
Evaluating Structural Similarity in XML Documents∗

Andrew Nierman and H. V. Jagadish
University of Michigan

{andrewdn, jag}@eecs.umich.edu

Abstract

XML documents on the web are often found without DTDs, par-
ticularly when these documents have been created from legacy
HTML. Yet having knowledge of the DTD can be valuable in
querying and manipulating such documents. Recent work (cf.
[10]) has given us a means to (re-)construct a DTD to describe
the structure common to a given set of document instances. How-
ever, given a collection of documents with unknown DTDs, it may
not be appropriate to construct a single DTD to describe every
document in the collection. Instead, we would wish to partition
the collection into smaller sets of “similar” documents, and then
induce a separate DTD for each such set. It is this partitioning
problem that we address in this paper.

Given two XML documents, how can one measure structural
(DTD) similarity between the two? We define a tree edit distance
based measure suited to this task, taking into account XML is-
sues such as optional and repeated sub-elements. We develop a
dynamic programming algorithm to find this distance for any pair
of documents. We validate our proposed distance measure exper-
imentally. Given a collection of documents derived from multiple
DTDs, we can compute pair-wise distances between documents
in the collection, and then use these distances to cluster the docu-
ments. We find that the resulting clusters match the original DTDs
almost perfectly, and demonstrate performance superior to alter-
natives based on previous proposals for measuring similarity of
trees. The overall algorithm runs in time that is quadratic in docu-
ment collection size, and quadratic in the combined size of the two
documents involved in a given pair-wise distance calculation.

1 Introduction

The Extensible Mark-up Language (XML) is seeing in-
creased use, and promises to fuel even more applications
in the future. But many of these XML documents, espe-
cially those beginning to appear on the web, are without
Document Type Descriptors (DTDs). In [10] the authors
provide a method to automatically extract a DTD for a set
of XML documents. They provide several benefits for the
existence of DTDs. Given that more repositories of XML
documents will exist in the future, methods will be needed
to access these documents and perform queries over them,
much as we do today with traditional database systems.
Just as schemas are necessary in a DBMS for the provi-
sion of efficient storage mechanisms, as well as the for-
mulation and optimization of queries, the same is true for

∗This work was supported in part by NSF grant number IIS-0002356.

XML repositories and DTDs (which provide the schema).
For instance, a DTD could allow a search to only access the
relevant portions of the data, resulting in greater efficiency.

The algorithm in [10] is useful only when we apply it
to a repository of XML documents where the repository is
a homogeneous collection. If the collection includes struc-
turally unrelated documents, then the DTD inferencing pro-
cedure will result in DTDs that are of necessity far too gen-
eral and therefore not of much value. Ideally, the repos-
itory would be divided into groups of structurally similar
documents first, and then the DTD inferencing mechanism
could be applied individually to each of these groups.

In this paper we define a new method for computing the
distance between any two XML documents in terms of their
structure. The lower this distance, the more similar the two
documents are in terms of structure, and the more likely
they are to have been created from the same DTD. Crafting
a good distance metric for this setting is somewhat difficult
since two documents created from the same DTD can have
radically different structures (due to repeating and optional
elements), but we would still want to compute a small dis-
tance between these documents. We account for this by
introducing edit operations that allow for the cutting and
pasting of whole sections of a document. Using our re-
sulting pair-wise distance measure, we show that standard
clustering algorithms do very well at pulling together doc-
uments derived from the same DTD.

2 Background

2.1 XML Data Model

An XML document can be modeled as an ordered labeled
tree [9]. Each node in this tree corresponds to an element
in the document and is labeled with the element tag name.
Each edge in this tree represents inclusion of the element
corresponding to the child node under the element corre-
sponding to the parent node in the XML file.

XML documents may also have hyper-links to other
documents. Including such links in the model gives rise
to a graph rather than a tree. Such links can be important
in actual use of the XML data. However, they are not im-
portant as far as the structure of the document at hand, and
hence we will not consider them further in this paper.

A DTD provides rules that define the elements, at-
tributes associated with elements, and relationships among

elements, thatmayoccur in an XML document. DTDs have
the expressive power of regular languages: elements may
be required, optional, or may be repeated an arbitrary num-
ber of times. Attributes may also be required or optional.

2.2 Attributes in the Data Model

Elements in XML can have attributes, and these attributes
can play an important role in the DTD determination prob-
lem we are attempting to tackle. The traditional DOM la-
beled ordered tree has one node for every element in the
document: attributes adorn the node corresponding to the
element of which they are attributes. To incorporate at-
tributes into our distance calculation, we create an addi-
tional node in the tree for each attribute, and label it with
the name of the attribute. These attribute nodes appear as
“children” of the node that they adorned in the DOM rep-
resentation, sorted by attribute name, and appearing before
all sub-element “siblings”.

In short, we represent each XML document as a labeled
ordered tree with a node corresponding to each element and
to each attribute. We do not represent the actual values of
the elements or attributes in the tree – we are only interested
in the structural properties of the XML file.

2.3 Related Work

There is considerable previous work on finding edit dis-
tances between trees [5–8, 13–17]. Most algorithms in
this category are direct descendants of the dynamic pro-
gramming techniques for finding the edit distance between
strings [12]. The basic idea in all of these tree edit distance
algorithms is to find the cheapest sequence of edit opera-
tions that can transform one tree into another.

A key differentiator between the various tree-distance
algorithms is the set of edit operations allowed. An early
work in this area is by Selkow [13], and allows inserting
and deleting of single nodes at the leaves, and relabeling of
nodes anywhere in the tree. The work by Chawathe in [5]
utilizes these same edit operations and restrictions, but is
targeted for situations when external memory is needed
to calculate the edit distance. There are several other ap-
proaches that allow insertion and deletion of single nodes
anywhere within a tree [14–17].

Expanding upon these more basic operators, Chawathe,
et. al. [7] define a move operator that can move a subtree as
a single edit operation, and in subsequent work [6] copying
(and its inverse, gluing) of subtrees is allowed. These two
operations bear some resemblance to the insert subtree and
delete subtree operations that are used in this paper, but the
approaches in [6, 7] are heuristic approaches and the algo-
rithm in [6] operates on unordered trees, making it unsuit-
able for computing distances between XML documents.

3 Tree Edit Distance

Two XML documents produced from the same DTD can
have very different sizes on account of optional and repeat-

ing elements. Any edit distance metric that permits change
to only one node at a time will necessarily find a large dis-
tance between such a pair of documents, and consequently
will not recognize that these documents should be clustered
together as being derived from the same DTD. In this sec-
tion, we develop an edit distance metric that is more indica-
tive of this notion of structural similarity. First we present
a few supporting definitions.

3.1 Basic Definitions

Definition 3.1 [Ordered Tree] An ordered tree is a
rooted tree in which the children of each node are ordered.
If a nodex hask children then these children are uniquely
identified, left to right, asx1, x2, . . . , xk.

Definition 3.2 [First-Level Subtree] Given an ordered
tree T with a root r of degreek, the first-level sub-
trees, T1, T2, . . . , Tk of T are the subtrees rooted at
r1, r2, . . . , rk.

Definition 3.3 [Labeled Tree] A labeled treeT is a tree
that associates a label,λ(x), with each nodex ∈ T . We let
λ(T) denote the label of the root ofT .

Definition 3.4 [Tree Equality] Given two ordered
labeled treesA and B, and their first-level subtrees
A1, . . . , Am andB1, . . . , Bn, A = B if: λ(A) = λ(B),
m = n, andi = j ⇒ Ai = Bj , for 0 ≤ i ≤ m, 0 ≤ j ≤ n.

3.2 Tree Transformation Operations

We utilize five different edit operations in the construction
of our algorithm. Given a treeT with λ(T) = l and first-
level subtreesT1, ..., Tm, the tree transformation operations
are defined as follows:

Definition 3.5 [Relabel] RelabelT (lnew) is a relabel op-
eration applied to the root ofT that yields the treeT ′ with
λ(T ′) = lnew and first-level subtreesT1, ..., Tm.

Definition 3.6 [Insert] Given a nodex with degree 0,
InsertT (x, i) is a node insertion operation applied toT
at i that yields the treeT ′ with λ(T ′) = l and first-level
subtreesT1, . . . , Ti, x, Ti+1, . . . , Tm.

Definition 3.7 [Delete] If the first-level subtreeTi is a
leaf node,DeleteT (Ti) is a delete node operation applied
to T at i that yields the treeT ′ with λ(T ′) = l and first-
level subtreesT1, . . . , Ti−1, Ti+1, . . . , Tm.

Definition 3.8 [Insert Tree] Given a tree A,
InsertTreeT (A, i) is an insert tree operation applied
to T at i that yields the treeT ′ with λ(T ′) = l and
first-level subtreesT1, . . . , Ti, A, Ti+1, . . . , Tm.

Definition 3.9 [Delete Tree] DeleteTreeT (Ti) is a
delete tree operation applied toT at i that yields
the tree T ′ with λ(T ′) = l and first-level subtrees
T1, . . . , Ti−1, Ti+1, . . . , Tm.

Associated with each of these edit operations is a non-
negative cost. Our algorithms work with general costs, but
in this paper we restrict our presentation and experimenta-
tion to constant (unit) costs.

3.3 Allowable Edit Sequences

The usual way in which the edit distance is found between
two objects is to consider alternative sequences of edit op-
erations that can transform one object into the other. The
cost of the operations in each sequence is considered, and
the lowest cost sequence among these defines the edit dis-
tance between the two objects. In our case, rather than
considering all possible sequences of edit operations, we
restrict ourselves to all “allowable sequences” of edit oper-
ations. We do this both for computational reasons, as well
as to improve our results in the XML domain.

Definition 3.10 [Minimum Edit Distance Cost (δ)]
Given any treesA andB and the setΞ of all allowable se-
quences of edit operations that when applied toA will yield
a tree equal toB, we letδ(A,B) denote the minimum of
the sums of the costs of each sequence inΞ.

Definition 3.11 [Allowable] A sequence of edit opera-
tions is allowable if it satisfies the following two condi-
tions:

1. A treeP may be inserted only ifP already occurs
in the source treeA. A treeP may be deleted only ifP
occurs in the destination treeB.

2. A tree that has been inserted via theInsertTree
operation may not subsequently have additional nodes in-
serted. A tree that has been deleted via theDeleteTree
operation may not previously have had (children) nodes
deleted.

The first restriction limits the use of the insert tree and
delete tree operations to when the subtree that is being in-
serted (or deleted) is shared between the source and des-
tination tree. We can only insert (delete) subtrees that are
already “contained in” the source (destination) tree. A pat-
tern treeP is said to becontainedIn treeT , if all nodes of
P occur inT , with the same parent/child edge relationships
and same sibling order; additional siblings may occur inT ,
even between sibling nodes in the embedding of the pat-
tern tree. This allows for matching of trees when optional
elements are used in DTDs. See Figure 1 for some exam-
ples of thecontainedIn relation, where a pattern treeP is
potentiallycontainedIn various other trees. Without this
first restriction on allowable sequences of edit operations,
one could delete the entire source tree in one step and insert
the entire destination tree in a second step – totally defeat-
ing the purpose of the insert tree and delete tree operations.

The second restriction provides us with an efficient
means for computing the costs of inserting and deleting the
subtrees found in the destination and source trees, respec-
tively. This procedure is outlined in the next section.

a

b c d

e

a

b c d

e

z

z

a

b c d

e

z

a

b c d

e

Pattern Tree, P Tree A Tree B Tree C

containedIn(P, A) = true containedIn(P, B) = true containedIn(P, C) = false

Figure 1: Examples of thecontainedIn Procedure

4 Algorithm

4.1 Dynamic Programming Formulation

Dynamic programming is frequently used to solve mini-
mum edit distance problems. In determining the distance
between a source tree,A, and a destination tree,B, the key
to formulating the problem using dynamic programming is
to first determine the cost of inserting every subtree ofB,
and the cost of deleting every subtree ofA.

When determining the cost of inserting a subtreeTi,
this could possibly be done with a singleInsertTree op-
eration (if it is allowable), or with some combination of
InsertTree and Insert operations. There is a cost as-
sociated with each possible sequence ofInsertTree and
Insert operations that result in the construction of the sub-
tree Ti. The minimum of these costs is denoted as the
graft cost ofTi, or CostGraft(Ti). A prune cost is de-
fined similarly for the minimum cost sequence ofDelete
andDeleteTree operations needed to remove a subtree.

Due to the constraints specified in definition 3.11 for an
allowable sequence, we have a simple and efficient bottom-
up procedure for computing the graft cost,CostGraft. At
each nodev ∈ B we calculate the cost of inserting the
single nodev and add the graft cost of each child ofv, we
call this sumd0. We also check whether the pattern tree
P , which is the subtree rooted atv, is containedIn the
source treeA. If containedIn(P,A) is true, we compute
the insert tree cost forP , we call this sumd1. The graft
cost for the subtree rooted atv is the minimum ofd0 and
d1. Prune costs are computed similarly for each node inA.

Given a source treeA and a destination treeB, we can
determine the minimum cost of transformingA into B us-
ing the operators defined in section 3.2, and the notion of
allowable sequences in section 3.3. This dynamic program-
ming algorithm is shown in figure 2. Pre-computed costs
for the graft and prune costs are used in lines 8 and 10, and
in the nested loops at lines 16 and 17 of the algorithm.

4.2 Complexity

In this section we analyze the complexity of computing our
edit distance measure between a source treeA and a desti-
nation treeB. There are two stages to the algorithm. In the
first stage, all the graft and prune costs are pre-computed.
In the second stage, we use these pre-computed values to
compute the actual edit distance, as given in figure 2.

1. private int editDistance(Tree A, Tree B){
2. int M = Degree(A);
3. int N = Degree(B);
4. int[][] dist = new int[0..M][0..N];
5. dist[0][0] =CostRelabel(λ(A), λ(B));
6.
7. for (int j = 1; j ≤ N; j++)
8. dist[0][j] = dist[0][j-1] + CostGraft(Bj);
9. for (int i = 1; i ≤ M; i++)
10. dist[i][0] = dist[i-1][0] + CostPrune(Ai);
11.
12. for (int i = 1; i≤ M; i++)
13. for (int j = 1; j≤ N; j++)
14. dist[i][j] = min{
15. dist[i-1][j-1] + editDistance(Ai, Bj),
16. dist[i][j-1] + CostGraft(Bj),
17. dist[i-1][j] + CostPrune(Ai)
18. };
19. return dist[M][N];
20.} //editDistance

Figure 2: Edit Distance Algorithm

4.2.1 Stage One – Computing CostGraft and CostPrune

Given that we perform the pre-computation of graft and
prune costs in a naive manner, the complexity of the first
stage would dominate the second stage. The central issue is
that determining whether a subtree is contained in another
tree is potentially an expensive operation, and this opera-
tion may have to be performed repeatedly. We present a few
implementation details necessary to reduce the complex-
ity for computing graft costs. A complementary method is
used for prune costs.

First, for each leaf nodev ∈ B, we determine its
containedInList, that is, which nodes inA have the same
label asv. Rather than do so repeatedly for each node indi-
vidually, we do so by node label. We perform an in-order
walk of A and append each node to a list corresponding to
its label (these lists are kept in a hash, with the labels as
keys). This costsO(|A|). Then we walk through the leaves
of B, and for each leaf nodev, we set a pointer for that node
to its corresponding list of nodes fromA, based on the la-
bel. This costsO(|B|), and the overall procedure for deter-
mining the leaf nodecontainedInLists is O(|A| + |B|).

Now, we perform a post-order traversal of the nodes
of B, and at each non-leaf node, we calculate the
containedInList based upon thecontainedInLists of
each of its children. The process is similar to a simple
merge operation. All of thecontainedIn lists of the chil-
dren are already sorted based on position inA. In total,
across the entire traversal, we will have|B| lists to merge,
with each of these|B| lists being of length at most|A|.
Given that the maximum degree of any node inB is as-
sumed constant, independent of the sizes of the trees, the

time complexity for this procedure isO(|A||B|).
Having computed thesecontainedIn relations, the

graft and prune costs can be calculated, as in section 4.1,
by simply performing post-order traversals ofB andA, re-
spectively, so the complexity of these operations is simply
O(|B|) andO(|A|), and the overall complexity of this stage
is O(|A||B|).

4.2.2 Stage Two – Dynamic Programming (editDistance)

TheeditDistance procedure in figure 2 is called once for
each pair of vertices at the same depth in the input treesA
andB. This results in a complexity ofO(|A||B|) [13].

4.2.3 Overall Complexity

O(|A||B|) is the time complexity for both the pre-
computation phase, and the dynamic programming phase,
so O(|A||B|) is the overall complexity of our algorithm
to compute structural edit distance between two treesA
and B. This linear dependence on the size of each tree
(and quadratic dependence on the combined size of the two
trees) is borne out in the experimental results shown in Sec-
tion 5.3.

5 Experimental Evaluation

The goal of our work is to find documents with structural
similarity, that is, documents generated from a common
DTD. We apply a standard clustering algorithm based on
the distance measures computed for a given collection of
documents with known DTDs. For any choice of distance
metric, we can evaluate how closely the reported clusters
correspond to the actual DTDs.

5.1 Setup

5.1.1 Algorithms Used

In addition to our edit distance measure, we evaluate two
measures proposed previously in the literature for tree edit
distance – which we refer to as Chawathe [5] and Shasha
[14] respectively, and a third non-structural baseline metric.
We report results in this section for these three measures in
addition to our own.

The Chawathe measure– In [5] an algorithm is pre-
sented for computing differences between hierarchically
structured data such as XML. Disregarding the work’s con-
tribution towards efficient use of secondary storage, our al-
gorithm can be seen as a strict generalization of this ap-
proach. Specifically, if we disallow tree insertions and
deletions in our measure, we would obtain exactly the
Chawathe measure. The complexity of this approach is
O(|A||B|), when finding the minimum edit distance be-
tween the treesA andB.

The Shasha Measure– Dennis Shasha and Jason Wang
propose a tree edit distance metric in [14] that permits the
addition and deletion of single nodes anywhere in the tree,
not just at the leaves. However, entire subtrees cannot be

inserted or deleted in one step. The complexity of this ap-
proach isO(|A||B| depth(A) depth(B)).

Tag Frequency (δfreq) – A good question to ask is
whether all this complex tree structure based difference is
a good thing to do in the first place. How about a simple
measure that looks at the count of each type of label in the
two documents, and adds up the absolute values of the dif-
ferences? By utilizing a simple hash data structure for the
element names and the frequencies, we can compute the
tag frequency distance,δfreq, between two treesA andB
in O(|A| + |B|).

5.1.2 Data Sets Used

We performed experiments on both real and synthetic
data sets. For a real data set, we used XML data ob-
tained from the online XML version of the ACM SIGMOD
Record [1]. Specifically, we sampled documents from each
of the following DTDs: ProceedingsPage.dtd, Index-
TermsPage.dtd, andOrdinaryIssuePage.dtd.

We also utilize synthetic data generated in an automated
fashion from real DTDs. Real-world DTDs were obtained
online from [2, 3]1 and an XML document generator [4]
that accepts the DTDs as input was used to generate the
XML documents. We varied the following two key param-
eters to generate repositories:

MaxRepeatsThe maximum number of times a child el-
ement node will appear as a child of its parent node (when
the * or + option is used in the DTD). A value between
0 and MaxRepeats is chosen randomly for each repeat-
ing node (rather than once for the entire document). The
greater this number, the greater the fanout and also the
greater the variability in fanout.

Attribute Occurrence Probabilities There are both re-
quired and optional attributes specified in a DTD. We let
ProbAttribute equal the probability that an optional at-
tribute will occur.

We experimented with values forMaxRepeats in the
range [2,12]. Also, we tested the following values for
the attribute occurrence probabilities:ProbAttribute ∈
{.1, .25, .5, .75, .9, 1}2. In this paper, we present a repre-
sentative sampling of these tests with the following syn-
thetic data sets:
Data Set 1: MaxRepeats = 4,ProbAttribute = .75;
Data Set 2: MaxRepeats = 4, ProbAttribute = 1 (at-
tributes always appear);
Data Set 3: MaxRepeats = 8,ProbAttribute = .75;
Data Set 4: MaxRepeats = 8,ProbAttribute = 1.

All operator costs were set equal to 1 for all of the ex-
periments that we present in this paper3.

1The DTDs that were used were: HealthProduct.dtd, blastxml.dtd,
dri.dtd, flights.dtd, flixml.dtd, roamops-phonebook.dtd, vcard.dtd, and
dsml.dtd.

2For all values ofProbAttribute not equal to 1, there were no ap-
preciable differences in the results, and we simply show the results for
ProbAttribute = .75.

3Small changes in operator costs did little to affect overall clustering

5.1.3 Computing Environment

These tests were done on an IBM RS6000 with dual pro-
cessor 604e PowerPC Processors, running at 332 MHz. All
approaches, except the Shasha measure, were implemented
by us in Java. The Shasha measure is implemented in C and
thus the timing results cannot be directly compared with the
other methods.

5.2 Clustering

Due to lack of space we do not present the distances ob-
tained from comparing all pairs of documents to each other,
rather we simply present the clustering results that were ob-
tained using these distances. We utilize well-known tech-
niques in hierarchical agglomerative clustering [11] (al-
though any form of clustering could be used).

The end result can be represented visually as a tree
of clusters called adendrogram. The dendrogram shows
the clusters that were merged together, and the distance
between these merged clusters (the horizontal length of
the branches is proportional to the distance between the
merged clusters). Two example dendrograms can be seen
in figure 3.

Clustering algorithms require knowledge of the distance
between any pair of clusters, including single document
“clusters”. For this purpose, we use the Unweighted Pair-
Group Averaging Method (or UPGMA). The distance be-
tween clustersCi andCj is computed as follows:

Distance(Ci, Cj) =

|Ci|∑

k=1

|Cj |∑

l=1

δ(docCi

k , doc
Cj

l)

|Ci||Cj |
Where |Ci| is the number of XML documents contained
in clusterCi anddocCi

k is thekth XML document in the
clusterCi.

In order to compare the hierarchical clustering results,
we introduce our notion of a “mis-clustering”. Given a
dendrogram, the number of mis-clusterings is equal to the
minimum number of documents in the dendrogram that
would have to be moved, so that all documents from the
same DTD are grouped together. A small sample cluster-
ing is shown in figure 3: in this example our approach has
no mis-clusterings, while the Chawathe approach has three
mis-clusterings.

A summary of the number of mis-clusterings, for each
of the data sets, is found in table 1. Our approach performs
better than the competing approaches for each of the data
sets (and in fact, in the underlying data, there is no average
intra-DTD distance that is lower than our approach, and no
average inter-DTD distance that is higher). Our approach
does better when all attributes are forced to appear, since
there would be more subtrees that “look” the same in docu-
ments generated from the same DTD, and thecontainedIn
procedure would return true more often.

accuracy. These results are not presented due to lack of space.

b) Chawathea) Our Approach

Figure 3: Sample Clustering Results for SIGMOD Record.

Data Data Data Data SIGMOD
Set 1 Set 2 Set 3 Set 4 Record

Our Approach 10 2 11 9 0
Chawathe 16 8 30 25 3
Shasha 16 9 32 39 3
Tag Frequency 22 21 35 40 3

Table 1: Number of Mis-Clusterings for Each Approach

5.3 Timing Analysis

Our algorithm appears more complex conceptually, how-
ever, its asymptotic time complexity (O(|A||B|)) is the
same as the Chawathe algorithm, and slightly better than
Shasha’s algorithm (O(|A||B| depth(A) depth(B))). We
are asymptotically worse than theδfreq approach, which is
O(|A|+|B|), but this approach performs poorly in terms of
clustering the documents. The formulae are verified exper-
imentally, and we show the timing results for our approach
in figure 4. The time to find the edit distance between pairs
of trees of various sizes grows in an almost perfect linear
fashion with tree size (of each tree). The corresponding
times for the Chawathe technique were smaller by (only) a
factor of 1.6 on average.

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800 900

T
im

e
(s

ec
on

ds
)

Number of Nodes in Tree 1

Number of Nodes in Tree 2 (given as a range)
[50, 100)

[250, 300)
[450, 500)

Figure 4: Our Approach - Timing Results (to compute pair-
wise distance) for Various Tree Sizes

6 Conclusion

XML is becoming all-pervasive, and effective management
of XML data is a high priority. The applicability of many
database techniques to XML data depends on the exis-
tence of DTDs (or schema) for this data. In the laissez-
faire world of the Internet, though, we frequently have to
deal with XML documents for which we do not know the
schema. While there has been previous work on deducing
the DTD for a collection of XML documents, such algo-
rithms depend critically on being given a relatively homo-
geneous collection of documents in order to determine a
meaningful DTD.

In this paper we have developed a structural similarity
metric for XML documents based on an “XML aware” edit
distance between ordered labeled trees. Using this metric,
we have demonstrated the ability to accurately cluster doc-
uments by DTD. In contrast, we have shown that several
other measures of similarity do not perform as well, while
requiring approximately the same amount of computation.

References
[1] Available athttp://www.acm.org/sigmod/record/xml .
[2] Available athttp://www.schema.net .
[3] Available athttp://www.xml.org .
[4] Available athttp://www.alphaworks.ibm.com .
[5] S. Chawathe. Comparing hierarchical data in extended

memory. InProc. of VLDB, pages 90–101, 1999.
[6] S. Chawathe and H. Garcia-Molina. Meaningful change de-

tection in structured data. InProc. of ACM SIGMOD, pages
26–37, 1997.

[7] S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically structured
information. InProc. of ACM SIGMOD, pages 493–504,
1996.

[8] Gregory Cobena, Serge Abiteboul, and Amelie Marian. De-
tecting changes in XML documents. InProc. of ICDE, 2002.

[9] World Wide Web Consortium. The document object model.
http://www.w3.org/DOM/ .

[10] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and
K. Shim. Xtract: A system for extracting document type
descriptors from XML documents. InProc. of ACM SIG-
MOD, pages 165–176, 2000.

[11] N. Jardine and R. Sibson.Mathematical Taxonomy. John
Wiley and Sons, New York, 1971.

[12] V. Levenshtein. Binary codes capable of correcting dele-
tions, insertions, and reversals.Sov. Phys. Dokl., 6:707–710,
1966.

[13] S. Selkow. The tree-to-tree editing problem.Information
Processing Letters, 6(6):184–186, December 1977.

[14] D. Shasha and K. Zhang. Approximate tree pattern match-
ing. InPattern Matching in Strings, Trees and Arrays, chap-
ter 14. Oxford University Press, 1995.

[15] K. C. Tai. The tree-to-tree correction problem.Journal of
the ACM, 26:422–433, 1979.

[16] J. Wang, K. Zhang, K. Jeong, and D. Shasha. A system
for approximate tree matching.IEEE TKDE, 6(4):559–571,
1994.

[17] K. Zhang and D. Shasha. Simple fast algorithms for the
editing distance between trees and related problems.SIAM
Journal of Computing, 18(6):1245–1262, December 1989.

