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Abstract

We describe efficient algorithms for accurately estimating
the number of matches of a small node-labeled tree, i.e., a
twig, in a large node-labeled tree, using a summary data
structure. This problem is of interest for queries on XML and
other hierarchical data, to provide query feedback and for cost-
based query optimization. Our summary data structure scalably
representsapproximate frequencyinformation about twiglets (i.e.,
small twigs) in the data tree. Given a twig query, the number
of matches is estimated by creating a set of query twiglets, and
combining two complementary approaches: Set Hashing, used
to estimate the number of matches of each query twiglet, and
Maximal Overlap, used to combine the query twiglet estimates
into an estimate for the twig query. We propose several estimation
algorithms that apply these approaches on query twiglets formed
using variations on different twiglet decomposition techniques.
We present an extensive experimental evaluation using several
real XML data sets, with a variety of twig queries. Our results
demonstrate that accurate and robust estimates can be achieved,
even with limited space.

1 Introduction
Hierarchical organization of data is ubiquitous. Traditional
examples include (UNIX and Windows) file systems, where files
are organized hierarchically into directories and sub-directories;
and yellow page business listings, which are categorized and
sub-categorized hierarchically. More recent examples include
XML data [1], where the element-subelement structure induces
a natural hierarchy, and LDAP directories [8], where the set of
directory entries are organized in a hierarchical name space. Such
hierarchical data can be modeled as (large) node-labeled trees.

A natural way to query such hierarchically organized data
is by using small node-labeled trees, referred to as twigs, that
match portions of the hierarchical data. Such queries form
an integral component of query languages proposed for XML
(see, for example, [14, 7]), and for LDAP directories [10]. For
example, the XML-QL query:1

� book �

1Really only the WHERE clause, since an XML-QL query can also
restructure the matched data. We ignore restructuring since it is not
relevant to this paper.

� publisher � Morgan Kaufmann ��� publisher �
� year � 1993 ��� year �

��� book �

matches books published by Morgan Kaufmann in 1993, in the
DBLP bibliography.2 This query can be represented as a node-
labeled tree, with the element tags “book”, “publisher”, and
“year” as labels of non-leaf nodes in the tree, and the values
“Morgan Kaufmann” and “1993” as labels of leaf nodes in the
tree.

A fundamental problem in this context is to accurately and
quickly estimate the number of matches of a twig query against
the node-labeled data tree. Such estimation typically involves
the use of a small summary data structure, instead of searching
the entire database. This problem is relevant for providing users
with quick feedback about their query, either before or along
with returning query answers. Another use is in the cost-based
optimization of such queries: knowing selectivities of various
subqueries can help in identifying cheap query evaluation plans.
In this paper, we address this important problem, and make the
following contributions:

� We propose the use of a summary data structure, a correlated
subpath tree (CST), that represents frequency information
about twiglets (i.e., small twigs) in the data tree. This is
achieved by: (i) maintaining, in the CST, frequently occurring
subpaths in the data tree, and (ii) associating with each
subpath in the CST, a small fixed-length signature of the
subpath roots in the data tree. The signatures scalably
(in accuracy as a function of database size) capture the
correlations between the various subpaths in the data tree. As
a result, the CST size is a small fraction of the database size.

� Given a twig query, the number of matches is estimated
by first decomposing the query into a set of subquery
pieces, referred to as twiglets, based on matches in the
CST summary data structure, and then judiciously combining
two complementary approaches: Set Hashing (SH), used to
estimate the number of matches of each query twiglet in
the data tree, and Maximal Overlap (MO), used to combine
the query twiglet estimates into an estimate for the twig
query. Based on these, we propose three promising
estimation algorithms: maximal overlap with set hashing

2http://www.informatik.uni-trier.de/ley/db/index.html.



(MOSH), piecewise-MOSH (PMOSH), and maximal set
hashing (MSH).

� We present an extensive experimental evaluation of the
proposed estimation algorithms using several real XML data
sets, with a variety of twig queries. Our results demonstrate
the scalable accuracy and robustness of the MOSH and MSH
algorithms, even with limited space. On the DBLP data set,
e.g., MSH has less than 20% relative error using only 1% of
the space of the full data set; a greedy strategy, in contrast,
tends to underestimate, and has close to 100% relative error.

To the best of our knowledge, ours is the first work on this
timely topic. The rest of this paper is organized as follows. We
start by discussing related prior work in Section 1.1. We formally
define our problem in Section 2, and summarize our overall
solution approach, including the CST summary data structure and
the estimation techniques, in Section 3. We present details of the
estimation strategies in Sections 4 and 5. Experimental results
are presented in Section 6. Conclusions and directions for future
work are outlined in Section 7.

1.1 Related Work
McHugh and Widom [13] describe Lore’s cost-based query
optimizer, which maintains statistics about subpaths of length ��

, and uses it to infer selectivity estimates of longer path queries.
However, since they do not maintain correlations between paths,
their techniques do not allow them to accurately estimate the
selectivity of twig queries, which are very natural in Lorel. Using
our techniques, one could accurately estimate the selectivity of
Lorel twig queries, potentially resulting in substantially better
physical plans being generated.

In [12], the problem of substring selectivity estimation was
introduced. An approach based on pruned suffix trees was
presented wherein queries are parsed via a greedy strategy into
substrings present in the pruned suffix tree, and the selectivities
of these substrings are multiplied based on the independence
assumption to derive selectivity estimates. In [11], the concept of
conditioning based on maximal overlap parsing was introduced
for improved estimation. Selectivity estimation of substrings over
multiple attributes was considered in [15] and [9].

Set hashing has been used in a wide variety of applications, in-
cluding estimating the size of transitive closure [5], finding Web
page duplicates [2], and data mining [6]. Recently, the set hashing
framework has also been considered by the present authors, who
used it to capture co-occurrences of substrings across attributes
and estimate the selectivity of boolean queries containing con-
junctions, disjunctions and negations [4]. The present work ap-
plies to more complex structures than the one-dimensional strings
considered in [4], and thus requires some ingenuity in how to de-
compose and prune the data tree into primitives that can be recon-
structed. Furthermore, unlike substring queries, it is nontrivial
how to parse (combine) a twig query into (from) twiglets, and
thus we design clever techniques for doing so that obtain accurate
estimates.

2 Problem Definition
Let � be an alphabet, let ��� be the set of strings of finite length
on � , and ������� be a small set of strings. We are given a
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Figure 1: Example DBLP Data Tree and Twig Queries

large rooted node-labeled tree 	�
������������� where (i) non-
leaf nodes are labeled with strings from � , and (ii) leaf nodes
are labeled with strings from ��� . An example of our input is an
XML document; in this case, � is the set of element tags and
attribute names in the document. The query is a smaller, rooted,
node-labeled tree ��
�������������� , henceforth referred to as a
twig. Non-leaf node labels of the query twig are from � , and leaf
node labels are from ��� . The goal is to determine the number of
matches of � in 	 .

Several versions of this problem are possible. For example,
Figure 1 presents a node-labeled data tree, obtained by parsing
an XML document that has three book elements. In the case
of the left-most book element, sibling nodes have distinct labels,
i.e., sibling labels form a set. In the other two book elements,
some sibling nodes have identical labels, i.e., sibling labels form
a multiset. Against this data tree, QUERY 1 (in Figure 1) has
three matches. The number of matches of QUERY 2 depends on
whether the twig query matching is performed in an unordered or
an ordered fashion. In the unordered case, there are two matches,
and in the ordered case, there is one match.

In the basic version of our problem, which we define here, and
consider in the bulk of the paper, we will assume that sibling
nodes in 	 and in � have distinct labels; that is, we view sibling
node labels as a set rather than a multiset, and that matching is
unordered. In Section 5, we will consider its extension to the
multiset, unordered case. Dealing with ordered matching is an
interesting direction of future work.

The unordered matching is incorporated in our definition,
below, of what constitutes a twig match.

Definition 1 (Twig Match) A match of a twig query � 
��� � ��� � � in a node-labeled data tree 	 
!��� � ��� � � is defined
by a 1-1 mapping: "$# �%�'&(�)�
such that if

" ��*+�,
.- for *0/1� � and -�/0� � , then
(i) 24365�798:��*)�;
.2�365<798:��-6� and (ii) if ��*���*)=>�;/0��� , then� " ��*+�<� " ��*)=>�?��/@��� .



The problem of estimating the number of twig matches in a
tree can now be stated as follows:

Given a summary data structure 	 = corresponding to a
node-labeled3 data tree 	 , such that the size of 	 = is a
small percentage of the size of 	 , and a twig query � ,
estimate the total number of twig matches of � in 	 ,
using only � and the summary data structure 	�= .

3 Our Overall Approach
The problem of estimating the number of matches of a twig query
in a data tree is a generalization of the problem of obtaining
subpath count estimates when the data and query are both single-
path trees. The analogy between subpaths and substrings leads us
to look for a solution to our problem based on the approach known
for estimating substring selectivity. The approach in [11, 12]
is to keep statistics about frequently occurring substrings in a
summary data structure, the pruned suffix tree (PST). A query
string is parsed into pieces contained in the PST and the estimate
for the entire query is synthesized from the counts of the parsed
components.

The natural generalization of this approach to twig queries
would keep frequently occurring twiglets (i.e., small twigs) in a
summary data structure, and reconstruct the twig query from these
building blocks. This presents two problems:

1. The number of possible twiglets is very large: For a string of
length � , the number of possible substrings is quadratic in � ,
and these substrings can be stored in a suffix tree using space
that is linear in � . However, for an � node tree, the number
of possible twiglets is at least exponential in � because of the
different shapes that can be generated, and it is not clear how
these twiglets can be efficiently stored.

2. The correlation among subpieces is rather complex: Tree
structured data is often highly correlated, e.g., a node labeled
“title” is likely to have a sibling node labeled “author”. For
a string of length � , only the correlation among successive
pieces needs to be considered. For � node trees, the
correlation among all possible subpaths rooted at the same
node needs to be considered, and again this is at least
exponential in the number of its children.

Hence, any method that explicitly stores statistics for a handful
of twiglets has only a small sample of the statistical distribution
of the occurrences of, and correlations between, the various
subpaths.

In this paper, we adopt the simple, alternative approach
of implicitly storing statistics for twiglets of the data tree by
(i) maintaining count statistics about only a frequently occurring
set of subpaths, and (ii) capturing the correlations among subpaths
sharing the same root, by using a small fixed-length signature
(the “set hash” signature [3, 5]) to represent the appearances
of the root node on each subpath. The effect of our choice
is to reduce the reliance on crude probabilistic formulae by
conditioning on larger pieces. For example, suppose in the
XML-QL query of Section 1 that the summary for the path

3There is no need to store signatures for leaf paths because there will
be no sibling subpaths in the data and no correlations to capture for them.

“book.publisher.Morgan Kaufmann” stores the counts for the
path and a signature representing the appearances of the node
“book” on this path, and the same information is stored for path
“book.year.1993”. Then we can use the stored information to
estimate the number of “book” nodes that appear on both paths,
which is exactly the count for the twig query.

We refer to our summary data structure as a correlated subpath
tree (CST). Several alternative approacheswere considered before
deciding to build signatures on the root nodes of subpaths. One
such approach was to build signatures for all nodes on the subpath
(including the root node), but this requires too much space to store
signatures. (We would need to store three signatures instead of
one for path “book.publisher.Morgan Kaufmann”.)

3.1 The Summary Data Structure
The CST is constructed as follows. Let

�
be the set of all paths

beginning at the root node in 	 , that is, the concatenations of
each root-to-leaf node label sequence. We construct the path
suffix tree from the paths in

�
, treating non-leaf node labels as

atomic, while permitting substrings of leaf node labels to occur
in the path suffix tree.4 For example, given two root-to-leaf paths
“dblp.book.author.Suciu” and “dblp.book.author.Sudarshan”, the
path suffix tree will contain nodes corresponding to each label
(“dblp”, “book”, “author”, “Suciu”, “Sudarshan”), and to sub-
paths, such as “book.author”, “author.Su”, “uciu”, “udarshan”,
etc. Note that paths such as “uthor.Suciu”, and “author.uciu” do
not occur in the path suffix tree.

Let �
� ���%� be the path appearance count of the subpath � ,

that is, the number of paths in 	 that contain � as a subpath.5 To
reduce space usage, path suffix tree nodes - with small �

� ���%� are
thresholded, yielding the pruned subpath tree 	�= . After pruning,
we replace the path appearance count value in each node - with
the presence count �������%� of the subpath � associated with - ; this
is the number of distinct nodes of 	 at which � is rooted, and this
count will be used in estimation. Thus, in our example above,	 = may contain nodes corresponding to “dblp.book.author”,
“author.Su”, “uciu” and “udarshan”, but nodes corresponding to
“dblp.book.author.Suciu” and “dblp.book.author.Sudarshan” may
be pruned.

This pruned subpath tree, augmented with a small fixed-
length signature (the “set hash” signature [3, 5]) in each node
of 	 = corresponding to a non-leaf subpath, is our summary data
structure, the correlated subpath tree (CST). Before describing the
nature of this signature information, we motivate it by providing
an overview of our estimation techniques.

3.2 An Overview of the Techniques
Let � be a twig query for which we want to estimate the number
of matches in a data tree 	 . Using the CST 	 = , our estimation
proceeds according to the following steps:

4We do not explicitly store �
	����������� in each node of the path suffix
tree; rather, we store a key used for accessing ��	����������� in a lookup table
which is maintained in addition.

5We prune based on the number of paths containing � . This will favor
subpaths towards the root of � , since these node labels get repeated in
many paths. This is necessary because, if we use the numbers of nodes
rooting � , then the root node of � will have a count of 1 and get pruned
away.



Path Parsing: Independently parse each root-to-leaf path in� into a set of (possibly overlapping) subpaths that have
matches in 	 = . Let � denote the set of all such subpaths.

Twiglet Decomposition: For each twig node that is a branch
node (i.e., has two or more children), consider all subpaths in
� rooted at the same node that pass through the branch node;
each subtree induced by these subpaths is a query twiglet. Let
��= denote the resulting set of (possibly overlapping) query
twiglets.

Combination: Estimate the number of matches of � using the
augmented information in the nodes of 	�= by piecing together
count estimates for the twiglets in � = , using probabilistic
estimation formulae.

Below we consider several options for each step, and describe
the statistical information that needs to be maintained with
the nodes of 	 = to enable the computations in the twiglet
decomposition, and the combination steps. In Section 4, we give
details and examples of the specific estimation methods.

3.3 Path Parsing Strategies
We consider two alternative strategies: maximal and piecewise-
maximal. The maximal strategy parses each root-to-leaf path of �
into (overlapping) maximal subpaths, that is, the longest possible
subpath associated with a node in 	�= until a mismatch occurs [11].
The piecewise-maximal strategy parses each segment in � , where
a “segment” is the sequence of nodes on the path between
two consecutive root/branch/leaf nodes in � . Each segment is
independently parsed into (overlapping) maximal subpaths via the
maximal strategy.

3.4 Motivating Set Hash Signatures
We assign a unique ID to every node - � of the data tree 	 .
Assume that for each node � in the CST, we maintain the set
of node IDs from 	 (denoted ��� ) that root the subpath � . For
example, given the subpath � 
 3�� 5�� � , we find the nodes - in 	
labeled 3 that have a child node labeled 5 , that in turn have a child
node labeled � . For each such - , we record its node ID in a set
which is maintained in the CST node associated with � .

Note that the intersection of two subpath ID sets � �	� and � ��

yields the set of nodes from which the two subpaths emanate,
that is, the nodes rooting the twiglet formed by subpaths ��
and ��� . Given a twiglet composed of

�
subpaths � � ����� ������� �����

emanating from the same node, the exact twiglet count can hence
be determined by a

�
-way intersection: � ���	������������������� .

Unfortunately, having limited space prohibits explicit storage
of, and performing

�
-way intersections of, the sets ���	� . To

overcome this problem, we hash the sets � ��� and estimate
intersections as needed, rather than to compute them exactly. For
this, we rely on set hashing [3, 5] to create a small fixed-length
signature ����� � of each set � �	� .
3.5 Generating Set Hash Signatures

The set hash signature of a set ���	� is a vector of a small pre-
determined size. We adopt the method from [4], summarized here.

Chen et al. [4] independently seed a linear hash function for
each signature vector component, and generate the hash image � 3 � of each element 3$/!���	� ; the minimum

 � 3 � is recorded in

the signature vector component. To reduce collisions,
 

must be
designed to map elements into a range significantly larger than the
domain. These set hash signatures � ��� � are stored with each node
��" in the CST. We then use set hashing, as discussed below, to
obtain an estimate of the

�
-way set intersection by “intersecting”

the
�

signatures � � � � ������� �#� � � � .

3.6 Estimating Twiglet Counts
Given a twiglet that is composed of

�
subpaths � � � ��� �����#� �����

emanating from the same node, the set hash signatures of these
�

subpaths can be obtained directly from the CST. Estimating the
count of twiglet matches can be done by manipulating signatures.
We adopt the method from [4], and discuss these steps below.

Set resemblance estimation: The set resemblance (denoted$ ) of
�

sets is defined as the size of intersection of all these sets
divided by the size of union of all sets. Given the

�
set hash

signatures corresponding to the subpaths ��9��� � ������� ��� � of the
twiglet, the set resemblance $ � of the

�
sets ���	� �����#� �%����� can

be estimated by dividing the number of matching components in
each of the signatures � � � � �#����� �%� � � � by the length of each set
hash signature.

Estimating intersection size via set hashing: The goal is
to estimate � � �	� �&���#����� � �'� .
Step 1: Compute $ � from the

�
signatures.

Step 2: We calculate � ��� �)(�* * *+( ��� � , the signature of ���	�-,.�%���/,
� � � , from the signatures �'���10 for sets � � 0 as follows.
For any 2 , 3 �42 �65 , (5 as the signature length),
� � � ��(7* * *+( � � �'8 2:9 
<;>=+?A@	� � � �78 2:9�������� �B� � � ��8 2:9DCE� That is,
for each component, we choose the minimal value of the
signatures of all its sets.

Step 3: Say ��� 0 has the largest size among all ����� ’s.6 Using

� ��� 0 and � ��� �	(7* * *+( ��� � we estimate F 
 G � �10 G
G ��� ��(�* * *+( ��� � G



G ���10IH7JK��� ��(�* * *+( �'� �	L G
G � �10 ( JK� � ��(�* * *+( � � � L G

as the resemblance of appropriate sets.

Step 4: We use the following formula: � � �	� �M�#���-�N� � ��� 

$ � � ���	�O,P���#�I,Q�R����� 
TS � G �'� 0 GU � to now estimate � ���	�O�
�#���I�!� � ��� , if � � � 0 � is kept explicitly, as indeed it is in our
CST.

The details of how to construct the CST and the associated
set hashes efficiently involve adopting existing techniques from
previous papers [4] and are omitted.

3.7 Combining Counts
We start with a collection of (possibly overlapping) query twiglets
for which we have obtained count estimates. To estimate the
number of matches of the twig query, these query twiglet counts
are “combined” in formulae based on the inclusion-exclusion
principle, similar to the approach taken in [11]. The idea is to
multiply the probabilities of the query twiglets and then divide
by the counts of the overlapping portions so as not to count them
more than once. An overlapping portion could be the null set

6Any set will do, but the largest gives the best accuracy.
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Figure 2: (a) example tree pattern (b) MOSH twiglets
(c) PMOSH twiglets (d) MSH twiglets

(in which case we divide the count by 1), a single node, or a
subtree. Note that the monotonicity property in the CST pruning
guarantees that we can obtain a count for the subtwiglet (i.e.,
overlapped portion). We refer to the combination process as MO
conditioning.

4 Methods
We first describe “pure MO”, which treats paths as twiglets, so
correlations between paths are not captured. After that, there are
three set hashing methods we consider. MOSH forms twiglets
by combining paths that originate at the same node; correlations
between paths within a twiglet are captured via set hashing.
PMOSH and MSH are variants of MOSH that form twiglets
differently to enhance the utilization of set hashing.

4.1 Pure MO
Our base-level strategy comes from a straightforward application
of the MO parsing technique that was successfully employed
in [11]. We henceforth refer to it as the “pure MO” technique.
The specifics with respect to the general framework given in
Section 3.2 are as follows:

Path Parsing: The paths are parsed according to the maximal
strategy.

Twiglet Decomposition: The various subpaths obtained from
maximal parsing are left as is, that is, � 
 � = . Thus, the
twiglets that result are degenerate-case subpaths.

We shall demonstrate pure MO based on the twig exam-
ple in Figure 2(a). The set of root-to-leaf paths of 	 is
@93�� 5�� �	� � � 76�:3�� 5�� �	� " � �EC . Suppose that MO parsing results in
@93�� 59�?5�� �)� � � � � 7)C for path 3�� 5�� �)� � � 7 and in @93�� 59��5�� �	� " � �7C for path3�� 5�� �	� " � � . Thus, �'
 @93�� 59��5�� �	� � � � � 76�?5�� �	� " � �7C . Let � denote the

number of nodes in 	 and let
��� ���%� 
 ��� J � L	 . The number of

matches of � in 	 , given by � � ���%� , is estimated as follows:

��

��� � 3�� 5 ��
 ��� � 5�� �	� � �
 ��� � � � 7 �
 ��� � 5�� �	� " � � ���� � 5 ��
 ��� � � ��
 ��� � 5�� � �

4.2 Maximal Overlap with Set Hashing (MOSH)
The goal of MOSH is to use set hashing to estimate the count of
twiglet matches, so as to condition on fewer and larger (albeit

approximate) overlapping counts. If all root-to-leaf paths in a
twig query are present in the CST, the whole twig will form one
twiglet, avoiding maximal overlap conditioning. The specifics
with respect to the general framework given in Section 3.2 are
as follows:

Path Parsing: The paths are parsed according to the maximal
strategy.

Twiglet Decomposition: For each branch node in � , and for
each distinct starting point of the maximal subpath that
goes through the branch node, use set hashing to obtain an
estimate.

We illustrate using the example given in Figure 2(a). Again,
suppose the independent MO parsing of the paths 3�� 5�� �	� � � 7 and3�� 5�� �)� " � � results in ��
 @ 3�� 5 ��5�� �	� � � � � 76�?5�� �)� " � �EC . Following
the above steps, we identify the subpaths that go through the
branch point � : @ 5�� �	� � ��5�� �	� " � �7C . Given the set hash signatures
for these two subpaths, we can compute an estimate for the
twiglet shown in Figure 2(b). We denote this estimate as��� � sethash � 5�� �	� � �?5�� �	� " � � �?� . We thus have exact counts

��� � 3�� 5 � ,��� � � � 7 � , and an estimate
��� � sethash � 5�� �	� � �?5�� �)� " � � �?� . These can

be combined using MO, to obtain �������%� , as follows:

��

��� � 3�� 5 ��
 ��� � sethash � 5�� �)� � ��5�� �	� " � � �?�
 ��� � � � 7 ���� � 5 ��
 ��� � � �

In the above example, the overlaps are subpaths, so the
normalization probabilities are obtained directly from the CST.
It is possible that overlaps themselves are subtrees, in which case
the normalization probabilities also need to be estimated as well.

4.3 Piecewise MOSH (PMOSH)
It is possible that MOSH can reduce to pure MO when no two
maximal subpaths in the parse of � , that go through a branch
node, start at the same node. Consider the following example.
Given the example in Figure 2(a) and the parsing of the paths3�� 5�� �)� � � 7 and 3�� 5�� �	� " � � into � 
 @ 3�� 5�� �	� � � �	� � � 7 ��3�� 5�� � ��5�� �	� " � �7C ,
the maximal subpaths are thus @ 3�� 5�� �	� � � �	� � � 7 ��5�� �	� " � �EC . For each
branch point and each starting point, we list the maximal subpaths
going through the branch point:

branch � , starting pt 3 = @ 3�� 5�� �	� � C
branch � , starting pt 5 = @ 5�� �	� " � �EC
branch � , starting pt � = @��	� � � 7)C

Unfortunately, we are unable to form a set hash intersection here,
and must resort to pure MO to obtain the estimate.

We can make it less likely for this situation to occur by parsing
each “segment” in � , i.e., the sequence of nodes on the path
between two consecutive branch points, where the branch points
are the start and end nodes of the path; alternatively, a segment
may begin at the root, or may end at a leaf. Given the paths
starting at each branch point, we can use set hashing to estimate
the twiglet correlation. Finally, as in the pure MO strategy, we use
MO to combine these estimates together. Using our example, we
get that:

branch � , starting pt 3 = @ 3�� 5�� ��C
branch � , starting pt � = @��	� � � 76� �	� " � �7C



We combine via MO in the following formula (see Figure 2(c)) to
estimate � � ���%� :

��

��� � 3�� 5�� � � 
 ��� � sethash � �	� � � 76� �	� " � � �?���� � �9�

Note that the parsings are no longer maximal, since they may
be cut short at the branch points. Due to the monotonicity
property that every subsubpath of a subpath in the CST must also
exist in the CST, shortening the paths is likely to find more paths
intersecting at a branch point. The specifics with respect to the
general framework given in Section 3.2 are as follows:

Path Parsing: The paths are parsed according to the piecewise-
maximal strategy.

Twiglet Decomposition: Similar to MOSH.

4.4 Maximal Set Hashing (MSH)
The PMOSH strategy increases the number of subpaths that
(i) intersect at the same branch point and (ii) begin at the same
starting point, thus increasing the applicability of set hashing.
However, it does so at the cost of shortening the parsed subpaths,
which requires more MO conditioning and thus introduces more
error. In general, MOSH forms deep but often skinny twiglets,
while PMOSH forms bushy but often shallow twiglets. The goal
of the maximal set hashing strategy (MSH) is to try to adapt
the MOSH strategy to make more use of set hashing without
shortening the path parsings as much. The specifics with respect
to the general framework given in Section 3.2 are as follows:

Path Parsing: The paths are parsed according to the maximal
strategy.

Twiglet Decomposition: The key idea, as in MOSH, is to collect
subpath sets for each branch point and for each starting point
of a maximal subpath that goes through the branch point. The
difference is that, in any subpath set, one includes all subpaths
that maximally begin at that starting point, not just the MO
maximal subpaths; these are precisely the suffixes of the MO
maximal subpaths that begin there.

Consider the example in Figure 2(a), again with paths 3�� 5�� �)� � � 7
and 3�� 5�� �	� " � � parsed into �'
 @ 3�� 5�� �	� � � �)� � � 76�:3�� 5�� � �?5�� �	� " � �7C , and
thus the maximal subpaths are @ 3�� 5�� �	� � � �	� � � 76� 5�� �)� " � �EC . For each
branch point and each starting point, we list the maximal subpaths
going through the branch point:

branch � , starting pt 3 = @93�� 5�� �)� � C
branch � , starting pt 5 = @ 5�� �)� � �?5�� �	� " � �7C
branch � , starting pt � = @��	� � � 7 � �	� " � �7C

These subpaths constitute �4= . Note that we shorten subpath3�� 5�� �	� � to 5�� �	� � , and subpath 5�� �	� " � � to �	�
"
� � when we form the

second and third twiglets in the example. But unlike PMOSH, the
full subpaths 3�� 5�� �	� � and 5�� �	� " � � still participate in the formation
of the first and second twiglets, respectively. Thus, the shortening
of subpaths is not as much as PMOSH, and MSH often forms deep
and bushy twiglets. Finally, we combine via MO in the following
formula (see Figure 2(d)) to estimate � � ���%� :

� 

��� � 3�� 5�� �)� � �
 ��� � sethash � 5�� �	� � �:5�� �	� " � � �?���� � 5�� �)� � �



��� � sethash � �	� � � 76� �	� " � � �?���� � sethash � �	� � � �	� " � � �?�

5 Dealing With Multisets
Up to this point, we have considered the basic version of the
problem defined in Section 2, which assumes that no two sibling
nodes in data tree 	 have duplicate labels, i.e., the children of any
node in 	 can be described as a set. Here, we present techniques
to handle the more general case when a node’s children can be
described as a multiset. In the multiset version of the problem,
there are two different problem definitions that arise.

Definition 2 (Twig presence) The number of presences of a twig� in 	 is the cardinality of the set of nodes in 	 at which � is
rooted and there exists a 1-1 mapping

" # � � & � � such that if" ��*+��
 - for * / ��� and -$/ �)� , then 2�365�7 8���*)��
 24365�798:��-6�
and if ��*���*)=>� / ��� , then � " ��*)�<� " ��*)= �?� / � � , that is, the
number of distinct root nodes of � in 	 .

Definition 3 (Twig occurrence) The number of occurrences of a
twig � in 	 is the cardinality of the multiset of nodes in 	 at
which � is rooted and there exists a 1-1 mapping

" # � � &��)�
such that if

" ��*+��
 - for *$/'��� and - /'�)� , then 2�365<798:��*+� 
24365�798:��-6� and if ��*���*)=>� /'��� , then � " ��*)�<� " ��*)= �?� /'� � , that is,
the total number of possible mappings.

Note that the counts of twig presences and occurrences are the
same in the set version of the problem. It is only when we deal
with multisets that we must distinguish between these two.

We can estimate the counts for twig presences exactly the same
way as we did for the basic set version of the problem. For twig
occurrences, we preprocess the data to collect statistics as we did
for the basic problem, but augment each node of CST 	 = with
both the presence count � � ���%� and the occurrence count �

� ���%�
of the corresponding subpath � . The basic idea for estimation
of twig occurrences is to make the uniformity assumption on the
number of occurrences of a subpath � for each presence of � , and
estimate the occurrence count of a twiglet based on its presence
count. This assumption is experimentally validated in Section 6.
The procedure is as follows:

1. Path parsing and twiglet decomposition steps are exactly the
same as for the basic problem.

2. For each twiglet
�

with
�

subpaths �A�9���#��� ��� � , we estimate
the presence count � � � � � as we did for the basic problem.
Then we estimate the occurrence count �

� � � � as: � � � � ��

�
����"�� �

��� J �	� L� � J �	� L .
3. Combine estimate �

� � � � for each twiglet
�

using the same
probabilistic estimation formulae as we did in the basic
problem.

For example, for the XML data tree shown in Figure 1,
suppose the query is to count the total number of authors of
books published in the year Y1, taking multiplicity into account.
Suppose the query is parsed into one twiglet

�
as the query

itself, and the presence count of
�

is estimated as 2.9. The
presence counts for subpaths “book.author” and “book.year.Y1”
are 3 each. The occurrence counts for these two subpaths are 6
and 3, respectively. Then we will estimate the occurrence count
of
�

as 	E� 
 
�� 
  
��E� � , which is very close to the occurrence
count of � for the query.



6 Experimental Results
We implemented the four estimation algorithms: pure MO (re-
ferred to as MO in the figures for brevity), MOSH, PMOSH, and
MSH of Section 4. In this section, we evaluate their relative per-
formance experimentally. We also implemented two naive esti-
mation algorithms for comparison: Greedy and Leaf. The Greedy
algorithm differs from pure MO only in that Greedy parsing and
combination [12] are used instead of MO. The Leaf algorithm ig-
nores all path information and estimates the selectivity of each
leaf string in the query individually using the MO parsing and
combination techniques, then returns the product of estimates for
each leaf as the twig query estimate; for instance, the count of
the path query “book.author.Stonebraker” will be estimated as the
MO estimate for “Stonebraker”. Table 1 summarizes important
properties of all the algorithms we implemented.

6.1 Experimental Setup
Data sets: We use two real XML data sets in our experiments.
One is the DBLP bibliography. The data set size is 50MB, and
consists of a tree with children rooted at book that itself has a
variable number of children, e.g., author, publisher, etc.;
see Figure 1. The other is the SWISS-PROT data set7, which
contains annotated protein sequences, including the sequences,
annotations, authors, published places, citations, etc. The size is
about 5 MB, but the structure is far more complex than the DBLP
data set. Notice that both data sets contain duplicate sibling labels
(e.g., a document may have multiple authors). This is the multiset
counting problem.

Queries: Following [12, 11], we test both positive (meaning
the twig does appear in the data) and negative (meaning the twig
does not appear in the data) twig queries. Each workload consists
of 1000 queries. Positive queries are randomly sampled from the
data set. Each query consists of 2 to 5 paths, each having 2 to 4
internal nodes, and 1 to 4 characters from leaf node strings, with
uniformly distributed probability. We also form a workload of
trivial queries, each consisting of a single path.

The negative query workload consists of non-trivial queries
having a true count of zero. The subpaths of each query are
sampled from the data as for positive queries, and glued together.

Error metrics: For positive queries, we use average relative
error and average relative squared error to measure the average
accuracy. Let � " be the true answer to a query and � �" be our
estimate. The average relative error for a workload of queries �
is defined as:

� � ��� � 
 3
� � �

�
"�� � � ��"��	� �" ���"

However, both relative error and absolute error have weak-
nesses in certain cases. For example, suppose query � � has a
real count of 10,000, and � � has a real count of 100. Further
suppose algorithm 
 ’s estimates for � � and � � are 5,000 and 50
respectively. Then � � and � � have the same relative error, but
intuitively, the estimate for � � is more erroneous. On the other

7http://www.expasy.ch/sprot.
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Figure 3: Average relative squared error in log10 scale for trivial
queries, DBLP data set

hand, suppose algorithm � ’s estimates for these two queries are
9,950 and 50. Again, intuitively the estimate for � � should be
more erroneous. However, both queries have the same absolute
error. Therefore, we also use the average relative squared error,
defined as:

� � ��� � 
 3
� � �

�
"�� � ��� " �� �" � �� �"

It is easy to check that the average relative squared error
matches the intuition in both cases in the above example.

For negative queries, following [11, 9], we use the root mean
squared error to quantify the accuracy of the approach. This is
defined as:

� � ��� � 
�� 3
���>� � "���� ��� " ��� �" � �

6.2 Accuracy for Trivial Queries
To examine whether path information is important for estimation,
we compare the accuracy of the Leaf and the pure MO algorithm
on trivial queries because they differ only in that MO stores
path information whereas Leaf does not. Figure 3 shows the
average relative squared error for the DBLP data set as we
increase the space of the summary data structure. The increment
is depicted as a percentage of the data set size. Results for
the other data set and for other error metrics are similar and
are omitted. The pure MO algorithm is up to a few orders of
magnitude more accurate than the Leaf algorithm, which justifies
the importance of using path information for estimation. This is
also intuitive, for example, “Stonebraker” appears several times
in “book.author.Stonebraker’, but appears hundreds of times in
“cite.Stonebraker”.

6.3 Accuracy for Positive Queries
In this section, we report the average error for positive, non-trivial
queries as we vary the space of the summary data structure. We
also report the distribution of queries with different ratios of the
estimates to the real counts. We further examine the effect of
twiglet decomposition technique by comparing the performance
of MOSH, PMOSH, and MSH algorithms. To examine the scale-
up quality of the algorithms, we also report how the error changes
as we change the proportion of data extracted from the same data
source.



Name Path Information Correlation Twiglets Formation Combination Technique

Leaf Not stored Not stored Single path MO
Greedy Stored Not stored Single path Greedy

MO Stored Not stored Single path MO
MOSH Stored Stored Deep but often skinny MO

PMOSH Stored Stored Bushy but often shallow MO
MSH Stored Stored Balance between deep and bushy MO

Table 1: Estimation Algorithms
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Figure 4: Average relative squared error in log10 scale of the algorithms as the space allowed for estimation increases for positive queries
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Figure 6: Average relative squared error in log10 scale of the algorithms for the DBLP data set



Average error and ratio distribution for positive queries:
Figure 4(a) shows the average relative squared error of all algo-
rithms for the DBLP data set as the space increases. The results
for the SWISS-PROT data set are shown in Figure 4(b). The av-
erage relative error for these data sets shows similar trends, and is
omitted. The percentage of space used for the SWISS-PROT data
set is larger because this data set is more complex than the DBLP
data set and thus more space is needed for accurate estimation.
For very small space, all three algorithms storing correlations per-
form as poorly as the other algorithms. This is not a surprise be-
cause so few nodes are kept in the summary data structure that all
twiglets formed by these three algorithms are single path twiglets,
i.e., these algorithms essentially degrade to pure MO.

As the space increases, however, the performance of MOSH
and MSH improves substantially and soon outperform other
algorithms. For example, for the DBLP data set, MOSH and
MSH have 20% average relative error using 1% space; in
contrast, Greedy, Leaf, and pure MO underestimate and have
about 100% error. In terms of average relative squared error,
MOSH and MSH outperform Greedy, Leaf, and pure MO by
several orders of magnitude. More space translates to more nodes
in the CSTs, and in turn to a higher probability for forming
larger twiglets, i.e., allowing MOSH, PMOSH, and MSH to
capture more correlations between subpaths in twig queries. The
estimates of both Greedy and pure MO appear insensitive to the
available space because both techniques soon have enough nodes
in the CSTs to completely match every root-to-leaf query path as
space increases, which is the best case for these algorithms. This
justifies that storing correlations is crucial for accurate estimation.
We also observe that pure MO is more accurate than Greedy,
which shows that maximal overlap parsing and combination
is better than the Greedy technique, as shown in [11, 9] for
substring selectivity estimation. The performance of PMOSH is
somewhat unstable, suggesting that the bushy but shallow twiglet
decomposition technique is inappropriate.

Figure 5(a) shows the distribution of queries falling in specific
ranges of the ratio of estimates to real counts. The results for
the SWISS-PROT data set are similar and are omitted. The
results for the MSH algorithm is not shown because it is very
close to MOSH. The three algorithms not storing correlations
(Greedy, pure MO, and Leaf) underestimate by more than an order
of magnitude for more than 95% queries. In contrast, MOSH,
PMOSH, and MSH estimate most queries within 50% of their
real counts. MOSH and MSH also have no queries that are over-
or under-estimated by an order of magnitude.

Twiglet decomposition techniques: The figures above show
that PMOSH always underperforms MOSH and MSH. Therefore,
forming bushy but often shallow twiglets does not work well in
practice, because it sacrifices the depth of subpaths. Since MOSH
and MSH often form the same twiglets, we further isolate those
queries that are parsed into different twiglets by these two algo-
rithms. Figure 5(b) shows the percentage of such queries on the
DBLP data set. Results for the other data set are similar and
are omitted. Figure 6(a) shows that for those differently parsed
queries, MSH substantially outperforms MOSH, justifying that a
balance between deeper and bushier twiglets is the best twiglet
decomposition technique. However, the percentage of differently

parsed queries is low (from 1% to 4%). Therefore, in practice, we
could either choose MOSH to simplify implementation, or choose
MSH for the best performance.

Scale-Up: We examine the scale-up property of all algorithms
by extracting different sized data from the same data source.
Figure 6(b) reports the average error as we extract 5 MB, 15
MB, 25 MB, 35 MB, and 50 MB data from the DBLP data set.
The queries are positive and non-trivial, generated from each data
set. For each data set, we use 2% space for the summary data
structure. The results for the SWISS-PROT data set are similar
and are omitted. The figure shows that MOSH and MSH have
excellent scale-up property because their performance improves
as the data size increases. The explanation is that the size of
the unpruned data structure grows sublinearly with the data size,
because more repetitions will occur in larger data sets. Since the
space of the pruned summary data structure grows linearly with
the data size, a larger part of the unpruned summary data structure
will be stored for larger data sets. Thus, by storing correlations
and judicially forming twiglets, MOSH and MSH take advantage
of the larger summary data structure and perform better. In
contrast, the performance of other algorithms do not have a clear
trend of improving and even become worse in many cases, due to
not storing correlations, or forming twiglets inappropriately.

6.4 Accuracy for Negative Queries

Figure 7 presents the results for negative queries. Greedy shows
good performance and this is to be expected, since all the twiglets
formed after parsing have very low counts and when multiplied
to form an estimate, the resulting number is very close to the
true value, i.e., zero. MOSH and MSH improve quickly as space
increases and beat Greedy in the end. MO and Leaf appear much
more inaccurate in this case, due to the amplification effect by
conditioning on the overlapping paths, which have very small
counts. PMOSH also has large error, due to the inappropriate
twiglets forming technique.

6.5 Time

All our experiments were performed on a Pentium II, 350MHz,
with 128MB of memory. It takes less than 10 minutes to construct
and prune the CSTs for all algorithms and data sets. Estimations
take about a millisecond for each algorithm. In all, construction
and estimation are very fast.

6.6 Summary

We find that four issues are important for accurate estimation for
twig queries: path information, correlations, twiglet decomposi-
tion, and parsing and combination technique. MOSH and MSH
address all these issues and provide accurate and robust estimates
for various types of data sets, various query types, and have ex-
cellent scale-up property, with very limited space. Leaf, Greedy,
pure MO, and PMOSH each fail to address some of the above is-
sues and do not provide accurate and robust estimates. The choice
between MOSH and MSH depends on whether we want to sim-
plify implementation or want the best performance.
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7 Conclusions and Future Work
We described efficient algorithms for accurately estimating the
number of matches of a twig query in a large node-labeled data
tree, using the CST summary data structure, for unordered sets
and multisets of sibling node labels in the data tree. In particular,
we demonstrated the accuracy, robustness, and scalability of the
MOSH and MSH estimation algorithms for various types of data
sets and query types, even with very limited space.

There are several interesting directions of research that we
are currently exploring. First, how do our techniques deal with
matching twigs in an ordered node-labeled data tree? A possible
solution is to enhance the set hashing approach such that, with
each set hash value, we also keep track of the associated node ID.
By assigning node IDs to the nodes in the data tree in a depth-first
traversal order, and additionally checking that node IDs associated
with paths emanating from a given branch node are in the desired
order, we should be able to obtain good estimates for the ordered
twig matching problem. Combining order with multisets is also
important.

Another important direction of research is to understand how
the techniques presented in this paper can be extended to estimate
twigs with wildcards. A possible solution here involves the use
of a special symbol “*” in the CST that matches arbitrarily long
subpaths in the data tree, and using maximal parsing strategies on
the twig query paths to include the “*”s appearing in the query.
Doing so in a space-efficient manner, while ensuring accurate
estimates, is a challenging problem.
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