Figure. 4 and see how the DPP algorithm finds the optimal evaluation

plan for the query. In Figure. 4, we number the statuses in the order they are generated. The lookahead rule

is applied to reduce the number of statuses generated.

A

D

C

B

DC

AB

D

ABC

C

ABD

D

ABC

BC

AD

Status 0

Status 1

Cost = 0
ubCost = 250

Cost = 32
ubCost = 170

Cost = 110
ubCost = 180

C

B

AD

Status 4

Cost = 90
ubCost = 160

DBC

A
Status 3

DC

AB
Status 2

Cost = 30
ubCost = 170

Status 9Status 5Status 6

Cost = 120
ubCost = 30

Cost = 130
ubCost = 70

Cost = 70
ubCost = 70

Cost = 75
ubCost = 80

ABCD

Status 7

Cost = 120
ubCost = 0

ABCD

Status 8

Cost = 105
ubCost = 0

Figure 4: Example Optimization Process Using DPP algorithm

Example 3.6 Status0 has four possible moves, which transform status0 to status1,2,3,4, respectively. Note

that in Figure 3, there are other possible moves, which transform status0 to a “deadend”. No “deadend”

node is generated here since we are using DPP algorithm with Lookahead Rule.

Among the new statuses, status2 has the least �
�� � �%�
��. So, it is expanded next and Status5 is

generated. Then, the status with the lowest �
��� �%�
�� is status1. Expanding status1 produces status6.

Now, the status with lowest �
�� � �%�
�� is status5. Expanding status5, we get status7. Note that only

one status is generated in this expansion, since the new status is the final status and we don’t care about the

ordering any more.

Now, we have found one path from the start status to the final status. The �
�� of status7 is recorded

as the current minimum cost (�&
�
��). But the search has not finished, there are still other statuses that

may lead to a better solution. Status6 is selected next. Expanding status6, we reach another final status,

status8. We find that the �
�� of status8 is smaller than that of status7. Therefore, status7 is eliminated and

�&
�
�� is set to 105, the �
�� of status8.

Next, we expand status3. Two new statuses could be generated. However, we detected that one of the

newly generated status is exactly the same as status5, except that its �
�� is higher. This status is discarded

15

right away. Status9 is generated since no such status has been generated so far.

The next status on the priority list is status9. Before expanding it, we find that the �
�� of status9 is

larger than the �&
�
��. This means, status9 is “dead”. Status4 is checked next, it is also “dead”. Now,

there is no un-expanded statuses. The search is over.

The evaluation plan chosen for the query is the moves along the path from status0 to status8, the only

final status left in the search process. As we can see, the structural join plan selected by DPP algorithm is

exactly the same as the one selected by DP algorithm.

3.3 Dynamic Programming with Aggressive Pruning (DPAP) Algorithm

Additional pruning rules can be introduced into the DPP algorithm to eliminate less promising portions of

the search space, thereby decreasing the optimization cost considerably in return for, hopefully, a small risk

of eliminating the optimum solution. Various heuristics can be devised for this purpose. We describe two

possibilities below.

3.3.1 Dynamic Programming with Aggressive Pruning on Expansion Bound (DPAP-EB) Algorithm

One straightforward heuristic is to limit the total number alternatives evaluated. We considered several such

heuristic pruning parameters, including the depth of the expanding, the number of statuses created at a level,

and so on. Of these, we describe here only the one parameter that we empirically found to be most effective.

The parameter �� restricts how many statuses can be expanded at each level. This is based on the heuristic

that a good sub-plan has a higher chance of leading to an approximation of the optimal solution for evaluating

a query pattern. In other word, if a sub-plan is costly, it is less likely it can be expanded to a good plan. With

parameter ��, when the number of statuses expanded at level �	 reaches the limit ��, there is no point creating

any more statuses at this level, so no more statuses will be expanded at any level less than �	. This restriction

brings the upper-bound for the total number of statuses considered down to
����
��	�

�� � ���� � �	�� �	.

Example 3.7 Considering the optimization process in Figure 4. If parameter �� is set to be 2, status3 and

status 4 will not be generated in the expansion process of status0. Therefore, status9 will not be considered

in the search process, too. In this case, with �� setting to 2 can still results in the optimal solution. However,

it is not always true for other queries and other settings.

16

3.3.2 Dynamic Programming with Aggressive Pruning on Left-Deep Solution Space (DPAP-LD) Al-

gorithm

Relational query optimizers frequently restrict consideration to left-deep plans. It is straightforward to mod-

ify the DPP algorithm with a restriction to the expanding rule so that only left-deep plans are considered.

� Left-deep Expanding Rule In any status, only one status node is allowed to comprise multiple pattern

tree nodes. We call this status node the growing node.

This means a potential move can only be based on evaluating an edge with one end in the growing node

and one end out of it.

Example 3.8 In the example we presented for the DPP algorithm above (Figure. 4), when the left-deep

expanding rule is applied, the optimization process remains the same, except that status9 is not legal (not

left-deep) and would not be produced. In this simple example, DPP algorithm and DPAP-LD algorithm find

the same solution.

Consider a pattern that is a complete tree with depth � and fan-out � . The upper-bound for total number

of statuses considered in the search is $�����
�.

3.4 Fully-Pipelined Solution Space

By choosing an appropriate structural join algorithm, the results of a structural join can be output ordered by

either of the two nodes involved in the join. No extra sorting is needed, and no blocking points created in the

pipeline, if the OrderBy node in one join is a node involved in the next join. This leads to the following:

Theorem 3.1 Any XML pattern match can be evaluated with a fully-pipelined evaluation plan to produce

results ordered by any node in the pattern tree.

Proof Sketch: Prove by induction on
, the total number of edges in a pattern. For the base case, the theorem

obviously goes through for a query pattern with a single node and zero edges. For the inductive case, we can

show that there is at least one pipelined plan, whose last join involves a sub-pattern which contains the result

OrderBy node , and a sub-pattern which contains one of its neighbors �. Each of these sub-patterns has

less than
 edges. By the inductive assumption, there is a pipelined plan for the first sub-pattern with results

ordered by and a pipelined plan for the second sub-pattern with results ordered by the neighbor node �.

The set of fully-pipelined evaluation plans for a given query pattern is a very small subset of all the

evaluation plans for the query pattern. Furthermore, full-pipelining is a good feature we look for in relational

17

F

A

B D

C E

Sub−pattern to Evaluate

OrderBy Node of Sub−pattern

OrderBy Node of the Pattern

Figure 5: Pattern Tree Example in FP algorithm

query optimization. It is not unreasonable to make the assumption that the best plan in this subset is an

approximation of the best plan in the whole solution space. Figure. 9, in the appendix, is the pseudo-code

of the FP optimization algorithm, which looks for the best fully-pipelined evaluation plan for a given query

pattern by recursively breaking it down into smaller sub-patterns.

Example 3.9 Consider the pattern tree in our running example, as shown in Figure. 5. To find the best

fully pipelined join plan to evaluate the query and guarantee the output is ordered by the node in black, the

best join plans to evaluate two sub-patterns, with output ordered by the nodes in grey, need to be generated.

Then, the order of the two sub-patterns joining with the node in black is selected by enumerating all the

possible permutations. The best plan to evaluate the whole pattern is chosen from a set of plans, each of

which evaluates the whole pattern and guarantees that results are ordered by one node in the pattern.

Consider a pattern that is a complete tree with depth � and fixed fan-out � . The total number of alternative

plans considered in searching for plans to evaluation the pattern, without specifying by which node the results

should be ordered by, is $��

���
�	�

���� � � ��.

Frequently, an OrderBy node is specified for a query pattern, which requires that the result be ordered by

a certain node, to facilitate other operations following the pattern matching. In this case, the total number of

alternative plans considered in the FP algorithm is only $�

���
�	�

�� � � �� � $���� � �� � ����.

4 Experimental Evaluation

In this section, we present an experimental evaluation of the various query optimization techniques discussed.

All experiments were run on a machine with a 500MB Intel Pentium III processor, 512MB of memory and a

40GB ATA Compaq Hard Disk Drive hard drive. The buffer pool size used by SHORE (the storage manager

that Timber uses) was set to 16MB.

After describing the data sets and queries for this experimental evaluation, we will present a broad as-

sessment of the quality of the plans and the optimization time of each optimization technique. Then, we will

18

use a few specific queries for a more detailed analysis to gain a better understanding of the performance and

behavior of the different optimization techniques. All optimizations are based on the answer sizes estimated

using position histograms [15].

4.1 Data Set and Queries

While we experimented with a number of different popular XML data sets, in the interest of space, we only

present the results using the following three data sets: a) Mbench [22], an XML benchmark developed at

University of Michigan, b) the popular DBLP data set [18] and c) Pers, the synthetic personnel data set from

AT&T [1]. The size of these three data sets are 740K nodes (about 535MB) for the Mbench data set, 500K

nodes (about 9MB) for the DBLP data set, and 5K nodes (about 113MB) for the Pers data set.

To test the effectiveness of the optimization techniques we used a number of queries of varying complex-

ity. In this section, we present experimental results for queries conforming to the patterns shown in Figure 6.

For an actual query conforming to a pattern, an edge in the pattern tree could be either a parent-child rela-

tionship or an ancestor-descendant relationship.

(a)

A

B

C

D

E

(b)

A

B

C

D

E

(d)

A

D

EC

B

G

F

(c)

A

B D

F

C E

Figure 6: Sample Pattern Trees for Experiments

We limit our presentation of the experimental results to a small subset of the queries that we have ac-

tually used. In this section, we consider two queries on the Mbench data set, two queries on the DBLP

data set, and four queries on the Pers data set. In our presentation, we label the queries using the form

Q.DataSet.QueryNum.Pattern. For example, Q.DBLP.1.b is the first query on the DBLP data set, and the

pattern of this query is b in the Figure 6.

4.2 Quality of Plans and Optimization Time

In this section, we examined the time taken to execute the query plans produced by the optimization algo-

rithms, and the time taken by each algorithm to optimize the queries (the total query evaluation time is the

sum of these two times). Both these results are presented in Table 1. In this table, the query optimization

time is show in a boldface font, and the plan execution time is shown in an italics font. We analyze each of

19

these components in the following sections. We note that for the DPAP-EB algorithm, in this experiment, the

value of the tuning parameter is set to be the same as the number of edges in the pattern.

4.2.1 Quality of Plans

To put the query plan execution times in perspective, we randomly (but not exhaustively) generated a number

of query plans for each query, and picked the worst of these plans. This “bad” plan, which is shown in the

last column of Table 1, is not necessarily the worst plan for a query. It is simply shown here to quantify the

impact of a good query optimization algorithm.

DP DPP DPAP-EB DPAP-LD FP Bad

Query Op Ex Op Ex Op Ex Op Ex Op Ex Plan

Q.Mbench.1.a 0.67 2.61 0.12 2.61 0.09 2.61 0.10 3.17 0.07 2.92 76.76

Q.Mbench.2.b 0.69 1.03 0.12 1.03 0.11 1.17 0.11 1.69 0.10 1.12 124.22

Q.DBLP.1.b 0.75 5.77 0.14 5.77 0.12 5.98 0.12 6.96 0.11 5.77 156.71

Q.DBLP.2.c 2.21 0.14 0.53 0.14 0.43 0.18 0.30 0.14 0.10 0.18 18.60

Q.Pers.1.a 0.69 0.50 0.13 0.50 0.09 0.50 0.10 0.57 0.07 0.50 15.90

Q.Pers.2.c 2.34 11.39 0.56 11.39 0.44 12.1 0.29 17.62 0.09 12.1 520.90

Q.Pers.3.d 6.32 0.37 1.62 0.37 1.37 0.42 0.90 0.37 0.35 0.42 9.77

Q.Pers.4.d 5.78 1.89 1.71 1.89 1.39 1.89 0.87 4.13 0.39 1.89 96.34

Table 1: Query Optimization (Op) Time and Query Plan Evaluation (Ex) Time (in seconds)

By examining the plan execution times for the algorithms in Table 1 (see the columns under Ex), we

observe the same major trends for all queries on all data sets. As expected, the query plan execution time for

different evaluation plans are very different. In some cases, a bad plan is 10,000 times slower than a good

plan! All five algorithms serve the purpose of avoiding really bad plans, but the quality of the plans chosen

by different algorithms are still different. The DP and DPP algorithms always select the optimal evaluation

plan for the query, as expected, while DPAP and FP algorithms only do so sometimes. Both DPAP-EB and

FP do quite well, finding a plan close to optimum in the cases the optimal plan is missed. DPAP-LD fares

significantly worse.

4.2.2 Optimization Time

Being able to find the best plan is not always the end goal of the optimizer (though it usually is for static

queries that are pre-compiled). For dynamic queries, the goal of the optimizer is to minimize the time spent

in evaluating a query, which is the summation of the time spent optimizing the query and the time spent in

20

Query # of
OpTime Plans

DP 6.32 396
DPP’ 3.01 122
DPP 1.62 71
DPAP-EB 1.37 57
DPAP-LD 0.90 39
FP 0.35 14

Table 2: The Query Optimization Time and Num-
ber of Alternative Plans Considered by different al-
gorithm for Query Q.Pers.3.d

Folding Factor
�� ��� ���� ����

DP 0.37 3.11 26.1 110.97
DPP 0.37 3.11 26.1 110.97
DPAP-EB 0.42 3.21 28.9 292.86
DPAP-LD 0.37 3.56 56.1 702.89
FP 0.42 3.21 28.9 110.97
bad plan 9.77 103.66 879.59 � 4000

Table 3: Data Size and Query Plan Execution Time (in
sec.) for Plans Selected by Different Optimization Algo-
rithms (Q.Pers.3.d)

executing the optimized query plan. In this section, we examine the optimization times for all the queries.

Table 1 shows the query optimization time for the queries under the column Op. These results show that

even though both the DP and DPP algorithms search the entire solution space to select the optimal solution,

the DPP algorithm can eliminate bad plans in an early stage, and consequently, is more efficient. The DPAP

algorithms, which employ addition restrictions on the status expansion, eliminate more plans, and consume

less time than the DPP in optimizing the queries. Interestingly, the FP algorithm usually spends the least

amount of time optimizing the query, and still generally produces plans that are close to optimal.

The source of the difference in the optimization time spent by the algorithms is the number of alternative

plans considered by each algorithm. Besides keeping track of the optimization time and query plan execution

time for each query we tested, we also kept record of the number of plans considered. In the interest of

space, we present this result for only one query, Q.Pers.3.d, in Table 2. In this table, DPP’ represents the

DPP algorithm without the Lookahead Rule.

The results in Table 2 show that the time spent on optimization is linear to the number of alternative

plans considered. The DP algorithm not only consider a lot of plans, but also consider the same plan several

times, e.g. starting from different branches for a bushy plan. The DPP algorithm eliminates this redundant

consideration and a large number of non-promising plans, and is much faster than the DP algorithm. The

DPAP algorithms are even faster, considering even fewer plans. The FP algorithm explores the least number

of plans and is the fastest. The results in this table also demonstrate the effectiveness of the lookahead rule

in DPP.

4.3 Effect of Data Size

In this experiment, we investigate the effect of increasing the data set size on the plans that are produced by

the various algorithms. To produce larger data sets, we replicated each data set by a “folding factor”. We

generated data sets that were 10, 100 and 500 times larger than the data sets presented before. In the interest

of space, we only present the effect of increasing the data set size for the time taken to evaluate plans for one

21

representative query, Q.Pers.3.d, in Table 3.

Note that the optimization time for the algorithms remains the same even when the data set sizes are

increased. However, the larger the data sets, the larger is the plan evaluation time. Consequently, in large

data sets, a more expensive optimization algorithm is worthwhile. However, there is a more interesting effect

of data size, as follows:

When the data size is small, the performance of the execution plans chosen by different algorithms is not

very different. The optimal plan chosen by the DP and DPP algorithm is left-deep, and is the same as the

one chosen by the DPAP-LD algorithm. For larger data sets, the optimal plan chosen by the DP and DPP

algorithm becomes a fully-pipelined bushy plan, and is the same as what the FP algorithm chooses. As the

data size increases, the gap between the performance of the best plan and the left-deep plan gets larger. The

reason is that with larger data sets, the intermediate results sizes also increase. Sorting these intermediate

results becomes a big part of the plan evaluation cost and drags down the performance of plans, like the left-

deep plans, that need to materialize intermediate results. Fully pipelined plans start becoming more attractive

as they never have to sort any intermediate results.

4.4 Effect of the Tuning Parameter �� in DPAP-EB

In this section, we evaluate the effect of the tuning parameter �� on the performance of the DPAP-EB al-

gorithm. The DPAP-EB algorithm uses the tuning parameter �� to limit the number of statuses to expand

on each level. This in turn limits the total number of statuses considered in the optimization process. We

ran each query with different values of ��. In the interest of space, here we only present the results for the

query Q.Pers.3.d on databases with folding factors of 100 and 1 (in Figures 7 and 8 respectively); the same

conclusions can be drawn for the other queries too. Along the X-Axis in these figures, we show runs of the

DPAP-EB algorithm for various values of the �� parameter (shown in parentheses). We increased the value

of �� from 1 to the number of nodes in the pattern, since by then the optimal solution has already be selected.

Data for other optimization techniques is also included to facilitate comparison. Along the Y-axis, we show

the optimization time and execution time as components of the total query evaluation time.

Let’s begin by looking at Figure 7. From this figure, we observe that the time spent on optimization

increases monotonically when the value of the parameter �� increases, while the execution time of the eval-

uation plan selected decreases rapidly and becomes optimal quickly around �� � 	. At this point the total

query evaluation time (optimization time plus plan execution time) is minimized for DPAP-EB. Beyond this

point, for �� ' 	, the query execution time remains the same, but the optimization time increases, until it

eventually becomes the same as the optimization time for full DPP. For this query, with this data set, the

22

query plan execution time (even for the best plan) is much larger than the optimization time (even for the

most costly DP algorithm). In this sort of situation, rather than try to guess the optimum value for the ��

parameter, one can simply use DPP, and expect it to do only slightly worse than the best case for DPAP-EB.

0

10

20

30

40

50

60

70

80

90

DP
DPP

DPAP-L
D

DPAP-E
B (1

)

DPAP-E
B (2

)

DPAP-E
B (3

)

DPAP-E
B (4

)

DPAP-E
B (5

)

DPAP-E
B (6

)

DPAP-E
B (7

) FP

Optimization Algorithms

T
im

e
(i

n
 s

ec
.)

Plan Execution Time
Optimization Time

0

1

2

3

4

5

6

7

8

DP
DPP

DPAP-L
D

DPAP-E
B (1

)

DPAP-E
B (2

)

DPAP-E
B (3

)

DPAP-E
B (4

)

DPAP-E
B (5

)

DPAP-E
B (6

)

DPAP-E
B (7

)
FP

Optimization Algorithms

T
im

e
(i

n
 s

ec
.)

Plan Execution Time

Optimization Time

Figure 7: Comparison of Query Plan Evaluation
Times for Query Q.Pers.3.d, Folding Factor = 100

Figure 8: Comparison of Query Plan Evaluation
Times for Query Q.Pers.3.d, Folding Factor = 1

Now let us examine Figure 8, which represents a different scenario in which the query plan evaluation

time is comparable to the optimization time. As a result, the optimization time becomes a significant portion

of the total query evaluation time. As Figure 8 shows, now the FP algorithm is the most efficient overall

algorithm. The figure also shows a more obvious “U” shape pattern for the DPAP-EB plans as the value of

�� is increased. For queries will small plan evaluation time, it may not be worth the effort to use a large value

of ��, and in fact a smaller value of �� is preferable.

5 Related Work

Join Plan Order Optimization:

Query optimization is central to modern databases, and has been extensively studied since the classic

work by Selinger et al [13]. Ideas proposed in [13] are still common practice in relational optimizers: Use

statistics about the database instance to estimate the cost of a query evaluation plan; consider only plans

with binary joins in which the inner relation is a base relation (left-deep plans); postpone Cartesian product

after joins with predicate. [9] proved that under some circumstance, if sorting is not required, a pipelined

evaluation plan is the optimum solution.

Bushy plans have been shown to be preferred in many circumstances [16, 14]. The Starburst opti-

mizer [12] permits consideration of selected bushy plans, and shows that the complexity of optimizing a

query is largely dependent on the shape of the query graph, instead of the number of relations involved.

XML Query Optimization:

While XML query processing is relatively new, there already has been at least some work in this regard.

23

The “classic” work on XML query optimization is [11]. The idea proposed in this paper is to break branching

path expressions into single path expressions (without branching). Several algorithms are proposed and

evaluated. However, this work is applicable in the context of navigational access methods only, and these

have since been found not to be the methods of choice (for most cases).

In even earlier work, [10] proposed a technique to specify and optimize queries on ordered semi-

structured data using automata. It uses automata to present the queries and optimize the query using query

typing and automata unnesting.

More recently, [3] optimizes XML queries by minimizing the pattern tree specification, using schema

information. This sort of rewriting optimization is complementary to, and can be applied before, the cost-

based access plan optimization that we consider.

6 Conclusions and Future Work

XML query processing is important, irrespective of how XML data is stored. In this paper, we have developed

a framework for cost-based optimization of structural join order selection, a central issue in XML query

processing. While the spirit of this optimization is the same as for relational optimization, there are significant

differences on account of the tree-structure of XML data and the concept of structural join in XML query

processing.

Based on the special features of XML data and XML queries, we developed five different techniques

for performing query optimization in this XML framework. The performance and efficiency of the proposed

algorithms are analyzed theoretically and evaluated experimentally. A significant finding is that consideration

of left-deep plans alone, which is the rule-of-thumb for relational optimizers, is not a good idea in the XML

context. A reasonable heuristic for quickly finding a good plan is to focus on fully pipelined plans. The FP

algorithm is a quick and easy solution for queries expected to run fast. For queries with long evaluation time,

one can afford more optimization time and we recommend that the DPP algorithm be used to pursue the best

solution.

The work presented in this paper has been performed in the context of developing a query optimizer for

the Timber native XML database system and is an important first step towards cost-based optimization for

XML queries, but there is much left to be done. We are currently working on enhancing our techniques to

work where not every node predicate is indexed, and with new access methods for merged operators as in [2]

and multi-way structural joins as in [5]. In the future, we will also consider expensive operations beyond

structural pattern matching, such as value-based joins and grouping.

24

References

[1] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, Y. Wu. Structural Joins: A Primitive
for Efficient XML Query Pattern Matching. In Proc. ICDE Conf., to appear, Mar. 2002.

[2] S. Al-Khalifa, H. V. Jagadish. Combining Operators in XML Query Processing. Technical Report.
University of Michigan, 2002.

[3] S. Amer-Yahia, S. Cho, L. Lakshmanan, et al. Minimization of Tree Pattern Queries SIGMOD 2001.

[4] T. Bray, J. Paoli, C. M. Sperberg-McQueen. Extensible markup language (XML) 1.0. W3C Recommen-
dation. Available at http://www.w3.org/TR/1998/REC-xml-19980210, Feb. 1998.

[5] N. Bruno, D. Srivastava, and N. Koudas. Holistic Twig Joins: Optimal XML Pattern Matching. In
Proceedings of SIGMOD, 2002.

[6] D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Simon, M. Stefanescu XQuery 1.0: An XML Query
Language. W3C Working Draft, http://www.w3.org/TR/xquery/, June 7, 2001.

[7] S. Chaudhuri. An Overview of Query Optimization in Relational Systems. PODS 1998: 34-43.

[8] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, K. Thompson. TAX: A Tree Algebra for XML. In
Proc. DBPL Conf., Sep. 2001.

[9] R. Krishnamurthy, H. Boral, C. Zaniolo. Optimization of Nonrecursive Queries. VLDB, 1986, pages
128–137.

[10] H. Liefke. Horizontal Query Optimization on Ordered Semistructured Data. WebDB (Informal Pro-
ceedings) 1999: 61-66

[11] J. McHugh, J. Widom. Optimizing Branching Path Expressions VLDB 1999: 315-326.

[12] K. Ono, G. M. Lohman. Measuring the Complexity of Join Enumeration in Query Optimization. VLDB
1990: 314-325

[13] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, T. Price. Access Path Selection in a Relational
Database Management System. SIGMOD 1979: 23-34.

[14] M. Steinbrunn, G. Moerkotte, A. Kemper. Heuristic and Randomized Optimization for the Join Order-
ing Problem. VLDB Journal 6(3): 191-208 (1997)

[15] Y. Wu, J. M. Patel, H. V. Jagadish. Estimating Answer Sizes for XML Queries. In Proc. EDBT Conf.,
to appear Mar. 2002.

[16] B. Vance, D. Maier. Rapid Bushy Join-order Optimization with Cartesian Products. SIGMOD 1996:
35-46

[17] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. luo, G. M. Lohman. On Supporting Containment Queries in
Relational Database Management Systems. SIGMOD 2001.

[18] DBLP data set. Available at http://www.informatik.uni-trier.de/ley/db/index.html.

[19] Department of Chemistry, Imperial College of Science, Technology and Medicine, UK. Chemical
Markup Language (CML). Available at http://www.ch.ic.ac.uk/chimeral/.

[20] ibiblio Organization. XML dataset for Shakesapeare drama. Available at
http://sunsite.unc.edu/pub/sun-info/xml/eg/shakespeare.1.10.xml.zip.

[21] TIMBER Group. TIMBER Project at Univ. of Michigan. Available at
http://www.eecs.umich.edu/db/timber/.

[22] DB Group at University of Michigan. The Michigan Benchmark Available at
http://www.eecs.umich.edu/db/mbench.

[23] W3C. XML Path Language. Available at http://www.w3.org/TR/xpath.

25

A FP Algorithm

Algorithm FP Optimization (�����������)

// Inputs: The query pattern to be evaluated,

// Output: Processing tree to evaluate the query.

������� 	 �

For (each node
� in �����������)

cost 	 FP OrderBy(�����������,
�, ��������)

if (���� < �������)

������� 	 ����; ����� ��� 	 ��������;

output(����� ���);

Algorithm FP OrderBy(������, �
	�
�, ����� ���)

// Inputs: ������: The query pattern to be evaluated;

// �
	�
�: The node to be ordered by in output.

// Output: Processing tree and its cost

	���� ��� = neighbors of OdNode

For each 	���� ���
��

�! ������� = SubPattern(������,	���� ���
��,�
	�
�)

���� 	 FP OrderBy(�! �������, 	���� ���
��, �! ����);

Enumerate all the possible permutations of subpatterns to join with �
	�
�.

Store the best plan in ����� ���. Store its cost in ����.

output(cost);

note:

Function SubPattern(PatterTree, Node1, Node2) partitions the PatternTree by cutting the edge

between Node1 and Node2, and returns the subpattern contains Node1.

Figure 9: Algorithm FP Optimization for Finding the Best Fully-Pipelined Evaluation Plan

26

