
TIMBER: A Native XML Database

H. V. Jagadish
�
, Shurug Al-Khalifa

�
, Adriane Chapman

�
, Laks V. S. Lakshmanan

�
, Andrew Nierman

�
,

Stelios Paparizos
�
, Jignesh M. Patel

�
, Divesh Srivastava

�
, Nuwee Wiwatwattana

�
, Yuqing Wu

�
, Cong Yu

�
�

University of Michigan, Ann Arbor, MI, USA
�

e-mail:
�
jag, shurug, apchapma, andrewdn, spapariz, jignesh, nuwee, yuwu, congy � @umich.edu�

University of British Columbia, Vancouver, BC, Canada
���

e-mail: laks@cs.ubc.ca	
AT&T Labs Research, Florham Park, NJ, USA
e-mail: divesh@research.att.com

The date of receipt and acceptance will be inserted by the editor

Abstract This paper describes the overall design and ar-
chitecture of the Timber XML database system currently
being implemented at the University of Michigan. The sys-
tem is based upon a bulk algebra for manipulating trees,
and natively stores XML. New access methods have been
developed to evaluate queries in the XML context, and new
cost estimation and query optimization techniques have al-
so been developed. We present performance numbers to
support some of our design decisions.

We believe that the key intellectual contribution of this
system is a comprehensive set-at-a-time query processing
ability in a native XML store, with all the standard com-
ponents of relational query processing, including algebraic
rewriting and a cost-based optimizer.

1 Introduction

With the growing popularity of XML, it is clear that large
repositories of XML data will emerge. In this paper, we
describe the architecture of Timber, a native XML data
management system being developed at the University of
Michigan [67].

One popular technique for managing XML data is to
map the data to existing (relational) database systems. How-
�

Supported in part by the United States National Science
Foundation (NSF), under grants IIS-9986030, DMI-0075447, and
IIS-0208852, and by an equipment grant from IBM.�
�

Supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and a research fellowship
from the British Columbia Advanced Systems Institute (BCASI).

ever, such a mapping often results in either an unnormal-
ized relational representation or in a very large number of
tables, due to the flexible nature of XML, with attributes
and sub-elements frequently missing, and repetition of sub-
elements being allowed.

Our approach in Timber is to start from scratch and de-
velop an XML data management system from the ground
up. Many components of a standard database system can
be reused with no change. For instance there is no need to
modify transaction management facilities. However, other
components must be modified to accommodate the new
data model and query language. The overall architecture
of the Timber system is presented in Sec. 3.

Our challenge is to develop a native XML database, in
which XML data is stored directly, retaining its natural tree
structure. At the same time, we would like to obtain all the
benefits of relational database management, such as declar-
ative querying and set-at-a-time processing.

To be able to obtain efficient processing on large data-
bases, we require set-at-a-time processing of data. In other
words, we require a bulk algebra that can manipulate sets
of trees: each operator on this algebra would take one or
more sets of trees as input and produce a set of trees as out-
put. We have devised such an algebra, called TAX, and we
present this in Section 4. The biggest challenge in devising
this algebra is the heterogeneity allowed by XML, and in
XQuery [10], the W3C recommended declarative language
for querying XML databases today.

Given an algebra, we need an efficient query evaluation
mechanism. This is the subject of Section 5. After describ-
ing the overall structure of the query pipeline, we delve into
a couple of access methods of significance.

2 TIMBER: A Native XML Database

department

faculty staff faculty lecturer

name RA name name secretary RA RA RA name TA TA TA

faculty research scientist

name secretary TA RA RA TA name secretary RA RA RA RA

J. Smith

K.Blue M.Black

T.Brown H.Grey F.Lee

L.Young P.White

Tom

Peter Pam DJ Bob Tod Max Ann Lisa

Jerry Tony Rich R.King Mark Andy Chris

Fig. 1 Tree Representation of an Example XML document, �

A query optimizer is able to take a declarative query
specification, and choose a suitable evaluation plan using
the available access methods, making use of cost estimates
for various operations and algebraic identities. We present
the architecture of our optimizer in Section 6. We also present
novel techniques for obtaining size (and cost) estimates.

After a brief discussion of issues regarding updates in
Section 7, we finally wrap up with a discussion of the cur-
rent status, and some indications of performance, in Sec-
tion 8. We begin by setting the context for our work in
Sec. 2

2 Motivation and Related Work

Example 1 Figure 1 shows a very simple XML document.
The personnel of a department can be faculty, staff, lec-
turer or research scientist. Each of them has a name
as identification. They may or may not have a secretary.
Each faculty may have both TAs and RAs. A lecturer can
have one or more TAs, but no RA. A research scientist
can have any number of RAs, but no TA.

Some characteristics of XML data are obvious even
from this simple example. XML has a tree structure: ele-
ments in the document can be structurally related and these
structural relationships are meaningful. XML also has flex-
ibility – the number of RAs and TAs associated with person-
nel is allowed to vary. While there are constraints on what
is allowed, it is still quite possible for certain classes of
sub-elements to be missing altogether. For instance, there
may be a lecturer who has no teaching assistants at all.

Several mapping techniques have been proposed [21,
30, 48, 49] to express tree-based XML data to flat tables
in a relational schema. Due to the possible absence of at-
tributes and sub-elements, and the possible repetition of

sub-elements, XML documents can have a very rich struc-
ture, as we just saw. It is hard to capture this structure
in a rigid relational table without dividing the document
into very small standard “units” that can be represented as
tuples in a table. Therefore, a simple XML schema often
produces a relational schema with many tables. Structural
information in the tree-based schema is modeled by joins
between tables in the relational schema. XML queries are
converted into SQL queries over the relational tables, and
even simple XML queries often get translated into expen-
sive sequences of joins in the underlying relational data-
base.

Example 2 A typical translation [48] of the schema of fig-
ure 1 would map the lecturer elements to a table, and store
TA elements as tuples in another table. To find the TAs as-
sisting a specified lecturer will then require a join between
the two tables. More complex queries will require multiple
joins.

Driven by the arguments above, one is persuaded to
seek a direct implementation of XML data management,
where XML data is not translated into rigid relations. There
are several implementations of XML storage that are in-
dependent of relational databases [38, 45, 60, 62, 63]. Sev-
eral of these are driven by the document (or programming
language) community, rather than the database community.
The implementations are procedural, directly evaluating que-
ries as a series of nested FOR loops. They are also tuple-at-
a-time, whereas it has been well established through the
experience of the database community that set-at-a-time
access is essential for good performance. As such, these
implementations do very well for small data sets, but do
not scale very well to large data sets. For instance, Xindice
(see dbXML) recommends [4] that its system not be used
for documents larger than 5MB!

TIMBER: A Native XML Database 3

Other solutions have also been proposed. For instance,
XML databases have been implemented on top of an object-
oriented database [17, 32, 44, 61] and a semi-structured da-
tabase [34,35,42]. Such implementations suffer from a com-
bination of the drawbacks listed above for the two extreme
scenarios. Tamino is a leading commercial “native” XML
database, yet descriptions of its architecture [46, 47] are
fairly sketchy. Tamino uses an evolution of the ADABAS
nested relational engine as its data store, with the bulk of
the innovation in the product coming from new index struc-
tures, support for handling XML schematic information,
and the web interface layer.

Recently, Natix [26, 27] has been developed as a stor-
age manager suitable for XML data. The focus is on ef-
ficient management of tree-structured data at the level of
page allocation and physical placement. Whereas our cur-
rent development is on top of the more “standard” Shore
storage manager, we intend to consider switching to Natix
as the latter matures.

Our project is aimed centrally at building an efficient
XML database engine. As such it differs from related ef-
forts at data integration [6,52] and querying XML over the
web [40]. However, each of these important research ef-
forts requires at least some management and querying of
XML data as part of their research effort. As such, each is
exploring issues that closely relate to ours in many cases.
For instance, we will mention techniques used in the Nia-
gara [40] system at several places below.

Finally, we mention the Toronto XML project [5], aimed
at managing XML data using an approach complementary
to ours. Whereas we are developing new techniques for
managing and querying tree-structured XML data, the To-
ronto project maps XML into flat files, RDBMS or OODBMS,
whichever is most appropriate for a given class. The core
of their effort is in managing the metadata for this map-
ping and in developing clever new index structures for this
heterogeneous representation.

3 System Architecture

The overall architecture of Timber is shown in figure 2.
We build our system on top of Shore [9], a popular back-
end store that is responsible for disk memory management,
buffering and concurrency control. XML data, index and
metadata are also stored in Shore through Data Manager,
Index Manager and Metadata Manager, respectively.

Query
XML

Query Parser

Data Parser

Data

Query Output
API

Data Storage Manager

Data
Manager

Index
Manager

Metadata
Manager

Query
Optimizer Query

Evaluator

Query
Result

XML Data

Loading Data Flow

Retrieval Data Flow

Fig. 2 TIMBER Architecture Overview

3.1 Data Storage

The Data Parser takes an XML document as input, and pro-
duces a parse tree as output. The Data Manager takes each
node of this parse tree as it is produced, transforms it incre-
mentally into an internal representation and stores it into
Shore as an atomic unit of storage.1 A set of navigation
interface and scan interface is provided for the Query Eval-
uator to retrieve data, one node at a time. These interfaces
can also be used by Index Manager and Metadata Manager,
to generate the data they need.

For storage efficiency reasons, a node in the Timber
Data Manager is not exactly the same as a DOM [57] node.
There is a node corresponding to each element, with child
nodes for sub-elements. However, all attributes of an ele-
ment node are clubbed together into a single node, which
is then stored as a child node of that element node. Also,
the content of an element node, if any, is pulled out into

1 We found that Shore had considerable overheads in dealing
with small objects. We are engineering our system to package our
data in page-size containers, and handing Shore an entire con-
tainer as an object. At present, this engineering optimization has
been implemented in our Query Evaluator for intermediate results
that may have to be read and written multiple times in quick suc-
cession. This optimization is less critical for the actual data itself,
and has not yet been implemented in the Data Manager.

4 TIMBER: A Native XML Database

a separate child node. If the node is of mixed type, with
multiple content parts interspersed with sub-elements, each
content part is pulled out into a separate child node. Finally,
due to our focus on data management issues, all processing
instructions, comments, and such are simply ignored. In a
future version of our system, we could create yet another
child node of the element node with all such data.

An inclusion relationship between an element and its
sub-elements is the tightest possible bond between two en-
tities in a database. Entire sub-trees are frequently reque-
sted. In fact, in a document representation of the database, a
sub-tree corresponds to a contiguous fragment of the docu-
ment. As such, the determination of parent–child and ancestor–
descendent containment relationships is a very frequent op-
eration in XML query processing. It has been observed [2,
13, 39] that it is possible to associate a numeric start and
end label with each data node in the database, defining a
corresponding interval between these labels such that every
descendant node has an interval that is strictly included in
its ancestors’ interval. If each node is also labeled with its
Level, or nested depth of the node in the document, then
parent–child relationships can also be found. The relevant
formulae are:

– Ancestor–descendant relationship: a node �� ���������������
is the ancestor of node �� ��������������� iff ��� � �!����"��� .

– Parent–child relationship: a node �� �����������#�$� is the
parent of node �� �%���&�����'��� iff �(� �'�)�*�+",�&�'�
���#-,���#.0/ .

(� and � are start labels, � � and � � are end labels, and� � and � � are level labels in these formulae.)
We will discuss, in Sec. 5, how we use these formulae

in Timber. For the present, we focus on how these start,
end and level labels are managed. Conceptually, these la-
bels are additional attributes created automatically by the
system and associated with each node. Where document
boundaries are important, one could create separate labels
for each document, so that an additional doc label would
be required to match in addition to the interval subsump-
tion described above. It is easy to map between such a
multi-document model, and a model in which the ranges
of label values for each document are assigned to be non-
overlapping, doing away with the need for a separate doc
attribute.

Updates are an issue in any such labeling scheme, see [14].
It is conceivable that a complete re-labeling could be re-
quired for each update, leading to very poor update per-
formance. We address this issue by leaving gaps between
successive label values. With this mechanism, relabeling
is required only if a large number of insertions take place

within the same small label value range. If updates are well
distributed, no relabeling may be required for a long time.
See [13]. We use double values for these labels in the cur-
rent version of Timber, as an “automatic” means of leav-
ing gaps, at least to within machine precision. Note that as
new data is appended (as opposed to being inserted in the
middle), new larger label values can simply be manufac-
tured for the appended nodes with no effect on the existing
nodes.

In relational databases, a record identifier (typically cal-
led an “rid” or a “tid”) is used to identify each record. This
is not quite an identifier in the sense of an object-oriented
database – there is no concept of object identity. It fre-
quently is a function of physical placement of the record
(like a physical pointer), but it does not have to be: it is
truly a logical identifier. It is also not visible to the user at
the query level. Nonetheless, it plays a central role in re-
lational query processing. For an XML database, we seek
a corresponding node identifier. XML permits an optional
ID attribute, but this is not quite it, since this is user-visible,
and is optional, and further is not even applicable for nodes
that do not correspond to XML elements (such as attributes
and comments). The normal solution would be to invent
such an identifier for our system. However, we find that the
tuple of start, end, and level labels serves this purpose ad-
mirably. As such, we shall use this triple of labels as node
identifier. Note that while start alone suffices to serve as a
node identifier, using the triple as a node identifier enables
efficient index-based query processing, as we’ll see later.

The physical storage order of XML elements can sig-
nificantly impact the cost of data access. Since we expect
sub-elements to be requested frequently with an element,
ideally we would like to cluster these together. It is gener-
ally believed that storing XML data in document order (or
pre-order tree traversal order) is the most desirable. This
is what we do. An equivalent way of expressing this is that
we would like to store our nodes sorted by the value of their
start labels. Again, updates are an issue. See Sec. 7.

3.2 Index Storage

There is a rich history of work on index structures suited to
specific purposes. In particular, we draw inspiration from
the work done in the context of object-oriented systems,
such as [7,29]. More recently, novel path indices have been
proposed for XML and semi-structured data [15, 28, 37].
Schema summarization structures have also been proposed
[23, 24]. We are intensively studying this problem, but at
the current time have only single-node indices implemented
in Timber.

TIMBER: A Native XML Database 5

We construct value indices on attribute values, whether
these are numeric or character string. We also construct in-
dices on element content, when this content is recognized
as a number. We also construct term-based inverted indices
on element content when this is a large piece of text. In
addition, we construct an index on tag name: that is, given
a tag name, we can return all the elements with the speci-
fied tag. All our indices are stored using the B-Tree index
facility provided by Shore.

Index structures typically return a list of Rids in rela-
tional systems. Correspondingly, they return lists of start,
end and level labels in an XML database.

3.3 Metadata Storage

Timber has a metadata store that is, for the most part, not
remarkable. There is the usual information regarding at-
tribute types, data set sizes and indices constructed. The
histograms maintained for cost estimation purposes are no-
vel, and are described in Sec. 6.

Schema plays a crucial role in traditional databases,
and table structure is a crucial part of the metadata main-
tained. However, in the design of XML, much care has
been taken to make sure that a great deal can be accom-
plished even in the absence of schema (or DTD).2 In the
same spirit, we have designed the core of Timber not to
have any dependence on schema whatsoever. The bulk of
the description in this paper is with regard to the Timber
core, and hence has little mention of schema.

Knowledge of schema can play an important role in
data layout, in choice of index structures, and in query op-
timization. Our goal is to use this information, when avail-
able, to advantage; while continuing to retain reasonable
performance even when schema information is not avail-
able. For instance, even data statistics are collected in our
position histograms (described in Sec 6 below), without
specific reference to the schema.

3.4 Query Processing

XML queries in XQuery [10]3 are parsed into an algebraic
operator tree by the Query Parser. (The tree algebra used
for this purpose is described in Sec. 4). The Query Op-
timizer reorganizes this tree, based on a set of rules and

2 In fact, there is not yet complete agreement with regard to the
best means of expressing XML schema information [64, 65].

3 We have designed Timber to be as language independent as
possible. We have written parsers for other languages, including
Quilt [11], XML-QL [16], and XQL [43], but no longer maintain
these.

metadata information, and performs the required mapping
from logical to physical operators. The resulting query plan
tree is evaluated by the Query Evaluator, pipelined one op-
erator at a time, by means of a set of calls to the Data Man-
ager and Index Manager, which in turn call Shore storage.

4 Tree Algebra

An XML document is a tree, with each edge in the tree rep-
resenting element nesting (or containment). See figure 1,
for example. Structural relationships in this tree are central
to most XML querying. As such, an appropriate algebra for
XML should manipulate sets of trees. That is, each opera-
tor in the algebra should take as input one or more sets of
trees and produce as output a set of trees.

Order is important to XML documents. As such, the
trees manipulated by the algebra should be ordered. (This
is true, even if queries frequently do not care about the or-
der. See labeled paragraph on ordering later in this section.)
Moreover, each node in a tree represents an XML element,
and is thus labeled with the element tag and any attributes
of the element. In short, we require an algebra to manipu-
late sets of ordered labeled trees.

XML also permits references, which are represented as
non-tree edges, and may be used in some queries. These are
important to handle, and our algebra is be able to express
these. However, there is a qualitative difference between
these reference edges, which are handled as “joins”, and
containment edges, which are handled as part of a “selec-
tion”.

To be able to obtain efficient processing on large data-
bases, we require set-at-a-time processing of data. In other
words, we require a bulk algebra that can manipulate sets
of trees: each operator on this algebra would take one or
more sets of trees as input and produce a set of trees as
output. Using relational algebra as a guide, we can attempt
to develop a suite of operators suited to manipulating trees
instead of tuples.

Heterogeneity: Each tuple in a relation has identical struc-
ture – given a set of tuples from some relation in rela-
tional algebra, we can reference components of each tuple
unambiguously by attribute name or position. Trees have
a more complex structure than tuples. More importantly,
sub-elements can often be missing or repeated in XML. As
such, it is not possible to reference components of a tree
by position or even name. For example, in a bibliographic
XML tree, consider a particular book sub-tree, with nested
(multiple) author sub-elements. We should be able to im-
pose a predicate of our choice on the first author, on every

6 TIMBER: A Native XML Database

author, on some (at least one) author, and so on. Each of
these possibilities could be required in some application,
and these choices are not equivalent.

$1

$2 $3

pc pc

$1.tag = faculty &
$2.tag = secretary &
$3.tag = RA

Fig. 3 Pattern Tree, 1 , for a Simple Query

$1

$2 $3

pc pc

$1.tag = department &
$2.tag = faculty &
$3.tag = lecturer &
$4.tag = name &
$4.content = “K.Blue” &
$5.tag = TA &
$6.tag = TA &
$5.content = $6.content

$4 $5 $6

pcpcpc

Fig. 4 Pattern Tree, 1#2 , for a Less Simple Query

faculty

secretary:
F.Lee

RA:
Jerry

faculty

secretary:
F.Lee

RA:
Tony

faculty

secretary:
F.Lee

RA:
Rich

faculty

secretary:
M.Black

RA:
Pam

faculty

secretary:
M.Black

RA:
DJ

Fig. 5 Witness Trees for the Pattern 1 of Figure 3

We solve this problem through the use of pattern trees
to specify homogeneous tuples of node bindings. For ex-
ample, a query that looks for faculty members who have
both a secretary and an RA can be expressed by a pattern
tree shown in figure 3. Matching the pattern tree to the ex-
ample database, the result is the sub-trees, which are rooted
at element “faculty” and have two child elements, “secre-
tary” and “RA”. From the example XML document in fig-
ure 1, we can see that the sub-trees for faculty “K.Blue”
and “H.Grey” will be selected, as shown in figure 5. Such a
returned structure, we call a witness tree, since it bears wit-
ness to the success of the pattern match on the input tree of

interest. One witness tree is produced for each combination
of node bindings that matches the pattern. The set of wit-
ness trees produced through the matching of a pattern tree
are all homogeneous: we can name nodes in the pattern
trees, and use these names to refer to the bound nodes in
the input data set for each witness tree. A vital property of
this technique is that the pattern tree specifies exactly the
portion of structure that is of interest in a particular con-
text – all variations of structure irrelevant to the query at
hand are rendered immaterial. In short, one can operate on
heterogeneous sets of data as if they were completely ho-
mogeneous, as long as the places where the elements of the
set differ are immaterial to the operation.

Conditions other than tag names may be associated with
pattern trees. Figure 4 shows a more complex pattern tree
that places a number of additional conditions on the nodes
participating in the pattern. Node $2 can only be matched
by a faculty whose name is “K.Blue”. Furthermore, this
faculty is required to have a TA (at node $5) who is also
a TA (at node $6) to some lecturer (node $3) in the same
department (node $1).

XPath is very popular, and is frequently used in place
of XQuery for XML query processing. Also, the crucial
variable-binding FOR clause (and also the LET clause) of
XQuery uses a notation almost identical to XPath. So it is
worth spending a moment to see how the notion of pat-
tern tree relates to an XPath expression. The key difference
is that one XPath expression binds exactly one variable,
whereas a single pattern tree can bind as many variables
as there are nodes in the pattern tree. As such, when an
XQuery expression is translated into the tree algebra, the
entire sequence of multiple FOR clauses can frequently be
folded into a single pattern tree expression.

All operators in TAX take collections of data trees as
input, and produce a collection of data trees as output. TAX
is thus a “proper” algebra, with compositionality and clo-
sure. The notion of pattern tree plays a pivotal role in many
of the operators. Below we give a sample of TAX operators
by describing briefly how selection, projection and group-
ing work. Further details and additional operators can be
found in [25].

Selection: The obvious analog in TAX for relational se-
lection is for selection applied to a collection of trees to
return the input trees that satisfy a specified selection pred-
icate (specified via a pattern). However, this in itself may
not preserve all the information of interest. Since individual
trees can be large, we may be interested not just in knowing
that some tree satisfied a given selection predicate, but also
the manner of such satisfaction: the “how” in addition to
the “what”. In other words, we may wish to return the rel-

TIMBER: A Native XML Database 7

evant witness tree(s) rather than just a single bit with each
data tree in the input to the selection operator.

Selection 35476 8:9;�=< � in TAX takes a collection > as in-
put, and a pattern ? and adornment SL as parameters, and
returns an output collection. Each data tree in the output
is the witness tree induced by some embedding of ? into
> , modified as possibly prescribed in SL. The adornment
list, SL, lists nodes from ? for which not just the nodes
themselves, but all descendants, are to be returned in the
output. If this adornment list is empty, then just the wit-
ness trees are returned. Contents of all nodes are preserved
from the input. (Note that the result of the selection will in
general not be a homogeneous set unless the adornment list
is empty. The set of witness trees is always homogeneous,
and this is what matters.) Also, the relative order among
nodes in the input is preserved in the output. Because a
specified pattern can match many times in a single tree,
selection in TAX is a one-many operation. This notion of
selection is strictly more general than relational selection.

Consider once more the example database of figure 1
and the pattern tree shown in figure 3. A selection using this
pattern tree, @ , and an empty adornment list, on the exam-
ple database, A , would be written 3 456 BDC �EA � . One expects
that the outcome would be the faculty members of interest
(K.Blue and H.Grey), and possibly the sub-tree rooted at
each. But it is not enough to return the input database tree
in the output as satisfying the selection “predicate”. In re-
lational algebra, selection simply filters elements of a set –
the output of a selection operator is a subset of its input. In
a tree algebra, selection does more than filter since it iden-
tifies the relevant matching portion of the input document
(set element). Where multiple matches occur, each match
is shown separately in the output, as in figure 5. Informa-
tion retrieval systems sometimes highlight search terms in
the retrieved documents: our proposal takes this idea one
step further for selection queries in a tree algebra.

Projection: For trees, projection may be regarded as elim-
inating nodes other than those specified. In the substruc-
ture resulting from node elimination, we would expect the
(partial) hierarchical relationships between surviving nodes
that existed in the input collection to be preserved.

Projection F 456 4G9 ��< � in TAX takes a collection > as
input and a pattern tree ? and a projection list PL as pa-
rameters. A projection list is a list of node labels appearing
in the pattern ? , possibly adorned with H . All nodes in the
projection list will be returned. A node labeled with a H
means that all its descendants will be included in the out-
put. Contents of all nodes are preserved from the input. The
relative order among nodes is preserved in the output.

$1

$3

pc

Projection input

$1.tag = faculty &
$2.tag = RA &
$3.tag = name

PL: $1, $3

pc

$2

faculty

name

pc pc

RA

faculty

name

pc

TA

faculty

name

pc projection

TA

no
match

Example

(a)

(b)

projection

P

faculty

name

pc pc

RA

faculty

name

pc

RA

projectionpc

pc

pc

Fig. 6 A sample projection operator I7J:K J7LNMEO!P . (a) shows the in-
put pattern tree P and projection list PL. (b) shows an example
application on two different input trees. To minimize clutter, la-
bels have been dropped from Q�R edges in the pattern tree. S T edges
are labeled.

A single input tree could contribute to zero, one, or
more output trees in a projection. This number could be
zero, if there is no witness to the specified pattern in the
given input tree. It could be more than one, if some of the
nodes retained from the witnesses to the specified pattern
do not have any ancestor-descendant relationships. This no-
tion of projection is strictly more general than relational
projection. If we wish to ensure that projection results in
no more than one output tree for each input tree, all we
have to do is to include the pattern tree’s root node in the
projection list and add a constraint predicate that the pat-
tern tree’s root must be matched only to data tree roots.

A simple projection example is shown in figure 6a. Part
(b) for this figure shows how this projection would apply in
three cases. The first faculty member has an RA, a TA, and
a name; the pattern tree match is straightforward; and the
projection result is what one would expect. The second fac-
ulty member has two RAs, and hence has two separate wit-
ness trees that would match the sepcified pattern tree. Both
these witness trees are identical with respect to the pro-
jected elements (“faculty” and “name”). As such, only one
result is produced. This is duplicate elimination by “iden-
tifier”, and is used by all TAX operators to remove gratu-

8 TIMBER: A Native XML Database

itous duplicates, as in this example. Note that this is differ-
ent from duplicate elimination by value, where we notice
identical values for the names and other attributes of two
different faculty members, and hence remove one of them.
The latter operation is ptentially expensive, and carried out
only upon explicit request. The former operation can actu-
ally be used to reduce the cost of operator evaluation, as
shown in [3]. The third faculty member in the figure has
no RAs, and hence produces no results on account of no
pattern tree match. This is so, in spite of the fact that the
second faculty member does have all the attributes retained
in the projection.

In relational algebra, one is dealing with “rectangular”
tables, so that selection and projection are orthogonal oper-
ations: one chooses rows, the other chooses columns. With
trees, we do not have the same “rectangular” structure to
our data. As such selection and projection are not so obvi-
ously orthogonal. Yet, they are very different and indepen-
dent operations, and are generalizations of their respective
relational counterparts.

Ordering: As noted above, trees in XML are ordered.
However, queries often do not care about this order. As
such, we need to allow for pattern trees that match while
preserving order, and pattern trees that do not necessarily
preserve order when matching. Rather than introduce one
additional choice variable, we specify pattern trees to be
unordered except where ordering constraints are explicitly
specified. Even for a completely ordered tree, we can show
that the additional length of the pattern tree specification
does not asymptotically increase the size of pattern tree de-
scription. The reason is that order is a transitive notion, so
only the transitive reduction of the ordering needs to be
specified. In the case of total ordering of U nodes, this re-
quires U .V/ order relations between immediate successors.
A benefit of our approach is that ordering constraints can
be specified selectively where they matter in a pattern tree.

Sets, by definition, are unordered. In SQL, we often re-
quire the answer set to be sorted by some criterion. This
sorting is not part of the relational algebra – instead it is
performed at the end, as part of the output. In our algebra,
trees are ordered while sets are unordered, so we have a
greater richness, and it actually becomes possible to incor-
porate sorting (and ordering operations in general) as part
of the algebra. Specifically, an unordered set of trees can
be combined into a single tree by ordering the set of trees
and then making each an immediate sub-tree of a new root
node.

XQuery permits elements to be ordered according to
“document order”. In fact, this is the default order expected

if none other is specified. We use the start label of a node
for this purpose.

Grouping: In relational databases, tuples in a relation are
often grouped together by partitioning the relation on se-
lected attributes – each tuple in a group has the same values
for the specified grouping attributes. Given the more com-
plex structure of trees, there may be a good reason to group
based on some arbitrary function of each tree rather than
a simple equality on selected attributes. For instance, we
may wish to group faculty in the example of figure 1 based
on the number of RAs associated with the faculty member.
These numbers are never explicitly stored in the database
anywhere, and are themselves obtained as the result of a
“structural aggregation”. For another example, books in a
bibliographic database may be grouped based on the state
of residence of the first author.

A source of potential difficulty is that grouping may
not induce a partitioning due to repeated sub-elements. If
a book has multiple authors, then grouping books by au-
thor will result in this book being repeated as a member of
multiple groups.

A deeper point to make is that grouping and aggrega-
tion are not part of relational algebra, though they are im-
portant physical operators in relational database systems.
The reason is that these operators cause a “type violation”:
a grouping operator maps a set of tuples to a set of sets of
tuples, and an aggregation operator does the inverse. The
flexibility of XML permits grouping and aggregation to be
included within the formal tree algebra, at the logical level.

We formalize this as follows. The groupby operatorW 476 X$Y
6 Z
[�\> � takes a collection > as input and the follow-
ing parameters. A pattern tree ? ; this is the pattern used
for grouping. A grouping basis]_^ that lists elements by
label in ? (and/or attributes of elements), whose values are
used to partition the set ` of witness trees of ? against
the collection > . Element labels may possibly be followed
by a ‘*’. An ordering list a�b , each component of which
comprises an order direction and an element or element
attribute (specified by label in ?), with values drawn from
an ordered domain. The order direction is either ASCEND-
ING or DESCENDING. This ordering list is used to order
members of a group for output, based on the values of the
component elements and attributes, considered in the order
specified.

The output tree Gc corresponding to each group `0c is
formed as follows: the root of dc has tag tax group root

and two children. (a) Its left child e has tag tax grouping
basis, and one child for each element in the grouping

basis above, appearing in the same order as in the group-
ing basis. If a grouping basis item is $i or $i.attr,

TIMBER: A Native XML Database 9

FOR $a IN distinct-values(document(“bib.xml”)//author)
RETURNf

authorpubs g�
$a ��

FOR $b IN document(“bib.xml”)//article
WHERE $a = $b/author
RETURN $b/title�f

/authorpubs g
Fig. 7 Query 1: Group by author query (After XQuery use case
1.1.9.4 Q4.)

then the corresponding child is a match of this node. If
the item is $i*, then in addition to the said match, the
subtree of the input tree rooted at the matching node is
also included in the output. (b) Its right child h has tag
tax group subroot. Its children are the roots of input
trees in > that correspond to witness trees in `0c , ordered
according to the ordering list. Input trees that produce more
than one witness tree will appear more than once.

Following the principles outlined above, we have de-
veloped TAX, a tree algebra for XML. The operators are
selection, projection, product, set union, set difference, re-
naming, reordering, and grouping. Details can be found
in [25]. It has been shown that the core of XQuery can
be expressed in terms of TAX operators. The first step in
the Timber system is to parse a given XQuery expression
to obtain an equivalent TAX expression, which can subse-
quently be optimized using algebraic identities.

A frequent case is when we rephrase XQuery expres-
sions written as nested FLWR clauses into simple (“single-
block”) tree algebra expressions involving grouping. The
following example demonstrates how this works. Details
of the described algorithm can be found in [41]. Let’s con-
sider a sample nested FLWR statement, as seen in Query 1
in Figure 7.

$1

$2 $4

ad

$1.tag = TAX_prod_root &
$2.tag = doc_root &
$3.tag = author &
$4.tag = doc_root &
$5.tag = article &
$6.tag = author &
$3.content = $6.content

$1

$2

ad
$1.tag = doc_root &
$2.tag = author

“outer”
pattern tree

“join-plan” pattern tree

(a)

(b)

$5

$6

pc
pc

pc

$3

pc

Fig. 8 The generated selection pattern trees of a naïve parsing of
query 1 in figure 7.

A naïve translation of this would produce an inefficient
nested FOR loop. The outer combination of FOR/WHERE
clauses will generate a pattern tree (“outer” pattern tree).
A selection will be applied on the database4 using this pat-
tern tree; the selection list consists of the bound variables
in XQuery. For Query 1 the pattern tree is shown in Fig-
ure 8.a. The selection list is $2.

The inner combination of FOR/WHERE clauses will
generate a pattern tree that describes a left outer join be-
tween all the authors of the database, as selected already
and bound to variable $a, and the authors of articles. This
pattern tree is shown in Figure 8.b. A left outer join is gen-
erated using this pattern tree and applied on the outcome of
the “outer” selection and the database. It uses a selection
list $5. Following this join operation there will be a projec-
tion with projection list $5* and then a duplicate elimina-
tion based on articles.

To produce the final result the necessary stitching will
take place using a full outer join and then a renaming to
generate the tag name for the answer.

With the use of grouping, we can produce a simpler and
more efficient execution. We present next the outline of an
algorithm to detect the naïve execution, and rewrite it more
efficiently with the grouping operator.

1. Construct an initial pattern tree from the “inner” FLWR
statement and consisting of the bound variables and
their paths from the document root, including any con-
ditions that apply to these variables without reference
to variables bound in the outer loop. For Query 1 this
pattern tree is seen in figure 9a. We apply a selection
using this pattern tree with selection list the elements
corresponding to the bound variables and a projection
with a projection list similar to the selection list. For
Query 1 those lists will be $2 and $2* respectively.

2. Construct the input for the GROUPBY operator.
– The input pattern tree is generated from the join

plan pattern tree of naïve parsing. It consists of the
bound variable of the “inner” statement and the node
where the join was specified. For Query 1 this is
shown in figure 9b.

– The grouping basis will be the join value of the
nested query. For Query 1 this will correspond to
the author element or $2.content in the group by
pattern tree of figure 9b.

3. Apply the GROUPBY operator on the collection of trees
generated from step 1. This will create intermediate
trees containing each grouping basis element and the
corresponding pattern tree matches for it. For Query 1
the tree structure will be as in figure 9c.

4 The database is a single tree document

10 TIMBER: A Native XML Database

4. A projection is necessary to extract from the intermedi-
ate grouping tree the nodes necessary for the outcome.
The projection pattern tree is generated from each ar-
gument of the RETURN clauses. For query 1 this is
shown in figure 9d.

5. After the final projection is applied the outcome con-
sists of trees with an dummy root and the authors asso-
ciated with the appropriate titles. A rename operator is
necessary to change the dummy root to the tag specified
in the return clause.

$1

$2

pc
$1.tag = article &
$2.tag = author

Intermediate tree structure

TAX Group
root

TAX
Grouping

basis

author

TAX Group
subroot

...

GROUPBY
pattern tree

article

title

(c)

(b)

authoryear

article

title authoryear

$1

$2 $3

$4

$1.tag = TAX Group root &
$2.tag = TAX Grouping basis &
$3.tag = TAX Group subroot &
$4.tag = author &
$5.tag = article &
$6.tag = title

PL: $1,$4*, $6*

projection pattern tree(d)

pc

pc

$5

pc

pc

Initial
Pattern Tree

(a)

$6

$1

$2

pc
$1.tag = doc_root &
$2.tag = article

pc

Fig. 9 GROUPBY operator for Query 1. The generated input and
the intermediate tree structure

5 Query Evaluation

5.1 Physical Algebra

In the relational world, there is an important distinction be-
tween the logical algebra and the physical algebra. The for-
mer includes cartesian product, for example, as a core oper-
ator, and does not permit sorting. The latter includes natural
join and sorting as core operators. Moreover, the latter ma-
nipulates ordered sets (and exploits ordering), whereas the
former only deals with unordered sets. It stands to reason
that there are similar needs in XML databases as well.

In addition we have the issue of determining how to
reconcile pattern tree matching at the logical level with

nodes being the atomic unit of data storage. In a relational
system, the unit of logical operation is the same as the unit
of physical operation. In XML, we are logically manipu-
lating trees, but physically manipulating “node-structures”.
As such, the physical algebra for Timber has greater sepa-
ration from the logical algebra than in relational systems.
In particular, data is accessed at the granularity of nodes,
and indexing is performed at the granularity of nodes. Fur-
thermore, the root nodes of a tree can frequently be used in
place of the tree itself for query processing.

The bulk of the physical algebra is relatively mundane,
with all the operators one would normally expect, such
as joins, selections, sorting, and so forth. In the interest
of space, we skip these details here and refer the inter-
ested reader to [67]. Instead, we describe below two fea-
tures that are particularly noteworthy. One is the reuse of
pattern trees. The other is the explicit physical operator for
data materialization.

Pattern Tree Reuse: Given a heterogeneous set of trees,
we use pattern tree matches to identify nodes of interest:
the nodes to which conditions apply, the nodes that should
be manipulated, etc. Thus, as described in Section 4, most
(logical) tree algebra operators require a pattern tree as a
parameter. In an algebraic expression, it is frequently the
case that multiple operators use exactly the same pattern
tree. It is computationally profligate to re-evaluate the pat-
tern tree each time for each operator. Instead, we permit a
pattern tree evaluation to be pulled out as a distinct phys-
ical operator (sequence), the results of which persist, and
can be shared with many of the subsequent operators. For
example consider pattern tree 1 in figure 10. We can apply
a selection using this pattern tree and selection list $2, then
a projection with the same tree and projection list $2, $4.
The selection operator returns a set of faculty who have
both RA and name children, along with the entire sub-tree
rooted at each. The projection operator retains only the fac-
ulty and name nodes from each sub-tree.

Persistence of pattern tree matches is accomplished through
the use of a pattern tree identifier (PID) and a witness node
identifier (WID) within the tree. Every database node that
could serve as a match for a particular witness node posi-
tion in a particular pattern tree has the corresponding “PID-
WID” recorded as part of the intermediate result. Subse-
quent operations that use the pattern tree can then refer to
the set of all nodes carrying the corresponding PIDWIDs.
For instance, a node selection predicate physical operator
can be applied to node $3 of pattern tree numbered 2, by
applying the predicate to all nodes in the node-structure in-
put to this operator with a PIDWID of �=i ��j%� .

TIMBER: A Native XML Database 11

$1

$2

pc
pc

$1.tag = department &
$2.tag = faculty &
$3.tag = RA &
$4.tag = name

Pattern tree 1$3

$1

$2

isroot($1) &
$2.tag = secretary

Pattern tree 2

pc

$1

$2

$1.tag = PID1WID2 &
$2.tag = secretary

Pattern tree 3

pc

$4

pc

Fig. 10 Sample pattern trees. Pattern tree 3 is an extension of
pattern tree 1.

One can think of pattern tree reuse as akin to common
sub-expression elimination. A complication to consider in
the case of pattern tree reuse is that operators actually ma-
nipulate tree structure. A structural pattern matched before
a particular algebraic operator may no longer match after
the operator, and vice versa. Even worse, it is possible for
the pattern to match, but now bind to different nodes. For
example, consider pattern tree 2 in figure 10. If a projection
is applied on the database using this tree and projection list
$2, the empty set will be returned since no secretary is
a direct child of the root node in the database of figure 1.
But what if a selection is applied on the database first, re-
turning all faculty and their child nodes. Then a projection
using pattern tree 2 will return every secretary in the data-
base, since each is directly below some faculty, returned as
the root of a tree in the output of the selection.

Consider a join predicate to be applied to a pair of
nodes, each of which has been identified by means of a
distinct pattern tree. This too is easily specified, using the
PIDWIDs of the corresponding nodes: the fact that separate
pattern trees were used to identify each node makes no dif-
ference. In fact, all the logical algebra operators, except for
grouping, preserve (relevant portions of the) tree structure,
and hence permit the use of persistent PIDWIDs, provided
that all node predicates are quantifier-free and only refer-
ence node tags, identifiers, and attribute values. Notably,
this includes the cartesian product operator.

Sometimes, subsequent operators in a logical algebra
expression may not use the exact same pattern tree, but
rather may use a variation of it. Our PIDWID scheme per-
mits pattern tree extension. We can reference a previously
computed pattern tree match, and apply additional condi-
tions to the node-structures known to satisfy the original
match. These additional conditions are in the form of an
additional pattern tree that references previously matched

nodes in common with the original using their PIDWIDs.
For example we apply a selection on the database using
pattern tree 1 of figure 10 and selection list $2. Then we
want to apply a projection to find out the secretary for each
faculty member. There is no need to create a new pattern
tree with complicated structure for this purpose. We reuse
pattern tree 1 and we extend it to generate pattern tree 3 us-
ing a PIDWID reference. Then a projection can be applied
using pattern tree 3 and $2 as the projection list. Note that
the secretary element could not have been included in pat-
tern tree 1 to begin with: the applied selection would have
produced different output. (The output would have been re-
stricted to faculty who have RA, secretary and name, rather
than including faculty with RA and name but no secretary).

Node Materialization: In relational databases, conjunc-
tions of selection conditions are often evaluated through
intersection of rid sets, obtained from indices, without ac-
cessing the actual data. However, for the most part, query
evaluation does process the actual data in the evaluation
pipeline. In the case of XML trees, it is possible to encode
the tree structure (see discussion of start and end attributes
in the next section) so that quite complex operations can be
performed without accessing the actual data itself. On the
flip side, the actual data itself is a well-circumscribed tu-
ple in the case of a relational database. But for an XML
element, we may be interested in the attributes of this el-
ement itself, in its child sub-elements, or in its entire de-
scendant sub-tree: which depends on the context. As such,
at the physical level, it is important to distinguish between
identification of a tree node (XML element), by means of
a node identifier, and access to data associated with this
node. Consequently, we have an explicit materialization
operator in the physical algebra. This operator takes a (set
of) node identifier(s) as input and returns a (set of) XML
tree(s) that correspond.

In an XML database, as in any other database, we use
indices to find portions of the database relevant to a query
whenever possible. An index lookup returns a list of node
identifiers. In a relational database the corresponding tu-
ple identifiers (or “rid”s) would be dereferenced (almost)
immediately. However, considerable additional processing
may be possible, in the case of XML, based purely on the
node identifiers. Consequently, during query processing,
we keep only the ids of nodes around as far as possible.
We call such intermediate results unmaterialized.

Of course, there will be operations for which access to
the data is necessary. But now there is the question of what
“the data” corresponding to a node is. We may need only
the value of one attribute for some predicate evaluation or
grouping. Or we may need data from a child sub-element.

12 TIMBER: A Native XML Database

And so on. A reasonable technique is to materialize exactly
the minimum amount required, and work with intermediate
results that are partially materialized. By so doing, we min-
imize the size of intermediate results being manipulated.

An option at the other extreme is to fully materialize
each node identifier immediately – obtaining all the data
associated with it (and its sub-tree, if need be). As stated
above, this option is usually very expensive.

As a small example consider pattern tree 1 of figure 10.
A simple query consists of a selection using this pattern
tree and then a projection using the same pattern tree and $4
as projection list. “The name of each faculty member that
has an RA”. The only node that needs to be materialized is
$4 (name) at the end of the query. Cases like these are very
common and fully materializing everything is unnecessary.

5.2 Structural Joins in Pattern Tree Matching

Most logical algebra operators take a tree pattern as pa-
rameter. Every query plan that results has satisfaction of
(at least one) tree pattern match as an early evaluation step.
(There are two reasons for this. The syntactic reason is that
there are no bound nodes to be manipulated until pattern
trees have been matched. The performance reason is that
the pattern tree match is akin to (a complex) selection, and
is an important means to reducing the amount of data to
be processed in the remainder of the query.) A construct
that appears very often in a pattern tree is the structural
join construct, which is used to specify a parent–child re-
lationship or an ancestor–descendant relationship. Conse-
quently, efficient implementation of the structural join is
critical in determining the overall performance of an XML
query processing system. We describe next, in some detail,
our thoughts with respect to the implementation of struc-
tural joins for pattern tree matching.

A pattern tree, such as the one is figure 3 explicitly
specifies predicates at nodes that must be satisfied by (can-
didate) matching nodes and also specifies structural rela-
tionships between nodes that match. Each edge in the pat-
tern tree specifies one such structural relationship, which
can either be “parent-child” (immediate containment) or
“ancestor-descendant” (containment).

The simplest way to find matches for a pattern tree is
to scan the entire database. Multiple matches of the pattern
tree can share node bindings in common. Again, consider
the example query in figure 3. Even though only two fac-
ulty members have both secretary and RA, the result con-
tains five witness trees, for each pair of secretary and RA
of the same faculty member. The five witness trees that
will be returned share two different faculty-secretary pairs.

As such, a naive scan algorithm will not be able to find
all these matches in a single pass. An appropriate adapta-
tions of effective pattern-matching techniques for strings
(e.g Boyer-Moore [8], or KMP [31]) is required.

By and large, a full database scan is not what one would
like to perform in response to a simple selection query. One
would like to use appropriate indices to examine a suitably
small portion of the database. One possibility is to use an
index to locate one node in the pattern (most frequently the
root of the pattern), and then to scan the relevant part of the
database for matches of the remaining nodes. While this
technique, for large databases, can require much less effort
than a full database scan, it can still be quite expensive.

Experimentally, our own work [2], as well as that of
others [59], has shown that under most circumstances it
is preferable to use all the indices available and indepen-
dently locate candidates for as many nodes in the pattern
tree as possible. Structural containment relationships be-
tween these candidate nodes is then determined in a subse-
quent phase, one pattern tree edge at a time. For each such
edge, we have a containment “join condition” between nodes
in the two candidate sets. We seek pairs of nodes, one from
each set, that jointly satisfy the containment predicate.

Example 3 Consider a query, against the database A in-
troduced in figure 1, seeking faculty who have a secre-
tary reporting to them. The pattern to be matched has two
nodes: a parent node that matches data nodes with tag fac-
ulty, and a child node that matches data nodes with tag
secretary.

A navigational access plan would start with a match
at one of the two nodes in the pattern, and then navigate
from it to find a match for the other node. For instance,
there are three faculty nodes and three secretary nodes in
the database. We could start from each of the three faculty
nodes and explore all children to see if any of them is a sec-
retary. When any such is found, the faculty-secretary pair
can be returned as a witness tree. While the navigational
effort involved is not huge in this small database for this
trivial pattern, it is not hard to imagine that it could be
very expensive given complex patterns, including indirect
containment, to be matched on large databases.

A structural join access plan for the same pattern match
task would first create lists of matches for each individual
node in the pattern: namely the list of three faculty nodes
and the list of three secretary nodes. Then it would perform
a structural join to determine which faulty-secretary node
pairs have a parent-child relationship.

Structural Join Algorithms Join is an expensive operation
in a relational database. It tends to be the same in an XML

TIMBER: A Native XML Database 13

Algorithm Stack-Tree-Anc (AList, DList)

/* AList is the list of potential ancestors, in sorted order of StartPos */

/* DList is the list of potential descendants in sorted order of StartPos */

a k AList->firstNode; d k DList->firstNode; OutputList k NULL;

while (the input lists are not empty or the stack is not empty)
�

if ((a.StartPos g stack->top.EndPos) l!l (d.StartPos g stack->top.EndPos))
�

/* time to pop the top element in the stack */

tuple k stack->pop();

if (stack->size k!k 0)
�
/* we just popped the bottom element */

append tuple.inherit-list to OutputList �
else

�
append tuple.inherit-list to tuple.self-list

append the resulting tuple.self-list to stack->top.inherit-list��
else if (a.StartPos

f
d.StartPos)

�
stack->push(a)

a k a->nextNode �
else

�
for (a1 k stack->bottom; a1 m�k NULL; a1 k a1->up)

�
if (a1 k!k stack->bottom) append (a1,d) to OutputList

else append (a1,d) to the self-list of a1�
d k d->nextNode��

Fig. 11 Algorithm Stack-Tree-Anc with output in sorted ancestor order

database. Structural join computation is at the heart of tree
pattern matching, which in turn is at the heart of XML qu-
ery processing. Therefore, finding an efficient algorithm for
evaluating a structural join is crucial.

Using the formulae in Sec. 3, each structural join is
represented as an ordinary relational join with a complex
inequality join condition. Variations of the traditional sort-
merge algorithm can be used to evaluate this join effec-
tively. Such variations have been suggested in [2,59]. How-
ever, one can exploit the tree structure of XML to do better.
We have developed, and use in Timber, a whole Stack-Tree
family of structural join algorithms. In figure 11 we de-
scribe one such algorithm that turns out to be used most
frequently.

The intuition behind the algorithm is as follows. In a
depth-first traversal of the database tree, every ancestor-
descendant pair appears on a stack with the ancestor be-
low the descendant. We exploit this observation to perform
a limited depth-first traversal, skipping over nodes that are
not in either input candidate list (AList or DList). (We use
AList to denote the list of candidate ancestor (or parent)
nodes. We use DList to denote the list of candidate descen-

dant (or child) nodes.) We require an in-memory stack of
size as large as the maximum depth of the XML document.
The basic idea is to take the two input operand lists, AList
and DList, both ordered by the Start position and merge
them using a stack.

A node U with the smallest Start position is pulled
from one of the input lists. If this Start is greater than the
End of any node n already on stack, then we have finished
traversing the portion of the tree involving n , and node n
can be popped. If node U is from the AList it is pushed onto
stack. If node U is from the DList, then it merges with each
node in the stack to create a result pair. If the output were
produced immediately, then the output would be sorted by
the Start position of the descendant node in the join pair.

The sort order of operator output can be very important
for pipelined query evaluation. It is typically most useful to
have the results sorted by the Start position of the ancestor
node in the join pair. In this case, a join result cannot be
output until all the join results with ancestor nodes of lower
Start value are output. This is done by keeping a list of
join results with each of the ancestor nodes in the stack,
appending the list to the next node in stack when one node

14 TIMBER: A Native XML Database

is popped, and outputting result only when the bottom of
the stack is popped. Through careful list manipulation, we
can perform this result-saving with limited memory buffer
space and at most one additional I/O (write and then read
back) for any result page.

Small variations of the algorithms described above can
be used if the desired structural join is a parent-child (im-
mediate containment) join rather than an ancestor - descen-
dant (containment) join. Similarly, one can define semi-
join, outer-join, and other variants. (Semi-joins, and left
outer joins, in particular, seem to occur frequently in XML
queries). Experiments show that these algorithms far out-
perform the navigation-based join algorithms, as well as
the RDB implementation, in all cases.

The space and time complexity of the Stack-Tree-Anc
algorithm is op��q r ��sut�v q�wxq A ��sut�v q�wyq o*z v\{ z vu�|sut�v q � . The}_~ o complexity is op�%� � 9�c���� �� w�� � 97c���� �� w�� ��� ��� � ��9�c���� �� � ,
where B is the blocking factor. (These asymptotic results
apply to most other algorithms in the Stack-Tree family as
well).

5.3 GroupBy

We discussed above that grouping does not necessarily par-
tition the set. E.g., the same book may have to appear in
multiple groups, once for each author. RDBMS implemen-
tations of grouping typically rely on sorting (or possibly
hashing). We cannot use these implementations directly.
One possibility is for us to replicate elements an appropri-
ate number of times, and to tag each replica with the correct
grouping variables to use. For example, a two-author book
would be replicated to produce two versions of the book
node, with one author tagged in each replica as the one to
use for grouping purposes. Thereafter standard sorting (or
hashing) based techniques may be used.

The simple procedure suggested above requires cum-
bersome tagging, and involves needless early replication.
Our implementation uses a slight variation that minimizes
these disadvantages. The central idea is to recall that the
grouping list (the list of variables on the basis of which to
group) consists of nodes identified by means of a pattern
tree match. The normal pattern tree match procedure will
produce all possible tuples of bindings for these grouping
variables. The sorting (or hashing) can then be performed
using the resulting tuples of bindings.

If the grouping were to be followed by aggregation, as
is frequently the case, this replication can be avoided alto-
gether. For instance, suppose we are interested in the count
of books written by each author. We can perform the count
without physically replicating the book elements.

6 Query Optimization

Example 4 Consider once more the query shown in fig-
ure 3. Even though the query is very simple, there are dif-
ferent ways to evaluate it. One join plan is to consider the
join between faculty node and secretary node first, that is
to find all the faculty members with a secretary, then, join
the result with RA node. An alternative plan is to join fac-
ulty node with RA node first, then, join the result with sec-
retary node. There are other possibilities too – one could
join RA with secretary first. Such a join would result in a
cartesian product if we were performing value-based joins,
as in relational systems. Since these are structural joins,
there is a “join predicate” between the two nodes of a “sib-
ling” relationship, and such joins are quite reasonable to
consider.5

Query patterns that consist of several nodes have many
more evaluation plans. The number of alternatives grows
in factorial order. There can be orders of magnitude differ-
ence in the evaluation costs of different plans. A query op-
timizer must enumerate all (or a promising subset of) the
evaluation plans, estimate their costs, and choose the one
with lowest estimated cost to evaluate. Some initial work
in this direction for XML query processing has been de-
scribed in [36]. However this work considered only a very
limited set of choices, and focused on navigational access
methods, which we now know not to prefer.

6.1 Structural Join Order Selection

Join order selection is among the more important tasks of
a relational query optimizer. Correspondingly, in an XML
database, structural joins predominate. Every pattern match
is computed as a sequence of structural joins, and the order
in which these are computed makes a substantial difference
to the cost of query evaluation.

In relational query processing it is almost always a good
idea to evaluate selections first. In our case, we have an ad-
ditional complication that it is not always a good idea to
push selection predicates in all the way. This is for two rea-
sons: structural join predicates may sometimes be more se-
lective than a value-based selection predicate. Also, struc-
tural joins can be computed with node identifiers alone,
whereas selection predicate evaluation may require access

5 We do not, at present, have access methods for sibling struc-
tural joins implemented in Timber, though we are studying this
issue. As such, the remainder of this section will restrict itself to
consideration of parent-child and ancestor-descendant structural
joins.

TIMBER: A Native XML Database 15

to the actual data (when an index is not present on the pre-
cise selection predicate). Consequently, (structural) join or-
der optimization should also consider selection predicates
being interspersed, rather than necessarily applied first. This
further increases the size of solution space to be searched.

An adaptation of the standard dynamic programming
techniques to our problem is as follows: We define status
to be a reformed pattern-tree, with some sub-patterns in
the pattern tree joined. Each of these joined sub-patterns
coalesces into one node in the status, and the edges within
these sub-patterns disappear. A move, which represents a
join operation based on a single edge, transform one sta-
tus into another. A cost value is associated with each move,
based on the cardinalities of the nodes that participate in
the join and the result size of the join. The starting status
is exactly the pattern-tree itself, with an additional node
created for each selection predicate. The additional node
is attached as a child of the node the predicate references,
and as a child of the least common ancestor of the nodes in-
volved when multiple nodes are references. The status with
only one node, which contains all the nodes in the original
pattern-tree, is the final status. A sequence of moves that
transform the starting status to a final status and has the
minimum cost of all move sequences that can perform the
same transformation is what we are looking for. We have
a dynamic programming formulation, and can now solve
this.

A difficulty with the preceding dynamic programming
formulation is that the number of statuses (states) to be ex-
plored can be exponential in the size of the query pattern,
making a full dynamic programming solution prohibitive.
A less expensive solution can be developed based on the
following observation:

By choosing an appropriate structural join algorithm,
the results of a structural join can be output ordered by ei-
ther of the two nodes involved in the join. No extra sorting
is needed, and no blocking points created in the pipeline, if
the OrderBy node in one join is a node involved in the next
join. This leads to the following:

Theorem 1 Any XML pattern match can be evaluated with
a fully-pipelined evaluation plan to produce results ordered
by any node in the pattern tree.

Proof Sketch: Prove by induction on U , the total number of
edges in a pattern. For the base case, the theorem obviously
goes through for a query pattern with a single node and
zero edges. For the inductive case, we can show that there
is at least one pipelined plan, whose last join involves a
sub-pattern which contains the result OrderBy node h , and
a sub-pattern which contains one of its neighbors z . Each

of these sub-patterns has less than U edges. By the induc-
tive assumption, there is a pipelined plan for the first sub-
pattern with results ordered by h and a pipelined plan for
the second sub-pattern with results ordered by the neighbor
node z . ��

For full details on this topic, please see [56].

Algorithm FP Optimization (4d�D�\�E�����������u�)
// Inputs: The query pattern to be evaluated,
// Output: Processing tree to evaluate the query.� c�����Z����_���
For (each node ��� in 4d� �\�E�������5�D�u�)

cost � FP OrderBy(4��D�\�E�������5�D�u� , � � , ¡ Z
c��¢�$[£� �)
if (¤ Z���� < � c£����Z����)� c�����Z����_� ¤ Z���� ; ¥ Z�c£��4G[£� ��� ¡ Z�c£��� [�� � ;

output(¥ Z
c���4¦[�� �);
Algorithm FP OrderBy(4¦�������
� , ��§D¨ Z § � , ¥ Z�c£��4G[£� �)
// Inputs: 4¦�������
� : The query pattern to be evaluated;
// ��§D¨ Z § � : The node to be ordered by in output.
// Output: Processing tree and its cost

¨ �uc©X$ª�Y�Z
�D� = neighbors of OdNode
For each ¨ ��c£X$ª¢Y�Z����D« c©¬� � Y����D�\�E����� = SubPattern(4¦�����D�u� , ¨ ��c£X ª�Y�Z�����« c©¬ , ��§D¨ Z § �)¤ Z����_� FP OrderBy(� � Y����D�\�E����� , ¨ ��c©X$ª�Y�Z
�D��« c©¬ , � � Y\�$[£�$�);
Enumerate all the possible permutations of
subpatterns to join with ��§D¨ Z § � .
Store the best plan in ¥ Z�c£��4G[£� � .
Store its cost in ¤ Z���� .
output(cost);

note:
Function SubPattern(PatterTree, Node1, Node2)
partitions the PatternTree by cutting the edge
between Node1 and Node2, and returns the
subpattern contains Node1.

Fig. 12 Algorithm FP Optimization for Finding the Best Fully-
Pipelined Evaluation Plan

6.2 Result Size Estimation

Query optimization enumerates a subset of all the possible
join plans and picks the one with the lowest cost to exe-
cute. To estimate this cost, we need an accurate estimate
of the cardinality of the final query result as well as each
intermediate result for each query plan. Result size estima-
tion is also useful for its own sake, in an Internet context,
to provide users with quick feedback about expected result
size before evaluating the full query result. There have been
several recent studies of this topic, such as [1, 12]. We de-
scribe here the techniques incorporated in Timber that im-
prove upon these previous works. Full details can be found
in [54, 55].

Example 5 Consider a simple pattern with only two nodes,
faculty and TA, with parent-child relationship among them.

16 TIMBER: A Native XML Database

There are three faculty nodes and five TA nodes in the
XML document. The schema says that a faculty can have
any number of TAs. Without any further schema informa-
tion, the best we can do in estimating the result size is to
compute the product of the cardinality of these two nodes,
which yields 15. Consider the fact that faculty nodes are
not nested, one TA can only be the child of one faculty
node, we can tell that the upper-bound of the result num-
ber is the cardinality of TA nodes, which is 5. But as we can
see from the figure, the real result size is 2. The bias in the
estimation is due to the fact that the structure information
of the XML document is not caught.

Position Histogram: Recall that a numeric Start and End
label is associated with each data node in the database (XML
document), defining a corresponding interval between these
labels and the descendant nodes has an interval that is strictly
included in its ancestor’s interval. Taking the Start and
End pair of values associated with each node that satisfy a
predicate, we construct a two-dimensional histogram. Each
grid cell in this position histogram represents a range of
Start position values and a range of End position values.
The histogram maintains a count of the number of nodes
satisfying the predicate that have Start and End position
within the specified ranges.

Each data node is mapped to a point in two-dimensional
space. Node A is an ancestor of node B iff the start posi-
tion of A is less than the start position of node B, and the
End position of A is no less than the End position of node
B. In other word, node A is to the left of and above node B
in the position histogram. Therefore, given the position his-
togram of two node predicate, the estimate of the join result
of this two nodes can be computed by looping through each
grid cell in the histogram of one node predicate and count-
ing the number of nodes (in the other histogram) which can
have the desired relationship with a node in that grid cell.
The estimate can be represented in forms of a position his-
togram itself, which makes it possible to estimate the result
size for complex query patterns.

faculty 0

2

1 TA 0 3

2

Fig. 13 Position Histograms: The X-axis depicts start position
value and Y-axis end position value. the

Let’s have a look at the example XML document in
figure 1 again. Consider a pattern tree with only two nodes,
faculty and TA, with parent-child relationship among them.

The i®¯i histograms of predicates “element tag - fac-
ulty” and “element tag - TA” are shown in figure 13. There
are 55 nodes in the database. The left column in these his-
tograms corresponds to elements that start in the first half
of these nodes. The bottom row corresponds to elements
that end in the first half. Thus, the first histogram says that
there are 2 faculty in the first half of the database and one in
the second half. The 0 in the top left indicates that there is
no faculty element that has a large span starting in the first
half and stretching through to the second half. The bottom
right cell is empty because it can never be possible for an
element to start in the second half and end in the first half.

Since TAs in the second half cannot work for faculty in
the first half, and vice versa, we can now upper bound the
number of matches to �=i°±iyw / j%�y-³² instead of
� j µ´ �¯-¶/ ´ . Note that the position histograms we used
here is rather coarse, at iV±i . By refining the histogram,
we can get a more accurate estimate.

7 Updates

The TAX tree algebra supports updates. We also have im-
plemented access methods that support updates. However,
XQuery does not (yet) support updates. There is a nice
proposal [50] and separately an implemented Xupdate lan-
guage [33]. Once a standard begins to emerge, it should
(we hope) be straightforward for us to implement a parser
for it and thus support it in Timber.

Beyond the simple implementation of updates, they do
cause significant changes in the way the entire system is
implemented. Since we do not use or enforce schema (or
DTD) conformance, we are able to side-step many of the
issues with respect to XML updates raised in [50]. How-
ever, our design is fundamentally that of a dynamic, rather
than a static, database. All our indices are dynamic, and
the underlying storage manager expects to manage the in-
sertion and deletion of data blocks.

The start and end labels become an issue. Our cur-
rent scheme is to use floating point numbers rather than
integers, in effect leaving “holes” in the numbering, when
initially assigning labels, with the hope that a moderate de-
gree of modification can be absorbed within these holes.
If there is an extremely localized sequence of inserts, these
holes will not suffice. When such a situation arises, we start
over and renumber every node, and reflect the new num-
bers at every place these may be used. This renumbering
is a heavy-weight operation, which we hope will not be
necessary too often. A more limited renumbering of some
local region may suffice in some cases, but we have not yet
worked out all the details of such a scheme.

TIMBER: A Native XML Database 17

FOR $a IN document(“mbench.xml”)//
eNest[· aFour k “0”]

FOR $b IN $a//eNest[· aSixteen k “1”]
FOR $d IN $a//eNest[· aSixteen=“2”]
FOR $f IN $a//eNest[· aSixteen=“3”]
WHERE $b/eNest/ · aSixtyFour=“2”
AND $d/eNest/ · aSixtyFour=“3”
AND $f/eNest/ · aSixtyFour=“9”

RETURNf
result gf

A g � $a/text() �f
B g � $b/text() � f /B gf
D g � $d/text() � f /D gf
F g � $f/text() � f /F gf

/A gf
/result g

Table 1 XQuery statement run against the mBench data set

Our initial insertion of elements has them ordered by
start position. Changes in the sizes and numbers of ele-
ments in some range could cause pages to overflow or un-
derflow. This is an intrinsically difficult problem. It is not
acceptable to leave expansion room, as in the case of label
values, since expansion room has an explicit cost in terms
of wasted space and more disk pages to be accessed to ob-
tain the same information. Heuristics are used in relational
systems to maintain approximate clustering/ordering in the
face of updates. We expect to use similar heuristics in Tim-
ber eventually. For the present, we let Shore use its default
strategies to manage space for updates.

8 System Study

The Timber system is working for the most part, and we
hope to be able to make a public release shortly. In this
section, we work through one simple example in some de-
tail to illustrate the operation of the system, and give some
indication of performance.

Consider the query in table 1 against the mBench [66]
0.1x data set. The pattern tree produced by this query is
shown in figure 14. This query would generate a selection
and a projection. The selection 3�4 � 6 8%9 is applied on the
database, with pattern tree @ / as in figure 14 and selection
list �,-¹¸ . The projection F�4 � 6 4G9 is applied on the out-
come of the selection, with pattern tree @(i as in figure 14,
and projection list @ �x-»º /�� º i �Dº�j7�Dº�¼7�Dº ´ . The TAX ex-
pression corresponding to this query is as follows.

F 4 � 6 4G9�½ 3 4 � 6 8%9;¾ ��¿ÁÀ�Â�Ã�Ä�Å Æ Ç ¿(È ��É=Ê
The RETURN part of the XQuery expression merely

constructs a result tree by tying together nodes that have

$1

$3 $4

pc

ad

$1.tag = doc_root &
$2.tag = eNest &
$2.aFour = “0” &
$3.tag = eNest &
$3.aSixteen = “1” &
$4.tag = eNest &
$4.aSixteen = “2” &
$5.tag = eNest &
$5.aSixteen = “3” &
$6.tag = eNest &
$6.aSixtyFour = “2” &
$7.tag = eNest &
$7.aSixtyFour = “3” &
$8.tag = eNest &
$8.aSixtyFour = “9”

pc pc

ad
ad

$5

$6 $7 $8

$2

ad

Fig. 14 The pattern tree generated from the XQuery statement of
table 1. (Use as both selection tree 1*Ë and projection tree 1�Ì).

already been identified. In Timber, this construction is per-
formed procedurally – since the output has to be produced
any way, and since the manipulation is one-to-one, there is
no benefit to set-oriented declarative processing of this part
of the query. Note that the input to the algebra expression
is a set of trees, in this case (as is frequently true for XML
queries) a singleton set. The result of the selection is a set
of trees, with cardinality considerably greater than one, that
satisfy the given complex predicate.

Note that the selection and projection operators use iden-
tical pattern trees. We are able to exploit the reuse of pat-
tern tree in the physical algebra. Our task then becomes
to compute the sequence of structural joins and selections
that comprise this pattern tree, and return the bindings for
tuples of nodes that satisfy all the structural and node pred-
icates. These node bindings are then used first in a selection
operator, and then in a projection.

Note that in the RETURN clause, the text of the ele-
ments queried is required. Getting the text requires access
to the database, which is expensive and therefore is post-
poned until the end of the evaluation. Hence, the plans pro-
duced by the optimizer will deal with indices only and node
ids.

Our first step is to identify which of the predicates are
indexed, and to determine the selectivity of each. Each of
the attribute predicates is indexed, as shown in Table 2, and
predicates on attribute aSixtyFour are more selective than
the other attributes. The last column is the variable name
given to the predicate. For the sake of simplicity, we will
refer to the first predicate in the table as predicate r , and
to the second predicate as Í and so on.

Many query plans can be generated to evaluate this ex-
pression. In practice, the optimizer would go through a sig-

18 TIMBER: A Native XML Database

Parent-Child Join Ancs-Desc Join
Naive Desc Histogram Real Histogram Real

Ancs/Parent Desc/Child Estimate Number Estimate Result Estimate Result
A B 70,567,805 4,235 N/A N/A 22,090 19,235
A D 69,784,644 4,188 N/A N/A 21,883 18,926
A F 69,201,439 4,153 N/A N/A 21,542 18,792
B C 4,412,870 1,042 69 58 3,271 930
D E 4,363,896 1,042 65 51 3,069 2,334
F G 4,327,426 1,042 85 78 3,396 807

Table 3 Result Size Estimation for Pair Joins on the mBench Data Set. The first two columns are the predicates on the nodes being
joined; the naive estimate is simply the product of the number of nodes participating in the join; the “Desc Number” uses schema
information to upper bound the estimate to the number of descendant nodes; the “Histogram Estimate” uses ËDÎÐÏ*Ë Î position histograms.
Estimates are shown for parent-child and ancs-desc joins where available.

Predicate Node Count Variable
eNest[· aFour k “0”] 16,663 A
eNest[· aSixteen k “1”] 4,235 B
eNest[· aSixteen k “2”] 4,188 D
eNest[· aSixteen k “3”] 4,153 F
eNest[· aSixtyFour k “2”] 1,042 C
eNest[· aSixtyFour k “3”] 1,042 E
eNest[· aSixtyFour k “9”] 1,042 G

Table 2 Characteristics of Some Predicates on the mBench Data
Set

nificant search to find the plan with least estimated cost. For
the current discussion, we restrict ourselves to five possible
choices of plans for pattern tree evaluation presented in fig-
ure 15. In all cases, the actual access to data, and getting the
text of the elements is deferred.

The estimated intermediate result sizes are shown in
Table 3. There can be an eNest node under another eNest
node in the database. This is called the overlap property.
Note that the estimate exploiting this minimal amount of
schema information, in columns 5 and 7, is in each case
very close to the real result, shown in columns 6 and 8.
As we can see from columns 7 and 8 rows 1 through 3,
using position-histogram can accurately estimate the result
size for ancs-desc structural joins such as r and Í join.
However, ancs-desc structural joins such as Í and < , the
estimate is not very good (columns 7 and 8 rows 4 and
6). The reason for this is that the ancs-desc estimate is ob-
tained using position histograms which are not good when
the parent node has the overlap property. But when using
leveled histograms to obtain the parent-child estimates for
the same structural joins, the results are accurate as shown
in columns 5 and 6 rows 4 through 6.

There are approximately 130,000 nodes in the mBench
0.1x data set. Predicates < , � , and Ñ are the most selec-
tive of the predicates. Unfortunately, the three cannot be

Join

Join Join

JoinJoin

Join

B C

A

E

GF

D

Join

Join

Sort

Join

Join

Join

Join

B C

A

F

G

D

E

Join

Sort

Join

Sort

Join

Join

Join

A B

D

F

C

Join

G

E

Join

Sort

Join

Sort

Join

Join

Join

A F

D

B

G

Join

C

E

Join

Join Join

Join

Join

Join

B C

A

E

GF

D
Sort

(a) Plan 1

(c) Plan 3

(b) Plan 2

(d) Plan 4 (e) Plan 5

Fig. 15 Five Alternative Query Plans: Each leaf is an index ac-
cess, each internal node is a stack-based structural join ordered
by ancestor or descendant (as needed); where sorting is required,
this is shown explicitly.

TIMBER: A Native XML Database 19

combined directly, and require r , Í , A , and Ò as common
parent/ancs nodes for this purpose.

Fig 15 shows five alternative plans. The optimizer chooses
Plan 1 as the optimal plan based on these estimates. Notice
that this plan is bushy and non-blocking. The best left deep
plan, such as Plan 2, gets into a blocking situation, where
we need the results sorted by r for the next join, with A ,
but the results are available sorted by Ò . An option is to
sort earlier such as Plan 3. This gives a plan that is com-
parable to plan 1. We show Plans 4 and 5, just to make the
(obvious) point that left-deep plans can be really bad.

The actual execution times for these plans and several
more are shown in Table 4. These experiments were run
on a standard desk-top IBM compatible PC, running Win-
dows NT Workstation v4.0. The machine had a single 500
MHz Intel Pentium III CPU and 256 MB of memory. Fur-
thermore, we restricted Shore to use only 32MB of mem-
ory for its buffer pool, in 8KB pages. Each test was run 5
times. The highest and lowest numbers were discarded and
the average of the middle three was reported. The time to
parse and optimize the query is small in comparison, and is
not included in the times reported in Table 4.

Plan Number Plan Description Running Time
1 Optimal Bushy 1.4 sec.
2 Blocking Left-Deep 193.5 sec.
3 Blocking Bushy 1.532 sec.
4 Double-blocking Left-Deep 414.7 sec.
5 Double-blocking Left-Deep 413.4 sec.
6 No Pattern Tree Reuse 2.9 sec.
7 Navigational 2,121.3 sec.

Table 4 Performance of Different Query Plans

In addition to the five query plans described above, in
Table 4 we also present performance results for two other
plans, which are expected to perform poorly. Plan 6 shows
the impact of not reusing the pattern tree computation. Each
use of the pattern tree is conducted according to the best
plan – Plan 1. The cost is expected to be about twice. Plan
7 uses no indices at all. It scans the document for r nodes
and for each, it scans its subtree for Í , A , and Ò nodes.
And for each of the latter nodes, it scans their subtrees for
the rest of the pattern. This is probably the naive approach
that one thinks of first, when given this problem. The poor
performance of these two additional plans validates many
of the design choices we have described above.

9 Conclusion

We have described the architecture and overall design of
the Timber native XML database system currently being
implemented at the University of Michigan. Through the
use of a carefully designed tree algebra, as well as the judi-
cious use of novel access methods and optimization tech-
niques, we have created the foundation for a high perfor-
mance database system capable of operating at large scale.

The system has been designed in a modular fashion,
with an overall architecture as similar to a relational data-
base as possible. We have attempted to reuse as much stan-
dard technology as possible. Thus, standard value-based
hash and B-tree indices can be used with only small changes.
Similarly, transaction management is largely unchanged,
and in our system is implemented by Shore. Consequently,
little effort is required to move Timber from a single-user
system to a multi-user system.

We already have a few potential users of Timber. We
expect, in the coming months, to benefit from their experi-
ences with the system, and to expand its facilities accord-
ingly. We also expect to make a public release of Timber
software.

References

1. Ashraf Aboulnaga, Alaa R. Alameldeen, and Jeffrey F.
Naughton. Estimating the Selectivity of XML Path Expres-
sions for Internet Scale Applications. In Proc. VLDB Conf.,
Rome, Italy, 2001.

2. Shurug Al-Khalifa, H. V. Jagadish, Nick Koudas, Jignesh M.
Patel, Divesh Srivastava, and Yuqing Wu. Structural Joins:
A Primitive for Efficient XML Query Pattern Matching. In
Proc. ICDE Conf., Mar. 2002.

3. Shurug Al-Khalifa and H. V. Jagadish. Multi-level Opera-
tor Combination in XML Query Processing. In Proc. CIKM
Conf., Nov. 2002.

4. Apache Web Site. Item 10 on Xindice FAQ.
http://xml.apache.org/xindice/FAQ .

5. D. Barbosa, A. Barta, A. Mendelzon, G. Mihaila, F. Rizzolo,
and P. Rodriguez-Gianolli. ToX - The Toronto XML Engine.
Proc. Intl. Workshop on Information Integration on the Web,
Rio de Janeiro, 2001.

6. C. Baru, A. Gupta, B. Ludaescher, R. Marciano, Y. Papakon-
stantinou, and P. Velikhov. XML-Based Information Media-
tion with MIX. In Exhibitions Program of SIGMOD Conf.,
1999.

7. E. Bertino. An Indexing Technique for Object-Oriented Da-
tabases. In Proc. ICDE Conf., pages 14–22, 1991.

8. R.S. Boyer, J. S. Moore. A Fast String Searching Algorithm.
Communications of the Association for Computing Machin-
ery, 20(10), 1977, pp.762-772.

20 TIMBER: A Native XML Database

9. M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L.
McAuliffe, J. F. Naughton, D. T. Schuh, M. H. Solomon,
C. K. Tan, O. G. Tsatalos, S. J. White, and M. J. Zwilling.
Shoring up Persistent Applications. In Proc SIGMOD Conf.,
pages 383–394, 1994.

10. D. Chamberlin, D. Florescu, J. Robie, J. Simeon,
and M. Stefanescu. XQuery: A Query Language
for XML. W3C Working Draft. Available from
http://www.w3.org/TR/xquery

11. D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML
Query Language for Heterogeneous Data Sources. In Infor-
mal Proc. WebDB Workshop, pp. 53–62, May 2000.

12. Zhiyuan Chen, H. V. Jagadish, Flip Korn, Nick Koudas,
S. Muthukrishnan, Raymond T. Ng, and Divesh Srivastava.
Counting Twig Matches in a Tree. In Proc. ICDE, Heidel-
berg, Germany, pp. 595–604, Mar. 2001.

13. Shu-Yao Chien, Vassilis J. Tsotras, Carlo Zaniolo, Donghui
Zhang: Efficient Complex Query Support for Multiversion
XML Documents. In Proc. EDBT, Prague, Czech Republic,
pp. 161–178, 2002.

14. Edith Cohen, Haim Kaplan, Tova Milo: Labeling Dynamic
XML Trees. In Proc. PODS Conf., pages 271-281, June
2002.

15. Brian Cooper, Neal Sample, Michael J. Franklin, Gisli R.
Hjaltason, and Moshe Shadmon. A Fast Index for Semistruc-
tured Data. Proc. VLDB Conf., pages 341–350, Sep. 2001.

16. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Su-
ciu. XML-QL: A Query Language for XML. Submission to
the World Wide Web Consortium 19-August-1998. Available
from http://www.w3.org/TR/NOTE-xml-ql, 1998.

17. L. Fegaras and R. Elmasri. Query Engines for Web-
Accessible XML Data. In Proc. VLDB Conf., Rome, Italy,
September 2001.

18. Mary F. Fernandez, Jerome Simeon, Philip Wadler. An Al-
gebra for XML Query. Proc. FSTTCS Conf., pages 11-45,
2000.

19. Thorsten Fiebig, Guido Moerkotte: Evaluating Queries on
Structure with eXtended Access Support Relations. Informal
Proc. WebDB Workshop, pages 125–136, 2000.

20. D. Florescu, G. Graefe, G. Moerkotte, H. Pirahesh, and
H. Schning. Panel: XML Data Management: Go Native or
Spruce up Relational Systems? In Proc. SIGMOD Conf.,
Santa Barbara, California, May 2001.

21. D. Florescu and D. Kossman. Storing and Querying XML
Data Using an RDBMS. IEEE Data Engineering Bulletin,
22(3):27–34, 1999.

22. Leonidas Galanis, Efstratios Viglas, David J. DeWitt, Jeffrey.
F. Naughton, and David Maier. Following the Paths of XML
Data: An Algebraic Framework for XML Query Evaluation.
University of Wisconsin Tech. Report.

23. R. Goldman and J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases.
In Proc. VLDB Conf., pages 436-445, Athens, Greece, Au-
gust 1997.

24. R. Goldman and J. Widom. Summarizing and Searching Se-
quential Semistructured Sources. Technical Report, March
2000.

25. H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, and K.
Thompson. TAX: A Tree Algebra for XML. In Proc. DBPL
Conf., Rome, Italy, Sep. 2001.

26. Carl-Christian Kanne, Guido Moerkotte: Efficient Storage of
XML Data. Poster abstract in Proc. ICDE Conf., page 198,
San Diego, CA, March 2000.

27. C. C. Kanne and G. Moerkotte. Efficient Relational Storage
and Retrieval of XML Documents. Technical Report 8/99,
University of Mannheim, 1999.

28. Dao Dinh Kha, Masatoshi Yoshikawa, Shunsuke Uemura:
An XML Indexing Structure with Relative Region Coordi-
nate. In Proc. ICDE Conf., pages 313-320, 2001.

29. C. Kilger and G. Moerkotte. Indexing Multiple Sets. Proc.
VLDB Conf., pages 180–191, Sept. 1994.

30. M. Klettke, H. Meyer. XML and Object-Relational Database
Systems - Enhancing Structural Mappings Based on Statis-
tics. In Informal Proc. WebDB Workshop, pages 151–170,
2000.

31. D. E. Knuth, J. H. Morris (Jr) and V. R. Pratt, 1977, Fast
pattern matching in strings, SIAM Journal on Computing
6(1):323-350.

32. S. A. T. Lahiri and J. Widom. Ozone: Integrating Structured
and Semistructured Data. In Proc. DBPL Conf., Kinloch
Rannoch, Scotland, Sep. 1999.

33. Andreas Laux and Lars Martin. XUpdate
Working Draft, Sep. 2000. Available at
http://www.xmldb.org/xupdate/xupdate-

wd.html.
34. Pedro José Marrón and Georg Lausen. On Processing XML

in LDAP. VLDB, pages 601—610, 2001.
35. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and

J. Widom. Lore: A Database Management Systems for
Semistructured Data. SIGMOD Record 26(3), pages 54–66,
1997.

36. J. McHugh and J. Widom. Query Optimization for XML. In
Proc. VLDB Conf., pages 315–326, 1999.

37. J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A.
Rajaraman. Indexing Semistructured Data. Techni-
cal Report, January 1998. Available at http://www-

db.stanford.edu/lore/pubs.
38. Microsoft XQuery Language Demo. Online at

http://131.107.228.20/xquerydemo/

39. Jeffrey Naughton, David DeWitt, David Maier, et
al. The Niagara Internet Query System. Available at
http://www.cs.wisc.edu/niagara/papers/

NIAGARAVLDB00.v4.pdf

40. U. of Wisconsin. The Niagara system. Available from
http://www.cs.wisc.edu/niagara/.

41. S. Paparizos, S. Al-Khalifa, H.V. Jagadish, L. Lakshmanan,
A. Nierman, D. Srivastava and Y. Wu. Grouping in XML.
In EDBT 2002 Workshop on XML-Based Data Management
(XMLDM’02).

TIMBER: A Native XML Database 21

42. D. Quass, J. Widom, R. Goldman, H. K, Q. Luo, J. Mchugh,
A. Rajaraman, H. Rivero, S. . Abiteboul, J. Ullman, and
J. Wiener. Lore: A Lightweight Object Repository for
Semistructured Data. Proc. SIGMOD Conf., page 549, 1996.

43. J. Robie, J. Lapp, and D. Schach. XML Query Language
(XQL). Available at
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

44. Kanda Runapongsa and Jignesh M. Patel. Storing and Query-
ing XML Data in ORDBMSs. EDBT XML-Based Data
Management (XMLDB) Workshop, March 24, 2002, Prague,
Czech Republic.

45. Arnaud Sahuguet. Kweelt: More Than Just ”Yet An-
other Framework to Query XML!”. Proc. SIGMOD
Conf., Santa Barbara, CA, 2001. Software available from
http://db.cis.upenn.edu/Kweelt/.

46. Harald Schoning. Tamino - A DBMS designed for XML. In
Proc. ICDE Conf., pp. 149–154, 2001.

47. Harald Schoning and J. Wasch. Tamino - An Internet Data-
base System. In Proc. EDBT Conf., pp. 383–387, 2000.

48. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D.DeWitt,
and J.Naughton. Relational Databases for Querying XML
Documents: Limitations and Opportunities. In Proc. VLDB
Conf. pages 302–314, Edinburgh, Scotland, Sep. 1999.

49. T. Shimura, M. Yoshikawa, and S. Uemura. Storage and Re-
trieval of XML Documents Using Object-Relational Databa-
ses. In Proc. DEXA Conf., pages 206–217, Florence, Italy,
September 1999.

50. I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Up-
dating XML. In Proc. SIGMOD Conf, 2001.

51. Feng Tian, David J. DeWitt, Jianjun Chen, and Chun Zhang.
The Design and Performance Evaluation of Various XML
Storage Strategies. University of Wisconsin Technical Re-
port, 2000.

52. U. of Washington. The Tukwila system. Available at
http://data.cs.washington.edu/integration/

tukwila/.
53. Bennet Vance and David Maier. Rapid Bushy Join-order Op-

timization with Cartesian Products. In Proc. SIGMOD Conf.,
pages 35–46, Montreal, Quebec, 1996.

54. Yuqing Wu, Jignesh M. Patel, and H. V. Jagadish. Estimat-
ing Answer Sizes for XML Queries. In Proc. EDBT Conf.,
Prague, Czech Republic, Mar. 2002.

55. Yuqing Wu, Jignesh M. Patel, and H. V. Jagadish. Using His-
tograms to Estimate Answer Sizes for XML Queries. Infor-
mation Systems, to appear, 2002.

56. Yuqing Wu and H. V. Jagadish. Structural Join Order Se-
lection for XML Query Optimization In Proc. ICDE Conf.,
Bangalore, India, Mar. 2003.

57. W3C DOM Working Group. Document Object Model.
Available at http://www.w3.org/DOM/.

58. W3C. Extensible Markup Language (XML) 1.0. W3C Rec-
ommendation. Available at http://www.w3.org/XML.

59. C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman.
On Supporting Containment Queries in Relational Database
Management systems. In Proc. SIGMOD Conf., Santa Bar-
bara, CA, 2001.

60. Tamino Developer Community QuiP, a W3C XQuery
Prototype. Available at
http://www.softwareag.com/developer/quip.

61. eXcelon Corp. eXcelon XML platform. Available at
http://www.exceloncorp.com/platform/

extinfserver.shtml.
62. X-Hive Corp. X-Hive/DB. Available at http://www.x-

hive.com.
63. dbXML Group. dbXML Core. Available at

http://www.dbxml.org.
64. W3C. XML Schema. W3C Recommendation. Available at

http://www.w3.org/XML/Schema.
65. OASIS Technical Committee. Relax NG. Available at

http://www.oasis-open.org/committees/relax-

ng/.
66. The Michigan Benchmark Team. The

University of Michigan, Available at
http://www.eecs.umich.edu/db/mbench.

67. The Timber Team. The University of Michigan, Available at
http://www.eecs.umich.edu/db/timber.

